35
gravi – metric (weighing - measure) Gravimetric Analysis

gravimetri 2014

Embed Size (px)

Citation preview

Page 1: gravimetri 2014

gravi – metric (weighing - measure)

Gravimetric Analysis

Page 2: gravimetri 2014

Gravimetric Analysis Introduction

1.) Gravimetric Analysis:(i) A technique in which the amount of an analyte in a sample is

determined by converting the analyte to some product Mass of product can be easily measured

(ii) Analyte: the compound or species to be analyzed in a sample

(iii) Overall, gravimetry sounds simple. Advantages - when done correctly is highly accurate (most

accurate of all time); requires minimal equipment

Disadvantage - requires skilled operator, slow.

Convert analyte into a solid, filter, weigh, calculate via a mole map

Page 3: gravimetri 2014

Gravimetric Analysis- What is It?

Reaction:aA + rR -----> AaRr ppt

where:a molekul analit A bereaksi dengan r molekul R

AaRr is a pure, insoluble precipitatewhich we can dry and weigh or ignite to convert to something we can weigh

ppt=precipitate

Page 4: gravimetri 2014

Persyaratan yang harus dipenuhi agar metode gravimetri berhasil

Proses pemisahan hendaknya cukup sempurna sehingga kuantitas analit yang tak terendapkan secara analitis tak dapat terdeteksi.

Zat yang ditimbang hendaknya mempunyai susunan yang pasti dan hendaknya murni atau sangat hampir murni. Bila tidak akan di peroleh hasil yang galat.

Page 5: gravimetri 2014

Introduction

1.) Gravimetric Analysis:(iii) Example:

Determination of lead (Pb+2) in water

Pb+2 + 2Cl- PbCl2(s)

By adding excess Cl- to the sample, essentially all of the Pb+2 will precipitate as PbCl2.

Mass of PbCl2 is then determined.- used to calculate the amount of Pb+2 in original solution

ReagentAnalyte Solid Product

Gravimetric Analysis

Page 6: gravimetri 2014

What Do We Get Out of Gravimetry?

% of analyte, % A

%A = weight of analyte x 100 weight of sample

weight of ppt directly obtained ->? A

Page 7: gravimetri 2014

How Do We Get %A?

% A = weight of ppt x gravimetric factor (G.F.) x 100 weight of sample

G.F. = a FW[analyte] b FW[precipitate]

G.F. = berapa gram analit dalam 1 gram (ekivalennya dalam 1 g) endapan

Page 8: gravimetri 2014

Gravimetric FactorX apples + Y sugar = Z apple pies

What is this relationship in chemistry?

Page 9: gravimetri 2014

The Gravimetric FactorG.F. = a FW[analyte]

b FW[precipitate]

Analyte ppt G.F.CaO CaCO3

FeS BaSO4

UO2(NO3)2.6H2O U3O8

Cr2O3 Ag2CrO4

Page 10: gravimetri 2014

Gravimetric Factor

Analyte ppt G.F.CaO CaCO3 CaO/CaCO3

FeS BaSO4 FeS/BaSO4

UO2(NO3)2 U3O8 3UO2(NO3)2/U3O8

Cr2O3 Ag2CrO4 Cr2O3/2Ag2CrO4

Naming is critically important (next class)

Page 11: gravimetri 2014

Why AgCl?

Reaction is highly selective - no interferents 2AgCl ----> 2Ag + Cl2(g)

AgCl is insoluble in water, i.e., only slightly soluble in water-losses negligible 1.4 mg/L at 200C 22 mg/L at 1000C

Page 12: gravimetri 2014

Why AgCl is a Good Precipitate?

Small mass of analyte yields large mass of precipitate-sensitive technique

AgCl precipitates in curds/lumps that can be easily collected, dried, and weighed

Precipitate (ppt) is not hygroscopic

Page 13: gravimetri 2014

Suatu sampel seberat 0,6025 g dari suatu garam klorida dilarutkan dalam air dan kloridanya diendapkan dengan menambahkan perak nitrat berlebih. Endapan perak klorida disaring, dicuci menghasilkan 0,7134 g. Hitung persentase klorida (Cl) dalam sampel itu!

Suatu sampel bijih besi seberat 0,4852 g, dilarutkan dalam asam, besinya dioksidasi ke keadaan oksidasi +3 dan kemudian diendapkan sebagai oksida berair Fe2O3.xH2O. Endapan disaring, dicucui dan dipanggang menjadi Fe2O3

yang ternyata beratnya 0,2481 g. Hitunglah persentase besi dalam sampel itu?

Page 14: gravimetri 2014

ProblemConsider a 1.0000 g sample containing

75% potassium sulfate (FW 174.25) and 25% MSO4. The sample is dissolved and the sulfate is precipated as BaSO4 (FW 233.39). If the BaSO4 ppt weighs 1.4900, what is the atomic weight of M2+ in MSO4?

ANS: Mg2+

Page 15: gravimetri 2014

AnswerThe hard part is setting up the correct

equation (good stoichiometry skills are essential here!):

Rearranging and solving:

06.96

39.233*25.0

25.174

39.233*75.04900.1

x

)(12.24;06.96

3475.584855.0

2

Mgxx

Page 16: gravimetri 2014

ProblemA mixture of mercurous chloride (FW

472.09) and mercurous bromide (FW 560.99) weighs 2.00 g. The mixture is quantitatively reduced to mercury metal (At wt 200.59) which weighs 1.50 g. Calculate the % mercurous chloride and mercurous bromide in the original mixture.

ANS: 0.5182 g

Page 17: gravimetri 2014

AnswerAgain, important to set up correct equation:

Rearranging and solving:

99.560

259.200*2

09.472

*59.200*250.1

xx

gx

x

5182.0

50.127151.08498.0

Page 18: gravimetri 2014

Gravimetric Analysis Types of Gravimetric Analysis

1.) Combustion Analysis2.) Precipitation

Combustion Analysis

• Common method used to determine the amount of carbon and hydrogen

• One modified method (Dumas Method) can also determine the amount of nitrogen in a sample

• Technique is accurate and usable with a wide range of compounds. Often one of the first methods used to characterize a new compound

Page 19: gravimetri 2014

Combustion Analysis

1.) Principals:(i) Sample is heated in presence of Oxygen (O2)

Converts carbon in sample to CO2

Converts hydrogen in sample to H2O

C(sample) + O2 CO2

2H(sample) + ½O2 H2O

Pt, CuO, PbO2, or MnO2 is used as a catalyst in this process

(ii) As CO2 and H2O form, leave the sample and flow through a series of chambers

Chambers contain chemicals that bind one or both of these products Example:

- P4O10 can be used to absorb H2O- Ascarite can be used to absorb CO2

- Ascarite - Sodium Hydroxide Coated Non-Fibrous Silicate

Gravimetric Analysis

Pt

Pt

Ascarite

Page 20: gravimetri 2014

Gravimetric Analysis Combustion Analysis

2.) Apparatus:

(i) After the sample is completely burned: Remove P4O10 and Ascarite cartridges and weigh If C and H are present in sample, both cartridges will increase in mass

(ii) Amount of C and H in the original sample is determined from: Knowing the amount of sample burned Change in weight in each cartridge

Page 21: gravimetri 2014

Combustion Analysis

3.) Example Calculation:

A mixture weighing 7.290 mg contained only cyclohexane, C6H12 (FM 84.159),and oxirane, C2H4O (FM 44.053). When the mixture was analyzed by combustion analysis, 21.999 mg of CO2 (FM 44.010) was produced.

Find the weight percent of oxirane in the mixture.

Gravimetric Analysis

Page 22: gravimetri 2014

Precipitation Analysis

1.) Principals:(i) Reagent + Analyte Solid Product (collect and measure

mass)

(ii) Desired Properties of Solid Product Should be very insoluble Easily filterable (i.e., large crystals) Very Pure Known and constant composition

Gravimetric Analysis

Hanya sedikit endapan memiliki semua sifat ini, tetapi dalam banyak kasus teknik yang tepat dapat membantu mengoptimalkan kualitas ini

Page 23: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

2.) Solubility:(i) The solubility of a precipitate can be decreased by:

Decreasing temperature of solution Using a different solvent

- usually a less polar or organic solvent (like dissolves like)

Solubility vs. pH Solubility vs. TemperatureSolubility vs. Common Ion Effect

Page 24: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

3.) Gravimetric Analysis:(i) Governed by equilibrium: AgCl Ksp = 1.8 x 10-10

Solubility of AgCl = [Ag+] + [AgCl] + [AgCl2-]

Cl- + Ag+ AgCl(ag) ion pair formation

AgCl(aq) AgCl(s) intrinsic solubility

AgCl +Cl- AgCl2- complex ion formation

ClAg

AgClKo

AgClK i

ClAgCl

AgClK

2

f

ClKKKKCl

KK

Cl

AgClKK

Cl

AgClS ofi

o

ofio ][][][

Page 25: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

4.) Filterability:(i) Want product to be large enough to collect on filter:

Doesn’t clog filter Doesn’t pass through filter

(ii) Best Case: Pure Crystals

(iii) Worst Case: Colloidal suspension Difficult to filter due to small size Tend to stay in solution indefinitely suspended by Brownian motion

- usually 1-100 nm in size

Apakah kristal atau koloid diperoleh tergantung pada kondisi yang digunakan dalam presipitasi

Brownian Motion

Page 26: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

5.) Process of Crystal Growth:(i) Two Phases in Crystal Growth

Nucleation – molekul dalam larutan muncul bersama-sama secara acak dan membentuk agregat (kerikil) kecil

Particle growth – addition of molecules to a nucleus to form a crystal

Crystal Growth

Page 27: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

5.) Process of Crystal Growth:(ii) Nucleation and Particle growth always compete for molecules/ions being precipitated.

If nucleation is faster than particle growth:- a large number of small aggregates occur giving colloidal suspensions

If particle growth is faster than nucleation: - only a few, large particles form giving pure crystals

Colloidal suspension Crystal formation

Want to Convert to

Page 28: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

5.) Process of Crystal Growth:(iii) Methods for Maximizing Crystal Growth (avoid colloids)

Increase temperature of solution- increase amount of solute that can be

in solution at equilibriumAdd precipitating reagent slowly while vigorously mixing solution

- avoids local high concentrations of solutionKeep volume of solution large

- keep concentration of analyte and precipitating reagent lowPrecipitate Ionic compounds in presence of electrolyte (0.1 M HNO3)

- overcome charge repulsion and promotes particle growthControl solubility of solute through chemical means

- by adjusting pH- adding complexing agents

- example: precipitation of Ca2+ with C2O42-

C2O42- + H+ HC2O4

-

Ca2+ + C2O42-

CaC2O4(s)

Ksp

Note: As pH ([H+]) changes, the solubility of CaC2O4 changes

Avoid Colloidal Particle

Page 29: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

6.) Crystal Impurities:(i) Impurities are undesirable (known as co-precipitation)

Change the chemical composition of the precipitate Creates errors in gravimetric analysis

(iii) Types of Impurities Adsorption, Occlusion, Inclusion

Adsorbed to crystal surface

Absorbed or trapped within crystal pockets

Impurity placed in crystal instead of analyte

Page 30: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

6.) Crystal Impurities:(iii) Ways to Minimize Impurities

Maximize crystal growth- large pure crystals decrease

occlusions and adsorbed impurities

Digestion: allowing precipitate to stand in mother liquor (precipitating solution), usually while being heated

- promotes removal of impurities from crystal

- increases size of crystals

Wash precipitate, redissolve in fresh solvent and reprecipitate- helps decrease all types of impurities

Add a masking agent to solution- keeps impurities from precipitating,

but not analyteMg2+ + CPCH Solid product

Mn2+ + 6CN- Mn(CN)64-

Masking agent

precipitant

Color Impurity

Page 31: gravimetri 2014

Gravimetric Analysis Precipitation Analysis

7.) Final Preparation of Precipitates:(vi) Washing Precipitates

Precipitates from ionic compounds- need electrolyte in wash solution- keep precipitate from breaking up and redissolving (peptization)

Electrolyte should be volatile- removed by drying- HNO3, HCl, NH4, NO3, etc.

Illustration:- AgCl(s) should not be washed with H2O, instead wash with dilute HNO3

(vii) Drying/Igniting PrecipitatesMany precipitates contain varying amounts of H2O

- adsorbed from the air (i.e. hygroscopic)Precipitates are dried for accurate, stable mass measurementsPrecipitates are also ignited to convert to a given chemical form

Page 32: gravimetri 2014

Gravimetric Analysis Calculations in Gravimetric Analysis

8.) Example Calculation

A mixture containing only Al2O3 (FM 101.96) and Fe2O3 (FM 159.69) weighs 2.019 g. When heated under a stream of H2, Al2O3 is unchanged, but Fe2O3 is converted into metallic Fe plus H2O (g).

If the residue weighs 1.774 g, what is the weight percent of Fe2O3 in the original mixture?

Page 33: gravimetri 2014
Page 34: gravimetri 2014
Page 35: gravimetri 2014