29
12/04/06 E. E. Dept, IIT Bombay 1 Comprehensive Simulation of Programming, Erase & Retention in Charge Trapping Flash Memory A. Paul, Ch. Sridhar, S. Gedam and S. Mahapatra Department of Electrical Engineering IIT Bombay, India

IEDM-2006_Abhijeet_Paul_new

Embed Size (px)

Citation preview

Page 1: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 1

Comprehensive Simulation of Programming, Erase & Retention in Charge Trapping Flash Memory

A. Paul, Ch. Sridhar, S. Gedam and S. Mahapatra

Department of Electrical Engineering

IIT Bombay, India

Page 2: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 2

Outline

Introduction

Physics of operation

Simulation details & assumptions

Results

Conclusion & outlook

Impact of parameters

Prediction of experimental data

Page 3: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 3

Introduction

Charge Trap Flash to replace FG for NAND applications

Charge storage in traps in nitride

A simulator to understand

Physics of operation

Impact of physical parameters

Impact of trap parameters

Substrate

Tunnel oxide

Nitride

Blocking oxide

Gate

Page 4: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 4

Simulator Features

Self consistent, 1D simulator

Provides electric field, tunneling current, trapped and free carriers in the stack with time

Study impact of physical and trap parameters

Stack design: Impact of trap profiles on P, E and R

Simulation of Program, Erase and Retention

Extraction of experimental trap parameters

Page 5: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 5

Outline

Introduction

Physics of operation

Simulation details & assumptions

Results

Conclusion & outlook

Impact of parameters

Prediction of experimental data

Page 6: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 6

Program

Electron tunneling from Si to N, and N to poly-Si

Hole tunneling from poly-Si to N, and N to Si

Trapping / detrapping of electrons & holes in nitride

Poly-Si

Top Ox

Nitride

Bottom Ox

Si-substrate

VG>0

Page 7: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 7

Erase

Detrapping & tunneling of electrons from N to Si

VG<0

Poly-Si

Top Ox

NitrideBottom Ox

Si-substrate

Tunneling of electrons from poly-Si to N, trapping

Detrapping & tunneling of holes from N to poly-Si

Tunneling of holes from Si to N, trapping

Page 8: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 8

Retention

Thermal (FP) emission followed by tunneling to Si and poly-Si

Poly-Si

VG=0

Top Ox Bottom Ox

Si-substrate

Nitride

Trap to band tunneling

Trap to trap hopping

Not solved for holes due to negligible hole tunneling and trapping

Page 9: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 9

Outline

Introduction

Physics of operation

Simulation details & assumptions

Results

Conclusion & outlook

Impact of parameters

Prediction of experimental data

Page 10: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 10

System Equations

Poisson Tunneling (FN or DT)

Continuity & SRH

Substrate

Tunnel oxide

Nitride

Blocking oxide

Gate

Page 11: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 11

Simulation Flow

User Input Deck:

Structure, doping

Mesh

Trap profile

Bias, Time

Parameter file:

Physical & trap

Poisson-Schrödinger

Potential

Transport & Trapping

Tunneling (FN / DT)

Continuity & SRH

VT shift

Time

Final result

NO

YES

Page 12: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 12

Assumptions

Bottom & top oxides are pure tunneling barriers with no traps. Traps are only in nitride, fixed in time.

Elastic tunneling through barriers, calculated using thermalized carrier concentration.

Single energy level, non-interacting electron & hole traps.

No traps at substrate and Poly-Si interfaces.

Effective mass in nitride is a fitting parameter.

Free carrier density < trapped carrier density in nitride.

Drift as the only transport mechanism in nitride.

Page 13: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 13

Outline

Introduction

Physics of operation

Simulation details & assumptions

Results

Conclusion & outlook

Impact of parameters

Prediction of experimental data

Page 14: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 14

Simulated Electric Field for P & E

Program: Increase in negative trap charge in N

Erase: Decrease in negative trap charge in N

Reduction in E (bottom)

Reduction in E (top)

Increase in E (bottom)

Increase in E (top)

Page 15: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 15

Impact of Effective Mass

Higher m*: lower JTUN

Higher m* (tunnel-oxide): lower VT shift in P

Higher m* (top-oxide): faster VT shift in E (reduced back injection through top-oxide)

e,ox

T

e,ox

Te,ox

T

Page 16: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 16

Impact of Attempt to Escape Frequency

Higher :

Faster de-trapping

Lower VT shift in P

Higher VT shift in E

Page 17: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 17

Impact of Capture Cross-section

Higher : Faster trapping

Higher VT shift in P

Lower VT shift in E

Page 18: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 18

Impact of electron trap depth

Deeper traps: More

electron capture

Increase in trap depth

Increases ∆Vt during P

Increase in trap depth

Decreases ∆Vt during E

Page 19: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 19

Impact of Trap Profile – Program

Lower VT shift for lower trap density near tunnel oxide

Page 20: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 20

Impact of Trap Profile – Erase

Slower erase for lower trap density near tunnel oxide

Page 21: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 21

Prediction of Experimental P / E Results

SONOS: n+ poly-Si / 5.8nm SiO2 / 8nm Si3N4 / 5nm SiO2 / p-Si

Page 22: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 22

Prediction of Experimental P / E Results

SONOS: n+ poly-Si / 5.8nm SiO2 / 6nm Si3N4 / 5nm SiO2 / p-Si

During Erase devices

were pre-programmed

for 10s at Vg =11V.

Page 23: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 23

Prediction of Experimental R Results

SONOS: n+ poly-Si / 5.8nm SiO2 / 8nm Si3N4 / 5nm SiO2 / p-Si

Experimental data

is for pre-cycling

retention.

Page 24: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 24

Extracted Trap Distribution

All other parameters are identical for these devices

Higher trap density near interfaces than center

Larger trap density at top interface

Page 25: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 25

Prediction of TANOS Result – Program

OT/N/OB = 15nm / 6.5nm / 4nm

Shin, IEDM 05

simulated

20us

~4V

~4V

20us

Page 26: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 26

Prediction of TANOS Result – Erase

OT/N/OB = 15nm / 6.5nm / 4nm

Shin, IEDM 05simulated

~4V

2 ms

~4V

2 ms

Page 27: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 27

Extracted Trap Distribution – TANOS

Higher trap density near interface than center

Larger density at top interface

Similar trap profile for SONOS and TANOS

Page 28: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 28

Outline

Introduction

Physics of operation

Simulation details & assumptions

Results

Conclusion & outlook

Impact of parameters

Prediction of experimental data

Page 29: IEDM-2006_Abhijeet_Paul_new

12/04/06 E. E. Dept, IIT Bombay 29

Conclusion & Outlook

Self consistent, 1D simulator for P, E and R

Solves Poisson, Tunneling, Continuity & SRH

Good prediction of experimental results (SONOS & TANOS) over wide experimental conditions

Provides physical and trap parameters, trap profiles

Useful tool to understand device physics, stack design, parameter extraction

Acknowledgement:

IIT Bombay: J. Vasi, D. K. Sharma, N. Jain

Renesas Technologies (Japan): E. Murakami, K. Kubota, S. Kamohara