heat transfer fins

Embed Size (px)

Citation preview

  • 8/11/2019 heat transfer fins

    1/13

    UNIT III STEADY STATE CONDUCTION WITH

    HEAT GENERATIONIntroduction, I.D. heat conduction with heat sources, Extended surfaces

    (fins), Fin effectiveness, 2-D heat conduction, Numericals.

    1

  • 8/11/2019 heat transfer fins

    2/13

    .1 Introduction to conduction with heat !eneration within the

    s"stem

    #an" $ro%lems encountered in heat transfer re&uire an anal"sis that ta'e into account

    !eneration and a%sor$tion of heat within the s"stem. he exam$les are

    (i) *"stem in which electrical current flows.(ii) Nucleate reactors

    (iii) +om%ustion $rocesses

    (iv) +hemical $rocesses(v) Dr"in!

    (vi) *ettin! of concrete etc.

    .2 lane wall with heat source

    et us consider a sla% of co$$er in contact with two fluids. et current I $ass throu!h the sla%and heat !enerated $er unit volume is q . he !eneral non-stead" conduction e&uation inrectan!ular coordinates is

    =

    +

    +

    + t

    K

    q

    z

    t

    y

    t

    x

    t 12

    2

    2

    2

    2

    2

    For stead" state when tem$erature varies onl" x-direction, a%ove e&uation reduces to

    2

    2

    =

    +K

    q

    xd

    td

    wo %oundar" conditions are

    uttin! two %oundar" conditions in E&. (1) we !et

    andClCK

    lqts )2(....................................

    2 21

    2

    2 ++

    =

    2

    At x = l , t = ts2At x = -l , t = ts1From a%ove e&uation

    K

    q

    xd

    td =

    2

    2

    Inte!ratin!, 1CxK

    q

    xd

    td+

    =

    Inte!ratin! a!ain,

    )1...(..........2

    21

    2

    CxCx

    K

    qt ++

    =

  • 8/11/2019 heat transfer fins

    3/13

    )(....................................2

    21

    2

    1 ClCK

    lqts +

    =

    /ddin! E&. (2) and E&. (), we !et

    K

    lqCtt ss

    2

    212 2

    =+

    2122

    22lK

    qttCor ss ++=

    uttin! this value of +2in E&. (2), we !et

    222

    12

    2

    1

    2

    2

    ss

    s

    tt

    K

    lqlC

    K

    lqt

    ++

    ++

    =

    l

    ttC ss

    2

    12

    1

    =

    *u%stitutin! values of +1and +2 in E&. (1), we o%tain

    ( )K

    lqtt

    l

    xtt

    x

    K

    qt ss

    ss22222

    2

    12

    12

    2 +

    +++

    =

    ( )222

    1212222

    ssss ttlxttxl

    Klqt +++=

    /ll the heat !enerated with the wall sla% must %e convected awa" to the surroundin!s. /lso heat

    conducted to each wall surface is dissi$ated to the surroundin!s %" convection. +onse&uentl", the

    maximum tem$erature must occur at the center at x 0 or at x 0 , =dx

    dt. Now, we will find

    tem$erature distri%ution in terms of maximum tem$erature to instead of ts.

    hen x 0 , t 0 t, so from E&. ()

    stlK

    qt +

    = 2

    2

    2

    2

    lK

    qttor

    s

    =

    ( )

    +

    +

    =

    ss tlK

    qtxl

    K

    qttAlso

    222

    22

    2

    2x

    K

    q=

    If ts10 ts20 ts

    ( ) ).....(..........2

    22

    stxlK

    qt +

    =

    or ( )222

    xlK

    qtt s

    =

    ( )222

    xlK

    q

    =

  • 8/11/2019 heat transfer fins

    4/13

    K

    lq

    K

    xq

    tt

    ttsos 22

    22

    =

    )3.......(....................

    2

    =

    l

    x

    tt

    ttro

    s

    If we want to use E&. () or E&. (3), surface tem$erature, ts

    , must %e 'nown in terms of surroundin!tem$erature tand convective heat transfer coefficient, h. From ener!" %alance,

    otal heat !enerated 0 4eat convected awa" from the faces

    )()2()2( = ttAhlAqor s

    +

    = th

    lqtor s

    From E&.(), )(2

    22xl

    K

    qtt s

    =

    uttin! in this e&uation, the a%ove value of ts, we o%tain

    l

    lqxl

    K

    qtt

    +

    = )(

    2

    22

    l

    lqxl

    K

    q += )(2

    22

    /t x 0 , 0 max, therefore

    h

    lql

    K

    q +

    = 2

    2max

    . +"linder with 4eat *ource/ current- carr"in! wire or a fuel element in a nuclear reactor ma" re$resent the s"stem. et us a

    consider a c"linder of radius of radius rowith uniforml" distri%uted heat sources. If c"linder is ver"

    lon!, the tem$erature ma" %e considered as function of radius onl". he !eneral non-stead" state

    conduction e&uation in c"lindrical coordinates is

    =

    =

    +

    +

    +

    + tt

    k

    c

    k

    q

    z

    tt

    rr

    t

    rr

    t 1112

    2

    2

    2

    22

    2

    In stead" state and tem$erature variation onl" in radial direction, a%ove e&uation reduces

    to

    or

    K

    q

    dr

    dt

    rdr

    d,

    12

    2

    =

    ++

    orK

    qr

    dr

    dt

    dr

    dr ,

    2

    2

    =

    ++

    K

    rq

    dr

    dtr

    dr

    d =

    5n inte!ratin!, we !et

  • 8/11/2019 heat transfer fins

    5/13

    C

    r

    K

    q

    dr

    dtr +

    =

    2

    2

    ,,,, mesuationbecoandaboveeqCsodr

    dtratdiscussedalreadyAs ===

    2

    2r

    K

    q

    dr

    dtr

    =

    getweegratingon

    r

    K

    q

    dr

    dtor ,int,

    2

    =

    1

    2

    C

    K

    rqt +=

    other %oundar" condition is that at r 0 r

    , t 0 ts

    1

    2

    , C

    K

    rqtyieldswhich s +

    =

    st

    K

    rqCso +

    =

    2

    2.

    1

    uttin! this value of +1

    in a%ove E&.

    Now we shall relate surface tem$erature to the tem$erature of surroundin!s t .

    From ener!" %alance

    otal heat !enerated 0 4eat convected awa" or

    ( ) ( )= ttlrhlrq s2

    2

    +

    = th

    rqts

    2

    *o $uttin! value of tsin E&. (1), we !et

    ( )h

    rqrr

    K

    qtt

    2

    22

    +

    =

    3

  • 8/11/2019 heat transfer fins

    6/13

    he tem$erature $rofile is shown in the ad6acent dia!ram

    when r is 7ero, %ecomes maximum

    h

    rqr

    K

    q

    22

    max

    +

    =

    3.4. Fins or Extended Surf!es

    1. Introduction

    4eat transfer %" convection %etween a surface and the fluid surroundin! it ma" %e enhanced

    %" attachin! to the surface thin stri$s or $ieces of metals called Fins or extended surfaces. hese

    stri$s ma" %e rectan!ular fins, annular fins or trian!ular fins. Fins are !enerall" used on the surfaces

    where heat transfer is low. 8" $uttin! fins on a surface, area of heat transfer is enhanced, %ut at the

    same time avera!e surface tem$erature decreases. he former effect increases rate of heat transfer

    and latter effect decrease rate of heat transfer. Fins are attached to

    (i) +ar radiators

    (ii) External surfaces of en!ine of a scooter

    (iii) 8oiler tu%es

    (iv) Electrical transformers and motors

    (v) Economisers for steam $ower $lants

    (vi) *mall ca$acit" com$ressors

    ". One Di#ension$ Fins of Unifor# Cross%Se!tion$ Are

    9

  • 8/11/2019 heat transfer fins

    7/13

    4eat conducted in at x 0 x 0 4eat conducted out at x : dx : 4eat convected awa"

    5ver width dx

    )1...(...........convdxxx QQQ += +

    dxx

    QQ

    dx

    dtAKQ xxx

    += ,

    dxdx

    dtAK

    xQQ xdxx

    +=+

    dxdx

    tdAKQx 2

    2

    =

    ( ) ( )= ttconvectionforAreahQconv. ( )= ttdxph

    uttin! values of ;x

    , ;x:dx

    and ;conv

    in E&.(1), we o%tain

    ( )+= ttdxphdxdx

    tdAKQQ

    xx 2

    2

    ( ) 2

    2

    = dxttphdx

    dxtdAK

    ( ) 2

    2

    = ttAK

    ph

    dx

    tdor

    2

    2

    2

    2

    2

    ,, mAK

    ph

    dx

    td

    dx

    dttIf ===

    )2..(..........2

    2

    2

    =

    mdx

    d

    which is one-dimensional fin e&uation of uniform cross-sectional area. he !eneral solution of E&.

    (2) is

    ).........(21mxmx

    eCeC +=

  • 8/11/2019 heat transfer fins

    9/13

    , ===dx

    dor

    dx

    dAKlxAt

    uttin! this %oundar" condition in E&.(), we o%tain,

    getweEqfromCvalueofputtingeCeC lmlm ),.(, 221=

    ( ) lmlmlmlmlm

    eeeC

    oreCeC

    =+=

    1

    21 )(

    lmlm

    lm

    ee

    eC

    +=

    1

    lmlm

    lm

    lmlm

    lm

    ee

    e

    ee

    eCC

    +=

    +==

    12

    uttin! these values of +1

    and +2

    in E&.(), we !et

    lmlm

    xmlm

    lmlm

    xmlm

    ee

    e

    ee

    e

    +

    +++=

    { }( ) 2?

    2?)()(

    mlml

    xlmxlm

    ee

    eeor

    ++

    =

    ml

    xlm

    cosh

    )(cosh

    =

    From a%ove e&uation in ex$onential form

    ( ) lengthiniteoffinofcaseinassamee

    ee

    ee mxml

    xlm

    inf2?

    )(

    =+

    +=

    =

    =

    x

    fdxdAKQ

    cosh

    )(sinh

    =

    +=

    xml

    xlmmAK

    ml

    AK

    phAK tanh=

    mlAKphQf tanh=

    (iii) Fin of Finite en!th

    / $h"sicall" more realistic %oundar" condition at the ti$ is

    ( ) orttAhdx

    dAK lxl

    lx

    ==

    =

    ll

    lx

    hdx

    d

    =

    =

    xmxm eCeCEqfromow += 21),.(,

    )()(, 2121lmlm

    l

    lmlmeCeCheCemCKor

    +=

    @

  • 8/11/2019 heat transfer fins

    10/13

    and also +1

    0

    -

    +2

    , therefore

    ( ){ }lmlmllmlm eCeCmK

    heCeC += 2222 )(

    ( ) ( )

    +=++

    mK

    heeemK

    heeC

    lmlmlmllmlml

    12

    ( ) ( )nowso

    eemK

    hee

    emK

    h

    Cmlmllmlml

    mll

    ,

    1

    2 ++

    +

    =

    mxmxeCeC

    += 21

    ( ) mxmx

    eCeC += 22

    )(2mxmxmx

    eeCe +=

    ( )

    ( ) ( )mlmllmlml

    mxmxmll

    mx

    eemK

    hee

    eeemK

    h

    e

    ++

    +

    +=

    1

    ( ) ( )

    ( ) ( )mlmllmlml

    xlmxlmlxlmxlmlxlmxlm

    eemK

    hee

    eemK

    hee

    mK

    hee

    ++

    ++

    ++++

    =

    )()()()()()(

    1

    { } { }

    ( ) ( ) 2?2?

    2?2? )()()()(

    mlmllmlml

    xlmxlmlxlmxlm

    eemK

    hee

    eemK

    hee

    ++

    ++=

    mlmK

    hml

    xlmmK

    hxlm

    l

    l

    sinhcosh

    )(sinh)(cosh

    +

    +=

    ==

    xf dx

    dAKQ

    oxl

    l

    mlmK

    hml

    xlmmK

    hxlm

    mAK=

    +

    ++=

    sinhcosh

    )(cosh)(sinh

    1

  • 8/11/2019 heat transfer fins

    11/13

    mlmK

    hml

    mlmK

    hml

    AKphQl

    l

    f

    sinhcosh

    coshsinh

    +

    +=

    3. Usefu$ness of Fins

    et us consider a rectan!ular fin as shown in the dia!ram. For a lon! fin

    AKphQf =

    4eat transfer without finsoAhQ fw ,.. =

    bK

    Ah

    AKph

    Ah

    Q

    Q

    f

    fw ==

    ..

    For the rectan!ular fin

    tbifbtbp =+= 222

    K

    th

    b

    bt

    K

    h

    Q

    Qso

    f

    fw

    22

    .. ==

    he ratio should %e much smaller to 6ustif" the cost of fins and la%our involved.

    11

  • 8/11/2019 heat transfer fins

    12/13

    12

    K

    thso

    1. *o convective heat transfer coefficient should %e small. *o it is a $oor $ractice to use fins incondensation and %oilin! where h is ver" hi!h. Fins should %e used in free convection where h has

    low value.2. he material of fin should have hi!h conductivit". It will ma'e fins more effective.

    . he thic'ness of fins should %e as small as $ossi%le within the constraints of stren!th re&uired.

    4. Fin Effi!ien!) It is defined as the ratio of actual heat transfer from a fin to the heat that would %e transferred if

    the entire fin surface were maintained at the $rimar" surface tem$erature.

    tetemperatursurfaceprimaryatweresurfacefinentireiffinthefromtransferheatIdeal

    finthefromtransferheatActualf =

    ideal

    f

    fQ

    Q=

    (i) For Fin of Infinite en!th

    ml

    AK

    phl

    lph

    AKph

    Q

    Q

    ideal

    f

    f

    11

    )(

    ====

    (ii' For Fin Insu$ted t t(e End

    )(tanh

    lph

    mlAKphQ

    Qideal

    ff ==

    ml

    ml

    lAK

    ph

    mlf

    tanhtanh==

    &iii' Fin of Finite *en+t(

    )sinh(cosh)(

    )cosh(sinh

    mlmK

    hmllph

    mlmK

    hmlAKph

    Q

    Q

    l

    l

    ideal

    f

    f

    +

    +==

    mlmK

    hml

    mlmK

    hml

    lm l

    l

    f

    sinhcosh

    coshsinh1

    +

    +==

    3. Fin Effectiveness

    12

  • 8/11/2019 heat transfer fins

    13/13

    It is ratio of heat transfer from the fin to the heat transfer without fin.

    .Ah

    QEff

    f=

    &i' Fin of Infinite *en+t(

    .

    Ah

    AKph

    Ah

    Q

    Eff f

    ==

    Ah

    pKEff =.

    &ii' Fin Insu$ted t t(e End

    tanh.

    Ah

    mlAKph

    Ah

    QEff

    f ==

    mlAh

    pKEff tanh. =

    &iii' Fin of Finite *en+t(

    ml!inhmK

    hmlCosh

    mlml!inhAKph

    AhAh

    QEff

    l

    mK

    h

    fl

    +

    +==

    cosh1.

    ml!inhmK

    hmlCosh

    mlml!inhAKph

    Ah

    pKEff

    l

    mK

    hl

    +

    +=

    cosh.

    1