42
http://www.dca.iusiani.ulpgc.es/proyecto2012-2014 WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero and R. Montenegro University Institute SIANI, University of Las Palmas de Gran Canaria, Spain 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) July 20-25, 2014, Barcelona, Spain

Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Embed Size (px)

Citation preview

Page 1: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

WIND ENSEMBLE FORECASTING USING AN ADAPTIVEMASS-CONSISTENT MODEL

A. Oliver, E. Rodríguez, G. Montero and R. Montenegro University Institute SIANI, University of Las Palmas de Gran Canaria, Spain

11th World Congress on Computational Mechanics (WCCM XI)

5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20-25, 2014, Barcelona, Spain

Page 2: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

ContentsWind forecasting over complex terrain

Motivation, Objective and Methodology

The Adaptive Tetrahedral Mesh (Meccano Method)

The Mass Consistent Wind Field Model

Results wind Field model

Conclusions

Ensemble methods

Results ensemble methods

Page 3: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Motivation

• Wind field prediction for local scale• Ensemble methods• Gran Canaria island (Canary Islands)

Page 4: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Motivation

• Wind farm energy• Air quality• Etc.

Page 5: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE model

Motivation

Non-hydrostatic meteorological model From large scale to 1km or less scale (under developed) Different models in different scales Assimilation data system Run by AEMET daily

24 hours simulation data

HARMONIE on Canary islands (http://www.aemet.es/ca/idi/prediccion/prediccion_numerica)

Page 6: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

MotivationEnsemble methods

• Ensemble methods are used to deal with uncertainties

• Several simulations– Initial/Boundary conditions perturbation–Physical parameters perturbation–Selected models

Page 7: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

MotivationEnsemble methods

• Ensemble methods are used to deal with uncertainties

• Several simulations– Initial/Boundary conditions perturbation–Physical parameters perturbation–Selected models

• 80% rain probability 80% of simulations predict rain

Page 8: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

General algorithm

Adaptive Finite Element Model• Construction of a tetrahedral mesh

• Mesh adapted to the terrain using Meccano method

• Wind field modeling• Horizontal and vertical interpolation from HARMONIE data • Mass consistent computation• Calibration (Genetic Algorithms)

• Ensemble method

Page 9: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

The Adaptive Mesh

Page 10: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Meccano construction

Parameterization of the solid surface

Solid boundary partition

Floater’s parameterization

Coarse tetrahedral mesh of the meccano

Partition into hexahedra

Hexahedron subdivision into six tetrahedra

Solid boundary approximation Kossaczky’s refinement Distance evaluation

Inner node relocation Coons patches

Simultaneous untangling and smoothing SUS

Algorithm steps

Meccano Method for Complex Solids

Page 11: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Parameterization Refinement Untangling &

Smoothing

Simultaneous mesh generation and volumetric parameterization

Meccano Method for Complex Solids

Page 12: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Key of the method: SUS of tetrahedral meshes

Meccano Method for Complex Solids

Parameter space (meccano mesh)

Physical space(optimized mesh)

Physical space(tangled mesh)

Optimization

Page 13: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

The Wind Field Model

Page 14: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Algorithm

Mass Consistent Wind Model

Adaptive Finite Element Model

• Wind field modeling• Horizontal and vertical interpolation from HARMONIE data • Mass consistent computation• Parameter calibration (Genetic Algorithms)

Page 15: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Construction of the observed wind

Mass Consistent Wind Model

Horizontal interpolation

Page 16: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

terrain surface

Construction of the observed wind

Mass Consistent Wind Model

Vertical extrapolation (log-linear wind profile)

geostrophic wind

mixing layer

Page 17: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Construction of the observed wind

Mass Consistent Wind Model

● Friction velocity:

● Height of the planetary boundary layer:

the Earth rotation andis the Coriolis parameter, being

is a parameter depending on the atmospheric stability

is the latitude

● Mixing height:

in neutral and unstable conditions

in stable conditions

● Height of the surface layer:

Page 18: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Mathematical aspects

Mass Consistent Wind Model

• Mass-consistent model

• Lagrange multiplier

Page 19: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

FE solutionis needed

for each individual

Genetic Algorithm

Estimation of Model Parameters

k2 2

0 0i ii 1

1F( , , , ')

2ku u v v

Page 20: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

The Results

Page 21: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastTerrain approximation

Page 22: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastTerrain approximation

Page 23: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastTerrain approximation

Topography from Digital Terrain ModelHARMONIE discretization of terrain

Max height 1950m

Max height 925m

Terrain elevation (m)

Page 24: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastSpatial discretization

FEM computational mesh

HARMONIE mesh

Δh ~ 2.5km

Terrain elevation (m)

Page 25: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastHARMONIE data

U10 V10 horizontal velocitiesGeostrophic wind = (27.3, -3.9)Pasquill stability class: Stable

Used data (Δh < 100m)

Page 26: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastStations election

Control points

Stations

Stations and control points

Page 27: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastGenetic algorithm results

l Optimal parameter values

l Alpha = 2.302731l Epsilon = 0.938761l Gamma = 0.279533l Gamma‘ = 0.432957

Page 28: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastWind magnitude at 10m over terrain

FEM wind

HARMONIE wind

Wind velocity (m/s)

Page 29: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE wind

HARMONIE-FEM wind forecastWind field at 10m over terrain

Wind velocity (m/s)

FEM wind

Page 30: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecast

Zoom

Wind field over terrain (detail of streamlines)

Page 31: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastForecast wind validation (location of measurement stations)

Page 32: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastForecast wind along a day

Page 33: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastForecast wind along a day

Page 34: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

HARMONIE-FEM wind forecastForecast wind along a day

Page 35: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Ensemble method

Page 36: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Ensemble methodsStations election

Stations (1/3) and control points (1/3)

Control points

Stations

Page 37: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Ensemble methods

NewAlpha = 2.057920Epsilon = 0.950898Gamma = 0.224911Gamma' = 0.311286

PreviousAlpha = 2.302731Epsilon = 0.938761Gamma = 0.279533Gamma' = 0.432957

Small changes

Page 38: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Ensemble methods

Possible solutions for a suitable data interpolation in the FE domain: Given a point of FE domain, find the closest one in HARMONIE domain grid Other possibilities can be considered

HARMONIE FD domain

FE domain

Page 39: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Ensemble methods

Ensemble method proposal• Perturbation

• Calibrated parameters• HARMONIE forecast velocity

• Models• Log-linear interpolation• HARMONIE-FEM interpolation

Page 40: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Ensemble methods

Page 41: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Conclusions

• Necessity of a terrain adapted mesh

• Local wind field in conjunction with HARMONIE is valid to predict wind velocities

• Ensemble methods provide a promising framework to deal with uncertainties

Page 42: Http:// WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero

Thank you for your attention