34
SBPI 16/06/2009 1 Heterodyne detection with LISA Heterodyne detection with LISA for gravitational waves for gravitational waves parameters estimation parameters estimation Nicolas Douillet

Heterodyne detection with LISA

Embed Size (px)

DESCRIPTION

Heterodyne detection with LISA. for gravitational waves parameters estimation. Nicolas Douillet. Outline. (1) : LISA (Laser Interferometer Space Antenna (2) : Model for a monochromatic wave (3) : Heterodyne detection principle (4) : Some results on simulated data analysis - PowerPoint PPT Presentation

Citation preview

Page 1: Heterodyne detection with LISA

SBPI 16/06/2009 1

Heterodyne detection with LISAHeterodyne detection with LISA

for gravitational waves parameters for gravitational waves parameters estimationestimation

Nicolas Douillet

Page 2: Heterodyne detection with LISA

SBPI 16/06/2009 2

OutlineOutline

• (1): LISA (Laser Interferometer SpaceAntenna

• (2): Model for a monochromatic wave

• (3): Heterodyne detection principle

• (4): Some results on simulated data analysis

• (5): Conclusion & future work

Page 3: Heterodyne detection with LISA

SBPI 16/06/2009 3

LISA motion during one Earth periodLISA motion during one Earth period

23

( )1 2 3S , S , S

LISA geometry rotation symmetry in ecliptic longitude ( ) between

two consecutive spacecraft orbits

2 1 3 2

2 2;

3 3S S S S

Page 4: Heterodyne detection with LISA

SBPI 16/06/2009 4

- LISA arm’s length: 5. 109 m to detect gravitational waves with frequency in: 10-4 10-1 Hz

- Heliocentric orbits,free falling spacecraft.

- LISA center of massFollows Earth, delayedfrom a 20° angle.

- 60° angle between LISAplan and the ecliptic plan.

- LISA periodic motion -> information on the direction of the wave.

LISA configurationLISA configuration

Page 5: Heterodyne detection with LISA

SBPI 16/06/2009 5

Motivations for LISAMotivations for LISA

A space based detectorallows to get rid of thisconstraint.

Possibility to detectvery low frequencygravitional waves.

Existing ground based detectors such as VIRGO and LIGO are « deaf » in lowfrequencies ( < 10 Hz).

Limited sensitivity due to « seismic wall » (LF vibrations transmitted by theNewtonian fields gradient)

Page 6: Heterodyne detection with LISA

SBPI 16/06/2009 6

Monochromatic wavesMonochromatic waves

H h h

Sources: signals coming from coalescing binarieslong before inspiral step. Frequency consideredas a constant.

+ polarization x polarization

h+ / h : amplitude following + / x polarization

+ / : directional functions

Gravitational wave causesperturbations in the metrictensor.

Effect (amplified) of aGravitational wave on a ringof particles:

Page 7: Heterodyne detection with LISA

SBPI 16/06/2009 7

Model for a monochromatic wave(1)Model for a monochromatic wave(1)

cos 2 sin cos

sin 2 sin cos

s t F t h t R

F t h t R

1, , , , , , , i i N

s s t h s

LISA response to the incoming GW: 2 t

T

Unknown parameters:

(Hz): source frequency (rad): ecliptic latitude (rad): ecliptic longitude (rad): polarization angle (rad): orbital inclination angle h (-): wave amplitude (rad): initial source phase

T : LISA period (1 year)

4 110 10Hz Hz

Page 8: Heterodyne detection with LISA

SBPI 16/06/2009 8

Model for a monochromatic wave (2)Model for a monochromatic wave (2)

arctanh F

th F

cos 2 sin cosR

s t E t t tc

1/ 22 2

E t h F h F

Amplitude modulation (envelope)Shape depends on source location: (, )

With

21 cos ; 2 cosh h h h and

Page 9: Heterodyne detection with LISA

SBPI 16/06/2009 9

Pattern beam functions (1)Pattern beam functions (1)

, , ,

, , ,

1cos 2 sin 2

2

1sin 2 cos 2

2

n n n

n n n

F t D t D t

F t D t D t

Change of reference frame for and pattern beam functions. ,nD ,nD

1 3n

Spacecraft n° in LISA triangle.

: polarization angle

Page 10: Heterodyne detection with LISA

SBPI 16/06/2009 10

Pattern beam functions (2)Pattern beam functions (2)‘+’ polarization‘+’ polarization

2,

3[ 36sin sin 2 2 1

64 3

3 cos 2 cos 2 9sin 2 1 sin 4 2 13 3

sin 2 cos 4 2 1 9cos 2 13 3

4 3 sin 2 sin 3 2 1 3sin 2 1 ]3 3

nD t n

n n

n n

n n

4 sidebands2

: t

T

LISA orbital phase

Page 11: Heterodyne detection with LISA

SBPI 16/06/2009 11

Pattern beam functions (3)Pattern beam functions (3)‘x’ polarization‘x’ polarization

1[ 3 cos 9cos 2 1 2

16 3

cos 4 2 1 23

6sin cos 3 2 13

3cos 2 1 ]3

nD t n

n

n

n

2:

t

T

LISA orbital phase

Page 12: Heterodyne detection with LISA

SBPI 16/06/2009 12

Envelope heterodyne detection (1)Envelope heterodyne detection (1)Principle:

(1): Fundamental frequency (0) search

Detect the maximum in the spectrum of the product between source signal (s) and a template signal (m) which frequency lays in the range:

0

0 0[ ; ]

max S M

Frequency precision is reached with a nested search.

Page 13: Heterodyne detection with LISA

SBPI 16/06/2009 13

17 2 1

0

kj n

N

k

E n Y k e

(3): Shift spectrum (offset zero-frequency) by heterodyning at , then low-pass filtering

8 lateral bands: [0; 7] (empirical) -> compromise between accepted noiselevel and maximum frequency needed to rebuild the envelope ( = 1/ T)

Envelope heterodyne detection (2)Envelope heterodyne detection (2)

0

020 0

i ts t e S S S

Fourier sum

Y S H

(2): Envelope reconstruction

(Filter above )0

Page 14: Heterodyne detection with LISA

SBPI 16/06/2009 14

Correlation optimization (1)Correlation optimization (1)

Correlation surface between template and experimental envelope

Page 15: Heterodyne detection with LISA

SBPI 16/06/2009 15

Correlation optimizationCorrelation optimization (2) (2)

0lim , 0j

Corr E E

0 00

1 0 02 2

,N

i i

i i i

E E E ECorr E E

E E E E

(1) Principle: correlation maximization between signal envelope end envelopetemplate (or mean squares minimization).

(2) Method: gradient convergence and quasi-Newton optimization methods.

(3) Conditions: already lay on the convex area which contains the maximum.

Page 16: Heterodyne detection with LISA

SBPI 16/06/2009 16

Signals and noisesSignals and noises

Page 17: Heterodyne detection with LISA

SBPI 16/06/2009 17

Spectrum and instrumental noisesSpectrum and instrumental noises

1 1 1,nS N 2 2 2,nS N

0

2

Page 18: Heterodyne detection with LISA

SBPI 16/06/2009 18

Sources mixSources mix

Possible to distinguish between n

sources since their fundamental

frequencies are spaced enough

(sidebands don’t cover each other):

15j i

Sources

Page 19: Heterodyne detection with LISA

SBPI 16/06/2009 19

Envelope detection (1)Envelope detection (1)

Page 20: Heterodyne detection with LISA

SBPI 16/06/2009 20

Envelope detection (2)Envelope detection (2)

Page 21: Heterodyne detection with LISA

SBPI 16/06/2009 21

Symmetries & ambiguities Symmetries & ambiguities

Correlation symmetry

Corr(, ) = Corr(-,+ )

LISA main symmetry

E(-, + ) = E(, )

,S

,S

Page 22: Heterodyne detection with LISA

SBPI 16/06/2009 22

Symmetries (1)Symmetries (1)

Some parameters remains difficult to estimate due to the high number of theenvelope symmetries on the parameters and .

Examples:

, , , , , ,

, , , , , ,

; ; ; 0;24 4

; ; ;4 4

i i i i i i

i i i i i i

F F F F F F

F F F F F F

1/ 22 2

E t h F h F

Page 23: Heterodyne detection with LISA

SBPI 16/06/2009 23

Symmetries (2)Symmetries (2)

, , , ,

, , , ,

; ; 0;22 2

; ;2 2

i i i i

i i i i

F F F F

F F F F

Ie -> risks of being stuck on correlation secondary maxima in N dimensions space (varied topologies resolution problem).

; ; ; 0;2

;

h h h h h h

h h h h h h

Page 24: Heterodyne detection with LISA

SBPI 16/06/2009 24

How to remove sky location uncertainty (1)How to remove sky location uncertainty (1)

2sin cos

Rk r t

c

Choice between (,) and ( -, +) depends on the sign of the product

If is the colatitude (ie [0; ] ), and when t=0

sgn sgn cosk r t

From the source signal, we compute the quantity

sgn tana

h Ft Arg s t Arc

h F

hence the sign of and

Page 25: Heterodyne detection with LISA

SBPI 16/06/2009 25

How to remove sky location uncertainty (2):How to remove sky location uncertainty (2): Source -> LISA, Doppler effect Source -> LISA, Doppler effect

max

min

sin cos tan

1 2sin sin ; tan 0

2

21 sin 1 ;

2

21 sin 1 ;

h F tRt t arc

c h F t

h F tRf t arc

t cT t h F t

R vf

cT c

R vf

cT c

2

Page 26: Heterodyne detection with LISA

SBPI 16/06/2009 26

How to remove sky location uncertainty (3):How to remove sky location uncertainty (3): Source -> LISA, Doppler effect Source -> LISA, Doppler effect

2 2

2 2

2: LISA tangential speed

2 : Ecliptic length

: Light year

1 4sin cos

2

Moreover, if 0 (colatitude),

0 si - : frequency seen by LISA increases.2 2

0 s

Rv

TR

cT

f t R

t t cT

f t

t

f t

t

3

i : frequency seen by LISA decreases.2 2

Page 27: Heterodyne detection with LISA

SBPI 16/06/2009 27

Source localizationSource localization

Simulated data from LISA data analysis community

Page 28: Heterodyne detection with LISA

SBPI 16/06/2009 28

Statistics on sky location angles Statistics on sky location angles ((,,))

= f() = f()

Max error: polar source ( = /2) 0 / 2, / 3S

Max sensitivity: source direction to LISA plan( ~ /6)

Page 29: Heterodyne detection with LISA

SBPI 16/06/2009 29

Noise robustness tests (static source)Noise robustness tests (static source)

True value

Estimations (180 runs on the noise)

Page 30: Heterodyne detection with LISA

SBPI 16/06/2009 30

Typical errors on estimated parametersTypical errors on estimated parameters

Average relative errors for /3

i/i

Ecliptic latitude 5. 10-2

Ecliptic longitude 1. 10-3

Polarization 1.5 10-1

Inclination angle 3. 10-1

Frequency 8.5 10-6

Amplitude h 0.5 – 1

~

X

Page 31: Heterodyne detection with LISA

SBPI 16/06/2009 31

Compare two parameters estimation Compare two parameters estimation techniques: template bank vs MCMCtechniques: template bank vs MCMC

(1): Matching templates (template bank and scan parameters space till reaching correlation maximum -> systematic method)

- Advantages: ● easy/friendly programmable ● quite good robustness

- Limitations: ● N dimensions parameters space. (memory space and computation time expensive)

● difficulties to adapt and apply this method for more complex waveforms

(2): MCMC methods, max likelihood ratio: motivations(statistics & probability based methods)

- Advantages: ● No exhaustive scan of the parameters space (dim N). ● much lower computing cost and smaller memory space- Limitations: ● Careful handling: high number parameters to tune in the

algorithm (choice of probability density functions of the parameters)

Page 32: Heterodyne detection with LISA

SBPI 16/06/2009 32

Conclusion and future workConclusion and future work

- Encouraging results of this method (heterodyne detection) on monochromatic waves. Could still to be improved however.

- Continue to develop image processing techniques for trajectories segmentation (chirp & EMRI) in time-frequency plan. (level sets, ‘active contours’ methods import from medical imaging and shape optimization)

- Combining this methods (graphic first estimation of parameters) with Monte-Carlo Markov Chains algorithms (numeric finest estimation) allows in a way to ‘‘ log-divide’’ the dimensions of the parameters space (N5 + N2 instead of N7 for example).

Page 33: Heterodyne detection with LISA

SBPI 16/06/2009 33

Thank you for listeningThank you for listening

Page 34: Heterodyne detection with LISA

SBPI 16/06/2009 34

GW modelling effect on GW modelling effect on LISALISA