61
Hallgren’s Quantum Algorithm for Pell’s Equation Pradeep Sarvepalli [email protected] Department of Computer Science, Texas A&M University Quantum Algorithm for Pell’s Equation – p. 1/60

Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Hallgren’s Quantum Algorithm forPell’s Equation

Pradeep Sarvepalli

[email protected]

Department of Computer Science,

Texas A&M University

Quantum Algorithm for Pell’s Equation – p. 1/60

Page 2: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Outline

Pell’s equation

Classical method for solving Pell’s equation

Reformulating the Pell’s equation in number theoreticterms

Overview of Hallgren’s quantum algorithm

Hallgren’s algorithmAlgebraic backgroundQuantum period finding algorithmClassical post processingPutting all the pieces together

Quantum Algorithm for Pell’s Equation – p. 2/60

Page 3: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Outline - cont’d

ApplicationsClass group of a quadratic fieldPrincipal ideal problem

GeneralizationsUnit group of a finite extension of Q

Class group of a finite extension of Q

Principal ideal problem

References"Notes on Hallgren’s efficient quantum algorithm forsolving Pell’s equation" by Richard Jozsa"Polynomial time quantum algorithms for Pell’sequation and principal ideal problem" by SeanHallgren

Quantum Algorithm for Pell’s Equation – p. 3/60

Page 4: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Pell’s Equation

Goal is to find finding integral and positive solutions tothe following equation

x2 − dy2 = 1

x2 − 2y2 = 1, Solutions (3, 2); (17, 12); . . .

Has infinite number of solutions

Harder than factoring

Quantum Algorithm for Pell’s Equation – p. 4/60

Page 5: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Classical Method for Pell’s equation

Based on continued fractions

Approximations of the continued fraction of√d give the

solution

Example

x2 − 2y2 = 1,√

2 = 1 +1

2 + 12+ 1

2+···

√2 ≈ 1 +

1

2=

3

2=x

y

Observe that 32 − 2 · 22 = 9 − 8 = 1

Quantum Algorithm for Pell’s Equation – p. 5/60

Page 6: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Continued Fraction Method

Why does this work?

Is every approximation a solution?

What is the complexity of the algorithm?

Quantum Algorithm for Pell’s Equation – p. 6/60

Page 7: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Continued Fraction Method - cont’d

Example - cont’d

√2 ≈ 1 +

1

2 + 12

= 1 +2

5=

7

5=x

y

√2 ≈ 1 +

1

2 + 12+ 1

2

= 1 +1

2 + 25

= 1 +5

12=

17

12=x

y

72 − 2 · 52 = 49 − 50 = −1 6= 1

172 − 2 · 122 = 289 − 288 = 1

Quantum Algorithm for Pell’s Equation – p. 7/60

Page 8: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Continued Fraction Method - cont’d

Not every approximation gives a solution to the Pell’sequation

We might have to take many terms in the continuedfraction before we get the solution

Typically if we use the input size as log d, size of thesolution will be O(

√d) ≈ O(elog d)

Quantum Algorithm for Pell’s Equation – p. 8/60

Page 9: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

A Close Look at the Solutions

Every solution can be uniquely identified with x+ y√d,

x, y > 0

Smallest solution with x+ y√d is called the

Fundamental solution

x1 + y1

√d

Every other solution can be obtained as power of thefundamental solution

x+ y√d = (x1 + y1

√d)n

It suffices to compute the fundamental solution

Quantum Algorithm for Pell’s Equation – p. 9/60

Page 10: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

A Closer Look at the Solutions

d x

10 1913 64929 980153 6624961 1766319049

109 158070671986249181 2469645423824185801277 159150073798980475849397 838721786045180184649409 25052977273092427986049421 3879474045914926879468217167061449

Quantum Algorithm for Pell’s Equation – p. 10/60

Page 11: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Regulator

O(x1 + y1

√d) = O(e

√d)

Just to write down the solution will take exponentialamount of write operations

We will rather compute a representation of the solution

Regulator Rd = ln(x1 + y1

√d), and x1 + y1

√d is the

smallest in magnitude of all solutions

Rd being irrational is computed to n digit accuracy

Even for this reduced problem the best classicalalgorithm has a running time O(e

√log d poly(n))

Quantum Algorithm for Pell’s Equation – p. 11/60

Page 12: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Overview of Hallgren’s Algorithm

Reformulate the Pell’s equation as a period findingproblem

Form a function h(x) with period Rd

Modify the quantum period finding algorithm to findirrational period

The quantum part of the algorithmComputes only the integral part of Rd

Perform classical post processing given the integralpart of Rd

Compute the fractional part of Rd making use of theintegral part of Rd provided by the previous step

Quantum Algorithm for Pell’s Equation – p. 12/60

Page 13: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Some Algebraic Number Theory

Let Q(√d) = {a+ b

√d | a, b ∈ Q}

The solutions of Pell’s equation are elements in Q(√d)

O is called the ring of algebraic integers

O = {a ∈ Q(√d) | f(a) = 0, f(x) ∈ Z[x]}

Z[x] consists of polynomials with integral coefficients

Units of O are elements in O that they havemultiplicative inverses

O× = { Units of O} = {u ∈ O | u−1 exists }

Quantum Algorithm for Pell’s Equation – p. 13/60

Page 14: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Algebraic Number Theory - cont’d

x+ y√d is a solution of x2 − dy2 = 1 if and only if

x+ y√d is a unit of O

ǫo smallest unit in O×, with ǫo > 1

O× = {±ǫko | k ∈ Z}Rd = ln ǫo

All the solutions of x2 − dy2 can be obtained from thefundamental unit ǫo

Quantum Algorithm for Pell’s Equation – p. 14/60

Page 15: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Algebraic Number Theory - cont’d

Product of sets A,B ⊆ Q(√d), then

A ·B = {n∑

i=1

aibi | n > 0, ai ∈ A, bi ∈ B}

Ideal I ⊆ Q(√d) such that I · O = I

Integral Ideal I ⊆ OFractional Ideal I ⊆ Q(

√d)

Principal Ideal I = γOIf ǫ ∈ O, then ǫO = OEquality of ideals αO = βO if and only if α = βǫ, whereǫ is a unit in O

Quantum Algorithm for Pell’s Equation – p. 15/60

Page 16: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Reformulating Pell’s equation

Let P = {γO | γ ∈ Q(√d)}

Consider g : R → P

g(x) = exO = Ix

g(x) is periodic with Rd

g(x+ kRd) = ex+kRdO,= exǫkoO = exO= g(x)

Quantum Algorithm for Pell’s Equation – p. 16/60

Page 17: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Using a periodic function to findRd

Naive algorithm to compute Rd

Find g(x) = Ix

Find y > x such that g(y) = Ixy − x = kRd

Another naive algorithmAssume that the ideals could be ordered somehowGiven Ix find g−1(Ix)

Find an ideal Iy next to Ix such that Iy = Ix

g−1(Iy) − g−1(Ix) = kRd

Quantum Algorithm for Pell’s Equation – p. 17/60

Page 18: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Problems with the Naive Algorithms

y > eRd is exponentially large in log d

Ix is an infinite set, comparing two ideals posesproblem

There are infinitely many ideals between x, x+ δ forwhich Ix = Ix+δ, Q(

√d) and P are both dense

We need to somehow order the ideals

We need to move from one ideal to another

Finite precision arithmetic

Quantum Algorithm for Pell’s Equation – p. 18/60

Page 19: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

More Algebraic Number Theory

O is a Z-module, so it behaves like a vector space

O = m+ nD +

√D

2, D =

{

d, d ≡ 1 mod 4

4d, d ≡ 2, 3 mod 4,

O = Z +D +

√D

2Z

For any principal ideal I = γO

I = γZ + γD +

√D

2Z

Quantum Algorithm for Pell’s Equation – p. 19/60

Page 20: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Comparing Principal Ideals

The basis is not unique, we can rewrite I as

I = k

(

aZ +b+

√D

2Z

)

−a < b ≤ a, a >√D√

D − a < b ≤√D, a <

√D

Presentation of an ideal is the triplet (a, b, k) which iscomputable in polynomial time given γ.

Addresses the problem of comparing infinite sets.Equality of ideals is equivalent to having the samepresentation

Quantum Algorithm for Pell’s Equation – p. 20/60

Page 21: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Discretizing Ideals

Reduced principal ideals have the form

I = Z +b+

√D

2Z

Reduced principal ideals are finite in number

Addresses the problem of density of sets Q(√d) and P

Cycle of Reduced Principal Ideals

J = {O = J0, J1, . . . , Jm−1}

Quantum Algorithm for Pell’s Equation – p. 21/60

Page 22: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Moving Among Ideals

I = Z + γZ, then define

ρ(I) =1

γI

Gives another principal ideal

If I ∈ J then ρ(I) ∈ J

If repeated then finally it gives a reduced principal ideal

If I was reduced principal ideal ρ(I)is another reducedprincipal ideal

Since there are a finite number of reduced principalideals it cycles

Quantum Algorithm for Pell’s Equation – p. 22/60

Page 23: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Moving Among Ideals - cont’d

σ(I) :√d 7→ −

√d

Inverse operation of moving back is given by ρ−1 = σρσ

This addresses the problem of moving between theideals back and forth

Quantum Algorithm for Pell’s Equation – p. 23/60

Page 24: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Ordering Ideals

Let Iy = γIx. Then the distance between Iy and Ix is

δ(Ix, Iy) = ln γ

Distance from O: δ(exO) = δ(O, exO) = ln ex = x

Distance allows us to order the ideals along thenumber line in the same form as the input x

Addresses the problems of invertibility and ordering

If Ix = Iy, then δ(Ix, Iy) = y − x = kRd

δ(I, ρ(I)) can be computed in polynomial time

Quantum Algorithm for Pell’s Equation – p. 24/60

Page 25: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Spacing of Ideals

δ(Ji, Ji+1) ≥ 332D

δ(Ji, Ji+2) ≥ ln 2

δ(Ji, Ji+1) ≤ 12lnD

If we succesively apply ρ to a non reduced ideal I, untilwe just get a reduced principal ideal Ired, then

|δ(I, Ired)| ≤ lnD

and Ired ∈ {Jk−1, Jk, Jk+1}

Quantum Algorithm for Pell’s Equation – p. 25/60

Page 26: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Jumping Across Ideals

We note that the ideals are exponential in number somoving across efficiently requires more than use ofreduction operator ρ

Use the product of ideals to move faster than ρ

I1 · I2 is much farther from O than either of I1, I2

δ(I1 · I2) = δ(I1) + δ(I2)

Product of ideals is not necessarily reduced so wereduce it to bring it back to the principal cycle ofreduced ideals

We denote this operation by ∗

Quantum Algorithm for Pell’s Equation – p. 26/60

Page 27: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review

We need positive, intgeral solutions for x2 − dy2 = 1

Each solution can be encoded as x+ y√d an element

in Q(√d)

All solutions can be obtained from the smallest solutionx1 + y1

√d

We introduced the Regulator Rd = ln(x1 + y1

√d)

Quantum Algorithm for Pell’s Equation – p. 27/60

Page 28: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

Every solution is an element of Q(√d)

More specifically every solution is also an element ofthe ring of algebraic integers in Q(

√d)

A solution of Pell’s equation is precisely the setelements in O which have multiplicative inverses

Our goal is to compute the generator of this subgroupwhich is precisely the regulator Rd

Quantum Algorithm for Pell’s Equation – p. 28/60

Page 29: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

Solutions Pell’s Eqn

Quadratic Number Field

Quantum Algorithm for Pell’s Equation – p. 29/60

Page 30: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

Solutions Pell’s Eqn

Quadratic Number Field

Algebraic Integes, O

Quantum Algorithm for Pell’s Equation – p. 30/60

Page 31: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

Solutions Pell’s Eqn

Quadratic Number Field

Unit group of O

Algebraic Integes, O

Quantum Algorithm for Pell’s Equation – p. 31/60

Page 32: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

Solutions Pell’s Eqn

Quadratic Number Field

Unit group of O

Algebraic Integes, O

Quantum Algorithm for Pell’s Equation – p. 32/60

Page 33: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

We then defined the ideals as special sets in Q(√d)

which are loosely speaking closed under addition andmultiplication

A special type of ideals are the principal ideals whichtake the form I = γOWe defined a periodic function that is periodic with Rd

from R to the set of principal reduced ideals

They can all be ordered with respect to their distancefrom OWe can move among the ideals using ρ and ρ−1

We have a means of moving from one ideal to anotherexponentially large steps

Quantum Algorithm for Pell’s Equation – p. 33/60

Page 34: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

Reduced Principal IdealsIdeals closed under +,x

Principal Ideals

Algebraic Integes, O

Quadratic Number Field

Quantum Algorithm for Pell’s Equation – p. 34/60

Page 35: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Review - cont’d

����

����

����

����

Quadratic Number Field

Algebraic Integes, O

Principal Ideals

Ideals closed under +,x Reduced Principal Ideals

I

ρ(Ι)ρ (Ι)−1

����

����

����

����

����

����

����

����

Quantum Algorithm for Pell’s Equation – p. 35/60

Page 36: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Hallgren’s Periodic Function

����

����

����

0 q−11 2 1/NNR

J1 J2 OO=J0 =J0 J1 J2 J0

(O,x0) (O,,x2)

(O,x1) (J1,x3)

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

h(x) = (g(x), x− δ(g(x))) = (Ix, x− δ(Ix))

Ix is the nearest reduced principal ideal to the left of xi.e, δ(Ix) < x

h(x) is periodic with Rd

h(x) is one to one

Quantum Algorithm for Pell’s Equation – p. 36/60

Page 37: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Hallgren’s Periodic Function

δ(Ι)

I_x

Principal Ideals

X

J0J2J1J0

NR321

��������

��������

��������

��������

��������

��������

������������

������������

��������

��������

������������

������������

h(x)=(I, ),δ(Ι)

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

h(x) = (g(x), x− δ(g(x))) = (Ix, x− δ(Ix))

Quantum Algorithm for Pell’s Equation – p. 37/60

Page 38: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Discretizingh(x)

For practical implementation we would like to discretizeh(x)

Assuming that x is discretized with a step of 1/N thediscretized function hN(k) = ⌊h(k/N)⌋N

hN(k) is weakly periodic with P = NRd

hN(k + ⌊lNRd⌋) = hN(k) or hN(k + ⌈lNRd⌉) = hN(k)

Quantum Algorithm for Pell’s Equation – p. 38/60

Page 39: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Hallgren’s Periodic Function

������������

������������

��������

��������

��������

��������

δ(Ι)

I_x

Principal Ideals

X

J0J2J1J0

NR321

��������

��������

��������

��������

��������

��������

��������

��������

������������

������������

��������

��������

������������

������������

h(x)=(I, ),δ(Ι)

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

After discretization h(x) is weakly periodic not periodicQuantum Algorithm for Pell’s Equation – p. 39/60

Page 40: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Quantum Period Finding Algorithms

A state in superposition

Transformation to a state with a suitable function

Partial measurement

Fourier transform to get rid of offset

Measurement

Classical post processing

Quantum Algorithm for Pell’s Equation – p. 40/60

Page 41: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Hallgren’s Period Finding Algorithm

Form is an uniform superpostion of q states whereq = pNRd + r

|ψ〉 =1√q

q−1∑

j=0

|j〉|0〉

Compute hN(|ψ〉)

����

����

����

����

����

0 q−11 2 1/NNR

J1 J2 OO=J0 =J0 J1 J2 J0

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Quantum Algorithm for Pell’s Equation – p. 41/60

Page 42: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Superposition

hN |ψ〉 =1√q

q−1∑

j=0

|j〉|hN(j)〉

����

����

����

0 q−11 2 1/NNR

J1 J2 OO=J0 =J0 J1 J2 J0

(O,x0) (O,,x2)

(O,x1) (J1,x3)

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Quantum Algorithm for Pell’s Equation – p. 42/60

Page 43: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Partial Measurement

h(0) h(1) h(2) h(3)

h(0) h(1) h(2) h(3)

h(0) h(1) h(2) h(3)

h(0) h(1) h(2) h(3)

h(0) h(1)

������������

������������

��������

��������

��������

��������

������������

������������

��������

��������

��������

��������

��������

��������

��������

��������

������������

������������

��������

��������

������������

������������

��������

��������

��������

��������

hN |ψ〉 =1√q

NRd−1∑

j=0

(

p−1∑

l=0

|j + [lNRd]〉)

|hN(j)〉

Measure the second register, say we measure hN(k)h(1) h(2) h(3)

h(0) h(1) h(2) h(3)

h(0) h(1) h(2) h(3)

h(0) h(1)

��������

��������

������������

������������

��������

��������

������������

������������

h(2)

h(2)

h(2)

h(2)

h(0)

������������

������������

��������

��������

��������

��������

������������

������������

��������

��������

��������

��������

��������

��������

��������

��������

������������

������������

��������

��������

������������

������������

��������

��������

��������

��������

h(0) h(1) h(2) h(3)

Quantum Algorithm for Pell’s Equation – p. 43/60

Page 44: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Partial Measurement - cont’d

(2+3NR)

h(2)

(2+NR)

h(2)

Second Register

First Register

h(2)h(2)

(2+2NR)(2)

������������

������������

��������

��������

������������

������������

��������

��������

������������

������������

��������

��������

������������

������������

��������

��������

After Measurement

On measurement the state will collapse to

|ψ〉 =1√p

p−1∑

n=0

|k + [nNRd]〉|hN(k)〉

Quantum Algorithm for Pell’s Equation – p. 44/60

Page 45: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

QFT to Remove Offset

Take the Quantum Fourier transform

F|ψ〉 =1√pq

p−1∑

n=0

q−1∑

j=1

e2πi(k+[nNRd])|j〉,

=

q−1∑

j=0

aj|j〉

Assumes q=pNR

Pro

babi

lity

1/p=NR/q

5q/NR4q/NR3q/NR2q/NRq/NR

Register after Quantum Fourier Transform

Quantum Algorithm for Pell’s Equation – p. 45/60

Page 46: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

QFT - cont’d

Register after Quantum Fourier Transform

q/NR 2q/NR 3q/NR 4q/NR 5q/NR

Prob(lq/NR) < 1/p

Pro

babi

lity

Assumes q=NR+r

q/NR 2q/NR 3q/NR 4q/NR 5q/NR

1/p=NR/q

Pro

babi

lity

Assumes q=NR

Quantum Algorithm for Pell’s Equation – p. 46/60

Page 47: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Identifying Periodicity

Register after Quantum Fourier Transform

Assumes q=NR+r

Pro

babi

lity

Prob(lq/NR) < 1/p

5q/NR4q/NR3q/NR2q/NRq/NR

We are interested inj = lq/NR

j is small, more precisely, j < q

log NRd

Prob(j) must be large

Quantum Algorithm for Pell’s Equation – p. 47/60

Page 48: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Identifying Periodicity - cont’d

For sufficiently large q ≥ 3(NRd)2, many j such that

j is a multiple of q/NRd

j < q

log NRd

Probability of such j is highly likely,

Prob(j) >α

logNRd

,

α a constant

Quantum Algorithm for Pell’s Equation – p. 48/60

Page 49: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Extracting Periodicity

But how do we extract the periodicity from the state?

Measure and repeat to get another measurement suchthat

c = [kq/NRd]

d = [lq/NRd]

We do not know k, l, Rd

Compute the convergents of cd

| cd− a

b| < 1

2b2

Quantum Algorithm for Pell’s Equation – p. 49/60

Page 50: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Extracting Periodicity - cont’d

Compute the convergents of c/d then

k

l=cndn

and k = cn,

for some n

c = [ kq

NRd

] = kq

NRd

Estimate the period as

NRd = [kq

c]

Check if NRd = cnq/c satisfies |lRd −NRd| < 1

Quantum Algorithm for Pell’s Equation – p. 50/60

Page 51: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Extracting Periodicity - cont’d

����

����

����

����

����

����

����

����

����

NR

ρ(Ο)

NR+1 NR+2NR−1NR−2

Ο

����

ρ (Ο)3ρ (Ο)−2−4ρ (Ο)

ρ (Ο)2 ρ (Ο)4−3ρ (Ο) ρ (Ο)−1

����

����

����

����

If |NRd − jRd| < 1, then h(NRd) is an ideal among{ρ−4(O), ρ−3(O), . . . ,O, . . . , ρ3(O), ρ4(O)}Because δ(I, ρ2(I)) > ln 2 > 0.693

Quantum Algorithm for Pell’s Equation – p. 51/60

Page 52: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Integral Part ofRd

Integral part of Rd

⌊Rd⌋ =

NRd

N

We know Rd to a precision 1/N

With probability ≥ 1/ poly(logNRd) this algorithm willreturn NRd such that |NRd −NRd| < 1

Quantum Algorithm for Pell’s Equation – p. 52/60

Page 53: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Computing the Fractional part ofRd

Given ⌊Rd⌋Compute h(⌊Rd⌋) = (Ix, x− δ(Ix))

����

NRNR−1NR−2

Ο

> 0.693

>0.693

����

ρ (Ο)−2−4ρ (Ο)

−3ρ (Ο) ρ (Ο)−1

����

����

����

����

����

We know that δ(I, ρ2(I)) > ln 2 = 0.693

Quantum Algorithm for Pell’s Equation – p. 53/60

Page 54: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Computing the Fractional part ofRd - cont’

����

NRNR−1NR−2

Ο

> 0.693

>0.693

����

ρ (Ο)−2−4ρ (Ο)

−3ρ (Ο) ρ (Ο)−1

����

����

����

����

����

Therefore δ(I, ρ4(I)) > 2 ln 2 > ⌈Rd⌉This implies that O must be one of the ideals{ρ−3(O), ρ−2(O), ρ−1(O),O}δ(I,O)) can be computed in polynomial and this givesthe fractional part of Rd

Quantum Algorithm for Pell’s Equation – p. 54/60

Page 55: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Summary of the Algorithm

Start with a superpostion of inputs

Compute Hallgren’s periodic fucntion for all theseinputs

Perform partial measurement

Perform QFT to get rid of offset

Perform a measurement to get c

Repeat to get another value d

Extract the Integral part of Rd

Compute the fractional part of Rd

Quantum Algorithm for Pell’s Equation – p. 55/60

Page 56: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Applications

Principal Ideal ProblemGiven an ideal determine if it is a principal ideal

Class Group structureDetermine the structure of the group Iinv/P

Quantum Algorithm for Pell’s Equation – p. 56/60

Page 57: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Principal Ideal Problem

Recall an ideal I ⊆ Q(√d) such that I · O = I

Principal ideal I = γOAll ideals of the form I = αZ + βZ

Given an ideal, decide if there exists a γ such thatI = γO

Quantum Algorithm for Pell’s Equation – p. 57/60

Page 58: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Computing the Class Group

Invertible idealsAn ideal I is called invertible if there exists anotherideal J such that I · J = OLet I = {I | I−1 exists }P = {I | I = γO}Let C = I/PC is a finite abelian group and called the classgroupClass group problem is to determine the structure ofC

Quantum Algorithm for Pell’s Equation – p. 58/60

Page 59: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Generalizations

A general problem is to compute the unit group of aO ⊆ Q(θ) where [Q(θ) : Q] = n

For Pell’s equation n = 2

Similarly the class group and the principal idealproblem also can be generalized

Two algorithms for the same have appeared recently byHallgren and Vollmer, Schmidt independetly this year

Quantum Algorithm for Pell’s Equation – p. 59/60

Page 60: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Questions ?

Quantum Algorithm for Pell’s Equation – p. 60/60

Page 61: Hallgren’s Quantum Algorithm for Pell’s Equationpradeep/talks/pellseqn.pdf · solving Pell’s equation" by Richard Jozsa "Polynomial time quantum algorithms for Pell’s equation

Questions ?

Thank You

Quantum Algorithm for Pell’s Equation – p. 61/60