33
Introduction Stochastic Model Mean Field Equations Simulations Conclusions University of Iceland Reykjavik , Iceland July 9, 2015 Hybrid Modeling of Tumor Induced Angiogenesis L. L. Bonilla , M. Alvaro , V. Capasso , M. Carretero , F. Terragni Gregorio Mill´an Institute for Fluid Dynamics, Nanoscience, and Industrial Mathematics Universidad Carlos III de Madrid, 28911 Legan´ es, Spain ([email protected]) Universit` a degli Studi di Milano, ADAMSS, 20133 Milan, Italy L. L. Bonilla et al. | Modeling Angiogenesis | 1 / 29

Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

University of Iceland

Reykjavik , Iceland ∼ July 9, 2015

Hybrid Modeling of Tumor InducedAngiogenesis

L. L. Bonilla †, M. Alvaro †, V. Capasso ‡, M. Carretero †, F. Terragni †

† Gregorio Millan Institute for Fluid Dynamics, Nanoscience, and Industrial MathematicsUniversidad Carlos III de Madrid, 28911 Leganes, Spain ([email protected])

‡ Universita degli Studi di Milano, ADAMSS, 20133 Milan, Italy

L. L. Bonilla et al. | Modeling Angiogenesis | 1 / 29

Page 2: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Outline

1 Introduction

2 Stochastic Model

3 Mean Field Equation for the Tip Density

4 Numerical Results

5 Concluding Remarks

L. L. Bonilla et al. | Modeling Angiogenesis | 2 / 29

Page 3: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Outline

1 Introduction

2 Stochastic Model

3 Mean Field Equation for the Tip Density

4 Numerical Results

5 Concluding Remarks

L. L. Bonilla et al. | Modeling Angiogenesis | 3 / 29

Page 4: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

The physiological process of angiogenesis

The formation of blood vessels is essential for organ growth & repair

Above: postnatal retinal vascularization – Gariano & Gardner, Nature (2005)

L. L. Bonilla et al. | Modeling Angiogenesis | 4 / 29

Page 5: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Angiogenesis mechanisms

Above: molecular basis of vessel branching – Carmeliet & Jain, Nature (2011)

L. L. Bonilla et al. | Modeling Angiogenesis | 5 / 29

Page 6: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Angiogenesis treatment

Experimental dose-effect analysis is routine in biomedical laboratories, butthese still lack methods of optimal control to assess effective therapies

Above: angiogenesis on a rat cornea – E. Dejana et al. (2005)

L. L. Bonilla et al. | Modeling Angiogenesis | 6 / 29

Page 7: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Modeling angiogenesis

⋆ There are different models, from deterministic (e.g., reaction-diffusionequations) to stochastic (e.g., stochastic differential equations, cellularPotts models)

⋆ Many are multiscale models, combining randomness at the naturalmicroscale/mesoscale with numerical solutions of PDEs at themacroscale

⋆ Some mathematical models: Chaplain, Bellomo, Preziosi, Byrne,Folkman, Sleeman, Anderson, Stokes, Lauffenburger, Wheeler

⋆ Some experiments: Jain, Carmeliet, Dejana, Fruttiger

⋆ Our approach: V. Capasso & D. Morale, J. Math. Biol. 58 (2009)

→ the endothelial cells proliferation is led by cells at the vessel tips;we track the trajectories & analyze the behavior of vessel tips ←

L. L. Bonilla et al. | Modeling Angiogenesis | 7 / 29

Page 8: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Outline

1 Introduction

2 Stochastic Model

3 Mean Field Equation for the Tip Density

4 Numerical Results

5 Concluding Remarks

L. L. Bonilla et al. | Modeling Angiogenesis | 8 / 29

Page 9: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Features of our mathematical model

Formation of a tumor-driven vessel network involves various processes.

(i) tip branching: birth process of capillary tips

(ii) vessel extension: Langevin equations

(iii) chemotaxis in response to a generic tumor angiogenic factor (TAF),released by tumor cells: reaction-diffusion equation

(iv) haptotactic migration in response to fibronectin gradient (present within

the extracellular matrix & degraded/produced by endothelial cells): ignored

(v) anastomosis: death process of capillary tips that encounter an existingvessel

(vi) blood circulation & other processes: ignored

L. L. Bonilla et al. | Modeling Angiogenesis | 9 / 29

Page 10: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Some notation

X Let N(t) denote the number of tips at time t (N(0) = N0)

→ N is the (fixed) number of tips ‘expected’ during an experiment

X Let Xi(t) ∈ R2 be the location of the i-th tip at time t

X Let vi(t) ∈ R2 be the velocity of the i-th tip at time t

X The i-th tip branches at a random time T i and disappears (afterreaching the tumor or by anastomosis) at a later random time Θi

X The network of endothelial cells (existing vessels) is

X(t) =

N(t)⋃

i=1

{

Xi(s), T i ≤ s ≤ min{t,Θi}

}

L. L. Bonilla et al. | Modeling Angiogenesis | 10 / 29

Page 11: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Tip branching

Vessels branch out of capillary tips (not from mature vessels)

The probability that a tip branches from an existing one (birth) in theinterval (t, t+ dt] is measured by

N(t)∑

i=1

α(

C(t,Xi(t)))

dt , with α(C) = α1C

CR + C,

where CR is a reference value for the TAF concentration C(t,x) emitted bythe tumor (α1 is a coefficient).

Then, a tip located in x actually branches whenever its velocity is ‘close’ toa fixed non-random velocity v0, generating a new tip with initial state

(XN(t)+1,vN(t)+1) = (x,v0)

L. L. Bonilla et al. | Modeling Angiogenesis | 11 / 29

Page 12: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Vessel extension

Vessel extension is modeled by tracking the trajectories of capillary tips

Description is done in terms of the Langevin equations

dXi(t) = vi(t) dt

dvi(t) = −k vi(t)︸ ︷︷ ︸

friction

dt + F(

C(t,Xi(t)))

︸ ︷︷ ︸

force due to TAF

dt + σ dWi(t)︸ ︷︷ ︸

random noise

for t > T i , where Wi is a Brownian motion associated with the i-th tip.

The chemotactic force due to the underlying TAF field C(t,x) is given by

F(C) =d1

1 + γ1C∇xC

(k, σ, d1, γ1 are parameters)

L. L. Bonilla et al. | Modeling Angiogenesis | 12 / 29

Page 13: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

The TAF field

The TAF diffuses & decreases where endothelial cells are present

Assuming that degradation is due only to tip cells, the TAF consumption is

proportional to velocity vi of the i-th tip in a infinitesimal region around it

The evolution equation is

∂tC(t,x) = d2△xC(t,x)− η C(t,x)

∣∣∣∣∣∣

1

N

N(t)∑

i=1

vi(t) δ

(

x−Xi(t)

)

∣∣∣∣∣∣

,

where d2 and η are parameters.

X an initial Gaussian-like concentration C(0,x) is considered

X the production of C(t,x) due to the tumor is incorporated througha TAF flux boundary condition at the tumoral source

L. L. Bonilla et al. | Modeling Angiogenesis | 13 / 29

Page 14: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Anastomosis

If a tip meets an existing vessel,they join at that point and time→ the tip stops the evolution

x/L

y/L

The empirical measure TN counts tips with any velocity that are at time sin a spatial region A as

TN(s)(A) =1

N

N(s)∑

i=1

ǫXi(s)(A) .

The death rate (of capillary tips) at location x and time t should beproportional to

1

N

∫ t

0

ds

N(s)∑

i=1

δ(x−Xi(s)) .

L. L. Bonilla et al. | Modeling Angiogenesis | 14 / 29

Page 15: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Numerical simulation: setting

⋆ The 2D spatial domain is given by x = (x, y) ∈ [0, L]× [−∞,∞]

⋆ The primary vessel is at x = 0, the tumor is at x = L

⋆ The boundary conditions for the TAF field are

C(t, x,±∞) = 0 ,∂C

∂x(t, 0, y) = 0 ,

∂C

∂x(t, L, y) = f(y) ,

where f(y) is the TAF flux emitted by the tumor

00.2

0.40.6

0.81

−1

−0.5

0

0.5

10

0.2

0.4

0.6

0.8

1

1.2

1.4

x/L

y/L

00.2

0.40.6

0.81

−1

−0.5

0

0.5

1−0.2

0

0.2

0.4

0.6

0.8

x/L

y/L

00.2

0.40.6

0.81

−1

−0.5

0

0.5

1−5

0

5

x/L

y/L

Initial TAF (left) and x/y - components of the force due to TAF (middle / right)

L. L. Bonilla et al. | Modeling Angiogenesis | 15 / 29

Page 16: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Vessel network, TAF field, x - component of TAF force

Time = 8 h – Number of tips = 28

x/L

y/L

0 0.2 0.4 0.6 0.8 1−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5Time = 16 h – Number of tips = 47

x/L

y/L

0 0.2 0.4 0.6 0.8 1−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5Time = 24 h – Number of tips = 53

x/L

y/L

0 0.2 0.4 0.6 0.8 1−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

00.2

0.40.6

0.81

−1

−0.5

0

0.5

1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x/Ly/L

00.2

0.40.6

0.81

−1

−0.5

0

0.5

1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x/Ly/L

00.2

0.40.6

0.81

−1

−0.5

0

0.5

1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x/Ly/L

L. L. Bonilla et al. | Modeling Angiogenesis | 16 / 29

Page 17: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Outline

1 Introduction

2 Stochastic Model

3 Mean Field Equation for the Tip Density

4 Numerical Results

5 Concluding Remarks

L. L. Bonilla et al. | Modeling Angiogenesis | 17 / 29

Page 18: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Few ideas

Derivation of a mean field equation for the vessel tip density, as N →∞

⋆ Ito’s formula is applied for a smooth g(x,v) & the process in Langevin eqns

⋆ The scaled number of tips with positions & velocities at time t in B is givenby the empirical measure QN

QN (t)(B) =1

N

N(t)∑

i=1

ǫ(Xi(t),vi(t))(B) =1

N

N(t)∑

i=1

B

δ(

x − Xi(t)

)

δ(

v − vi(t)

)

dx dv

⋆ If N is sufficiently large, QN may admit a density by laws of large numbers

QN (t) (d(x,v)) ∼ p(t,x,v) dx dv

⋆ Thus, as N → ∞

1

N

N(t)∑

i=1

g(Xi(t),vi(t)) ∼

g(x,v) p(t,x,v) dx dv

⋆ Tip branching & anastomosis are added as source & sink terms to theobtained equation for the tip density p(t,x,v)

L. L. Bonilla et al. | Modeling Angiogenesis | 18 / 29

Page 19: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Limiting equations

Bonilla, Capasso, Alvaro, Carretero, Phys. Rev. E 90 , 2014

As N →∞, the tip density p(t,x,v) satisfies the Fokker-Planck equation

∂tp(t,x,v) = α(C(t, x)) p(t,x,v) δ(v − v0)

︸ ︷︷ ︸

birth term (tip branching)

− γ p(t,x,v)

∫ t

0ds

p(s,x,v′) dv′

︸ ︷︷ ︸

death term (anastomosis)

−v · ∇x p(t,x,v)︸ ︷︷ ︸

transport

+ k ∇v ·[

v p(t,x,v)]

︸ ︷︷ ︸

friction

−∇v ·[

F(C(t,x)) p(t,x,v)]

︸ ︷︷ ︸

force due to TAF

+σ2

2∆v p(t,x,v)

︸ ︷︷ ︸

diffusion

(γ is the coefficient of anastomosis)

L. L. Bonilla et al. | Modeling Angiogenesis | 19 / 29

Page 20: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Limiting equations

Bonilla, Capasso, Alvaro, Carretero, Phys. Rev. E 90 , 2014

As N →∞, the TAF reaction-diffusion equation becomes

∂tC(t,x) = d2 △xC(t,x)− η C(t,x) |j(t,x)|

where

j(t, x) =

v′ p(t,x,v′) dv′

is the flux of tip density at time t and position x .

L. L. Bonilla et al. | Modeling Angiogenesis | 20 / 29

Page 21: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Limiting equations

Bonilla, Capasso, Alvaro, Carretero, Phys. Rev. E 90 , 2014

As N →∞, the TAF reaction-diffusion equation becomes

∂tC(t,x) = d2 △xC(t,x)− η C(t,x) |j(t,x)|

where

j(t, x) =

v′ p(t,x,v′) dv′

is the flux of tip density at time t and position x .

→ the BCs for the TAF field have been discussed before

L. L. Bonilla et al. | Modeling Angiogenesis | 20 / 29

Page 22: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Boundary conditions for the tip density

⋆ Since p has 2nd -order derivatives in v, we impose

p(t,x,v) → 0 as |v| → ∞

⋆ Which (spatial) BCs for p ? (p has 1st-order derivatives only in x)

L. L. Bonilla et al. | Modeling Angiogenesis | 21 / 29

Page 23: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Boundary conditions for the tip density

⋆ Since p has 2nd -order derivatives in v, we impose

p(t,x,v) → 0 as |v| → ∞

⋆ Which (spatial) BCs for p ? (p has 1st-order derivatives only in x)

At any time, we expect to know

X the marginal tip density at the tumor at x = L

p(t, L, y) = pL(t, y) where p(t,x) =

p(t,x,v′) dv′

X the normal tip density flux injected at the primary vessel at x = 0

−n · j(t, 0, y) = j0(t, y)

Using these values & assuming that p is closed to a local equilibrium distribution

at the boundaries, compatible BCs for p+ at x = 0 and p− at x = L are imposed

(see charge transport in semiconductors; Bonilla & Grahn, Rep. Prog. Phys., 2005)

L. L. Bonilla et al. | Modeling Angiogenesis | 21 / 29

Page 24: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Boundary conditions for p

p+(t, 0, y, v, w) =e−

k|v−v0|2

σ2

∫∞0

∫∞−∞ v′e

−k|v′−v0|2

σ2 dv′ dw′

[

j0(t, y)−

∫ 0

−∞

∫ ∞

−∞v′p−(t, 0, y, v′, w′)dv′dw′

]

p−(t, L, y, v, w) =e−

k|v−v0|2

σ2

∫ 0−∞

∫∞−∞

e−

k|v′−v0|2

σ2 dv dw

[

pL(t, y)−

∫ ∞

0

∫ ∞

−∞p+(t, L, y, v′, w′)dv′dw′

]

where

⋆ p+ = p for v > 0 and p− = p for v < 0

⋆ v = (v, w) ; v0 is the average velocity of the tips at x = 0, L

⋆ σ2/k is the boundary temperature of the equilibrium distribution

L. L. Bonilla et al. | Modeling Angiogenesis | 22 / 29

Page 25: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Outline

1 Introduction

2 Stochastic Model

3 Mean Field Equation for the Tip Density

4 Numerical Results

5 Concluding Remarks

L. L. Bonilla et al. | Modeling Angiogenesis | 23 / 29

Page 26: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Stochastic vs. mean field approximation

For comparison, results of 50 stochastic experiments were averaged

⋆ the qualitative behavior of p(t,x) is similar in the two models

⋆ time evolution for the mean field p(t,x) (left) is slightly faster than for thestochastic p(t,x) (right)

⋆ condition p → 0 as |v| → ∞ may be roughly satisfied in the numerical code

L. L. Bonilla et al. | Modeling Angiogenesis | 24 / 29

Page 27: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Stochastic vs. mean field approximation

⋆ the profiles p(t, x, y = 0) similarly evolve in time in the mean field (left)

and stochastic (right) models (discrepancies for p observed before)

⋆ tip generation & motion proceed as a pulse advancing towards the tumor at x = L

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

x/L

Time = 0 h – Number of tips = 20

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

x/L

Time = 8 h – Number of tips = 43

0 0.2 0.4 0.6 0.8 10

100

200

300

400

x/L

Time = 16 h – Number of tips = 45

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

x/L

Time = 24 h – Number of tips = 50

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120Time = 0 h – Number of tips = 20

x/L0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250Time = 8 h – Number of tips = 47

x/L

0 0.2 0.4 0.6 0.8 10

50

100

150

200

250Time = 16 h – Number of tips = 50

x/L0 0.2 0.4 0.6 0.8 1

0

50

100

150

200Time = 24 h – Number of tips = 56

x/L

L. L. Bonilla et al. | Modeling Angiogenesis | 25 / 29

Page 28: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Stochastic vs. mean field approximation

⋆ the number of tips over time is fairly comparable in the mean field (left)and stochastic (right) models

⋆ discrepancies are seemingly due to a different effect of anastomosis: involvedcoefficient is being estimated

0 4 8 12 16 20 2420

30

40

50

time (hours)

0 4 8 12 16 20 2420

30

40

50

60

time (hours)

L. L. Bonilla et al. | Modeling Angiogenesis | 26 / 29

Page 29: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Pulse solution for the tip density

⋆ Approximate

p ∼k

πσ2p(t,x)e−k |v−v0|

2/σ2

⋆ Use perturbation technique to obtain

∂p

∂t=

πσ2p− γp

∫ t

0p(s,x)ds−

1

k∇x · (Fp) +

σ2

2k2△xp

⋆ Ignore △xp, assume slow variation of C(t,x) and p = p(x− ct). Wefind (B. Birnir):

p(x− ct) =kc

2(Fx − kc)

(k2α2

γπ2σ4+ 2K

)

sech2

[√

k2α2

γπ2σ4+ 2K

k(x− ct+ ξ0)

2(Fx − kc)

]

L. L. Bonilla et al. | Modeling Angiogenesis | 27 / 29

Page 30: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Pulse solution for the tip density

⋆ Approximate

p ∼k

πσ2p(t,x)e−k |v−v0|

2/σ2

⋆ Use perturbation technique to obtain

∂p

∂t=

πσ2p− γp

∫ t

0p(s,x)ds−

1

k∇x · (Fp) +

σ2

2k2△xp

⋆ Ignore △xp, assume slow variation of C(t,x) and p = p(x− ct). Wefind (B. Birnir):

p(x− ct) =kc

2(Fx − kc)

(k2α2

γπ2σ4+ 2K

)

sech2

[√

k2α2

γπ2σ4+ 2K

k(x− ct+ ξ0)

2(Fx − kc)

]

This is the KdV soliton solution with scaling factor√

k2α2

γπ2σ4 + 2K k2(Fx−kc)

and

speed c. K is a constant with units of frequency.

L. L. Bonilla et al. | Modeling Angiogenesis | 27 / 29

Page 31: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Outline

1 Introduction

2 Stochastic Model

3 Mean Field Equation for the Tip Density

4 Numerical Results

5 Concluding Remarks

L. L. Bonilla et al. | Modeling Angiogenesis | 28 / 29

Page 32: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Summary

♣ Stochastic description of angiogenesis involving tip branching, vesselextension, chemotaxis, and anastomosis

♣ Mean field equations as N →∞ for tip density & TAF concentration→ with novel boundary conditions for p(t,x,v) ←

♣ Agreement between the mean field approximation & the stochasticmodel upon averaging over many random experiments

L. L. Bonilla et al. | Modeling Angiogenesis | 29 / 29

Page 33: Hybrid Modelingof Tumor Induced Angiogenesisscala.uc3m.es/bonilla/pdf/LLB_Iceland_2015.pdf · Reykjavik, Iceland ∼ July 9, 2015 Hybrid Modelingof Tumor Induced Angiogenesis L. L

Introduction Stochastic Model Mean Field Equations Simulations Conclusions

Summary

♣ Stochastic description of angiogenesis involving tip branching, vesselextension, chemotaxis, and anastomosis

♣ Mean field equations as N →∞ for tip density & TAF concentration→ with novel boundary conditions for p(t,x,v) ←

♣ Agreement between the mean field approximation & the stochasticmodel upon averaging over many random experiments

X open: control : inhibit or enhance vessel network

X open: developing a hybrid model : TAF field equation with averagedquantities with stochastic tip branching & growth

X open: including new ingredients, as equations for fibronectin andmatrix-degrading enzyme, blood circulation, ...

L. L. Bonilla et al. | Modeling Angiogenesis | 29 / 29