40
1 gravimetric = measuring mass

Gravimetri - Kimia Analitik

Embed Size (px)

Citation preview

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 1/40

1

gravimetric = 

measuring 

mass

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 2/40

 Silica gel goes from blue to 

pink as it absorbs moisture 

Can be

 regenerated

 in

 oven

 Anhydrous sodium sulfate 

gets clumpy  as it absorbs 

 water

More Information about desiccants including common interferentsand regeneration temperature can be found at:

http://www.jtbaker.com/techlib/documents/3045.html

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 3/40

Coverage Types of  gravimetry 

 Steps in gravimetric analysis

 Precipitation 

gravimetry 

 Properties 

of  

precipitates 

and 

precipitants

 Solubility  consideration & Impurity  of  

precipitates Mechanism of  precipitate formation

 Calculations  with gravimetry  & applications

3

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 4/40

Gravimetric 

Method 

of  

Analysis

 Quantitative methods that are based on determining the 

mass of  

pure 

element 

or 

compound 

to 

 which 

the 

analyte 

is 

chemically  related. 

 Based on mass measurements made  with an analytical 

balance 

that 

produces 

highly  

accurate 

and 

precise 

data.  Any  method in  which the signal is mass or change in 

mass.

 There

 

are 

several 

types 

of  

gravimetric 

analysis; 

precipitation gravimetry,  volatilization gravimetry, and 

electrogravimetry . The other two methods are gravimetric 

titrimetry  and atomic mass spectrometry.

4

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 5/40

Types 

of  

Gravimetry

 Precipitation gravimetry: method in  which the signal is the mass of  precipitate. E.g.. Direct determination of  Cl‐ by  precipitation as  AgCl

 Electrogravimetry: method in  which the signal is the 

mass of  an  electrodeposit on the cathode or anode in 

an electrochemical cell. E.g.. Oxidation of  Pb2+ and its 

deposition as

 PbO2 on

 the

 anode.

 Reduction

 of 

 Cu2+ as

 Cu deposits on the cathode.

 Volatilization gravimetry: method in  which the loss of  a 

 volatile species gives rise to the signal (mass). Thermal or

 chemical

 energy 

 is

 used

 to

 remove

 such

  volatile

 

compounds. E.g Determine C in organic cmpd by  CO2using chemical energy  and measuring mass difference.

5

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 6/40

Precipitation 

Gravimetry

6

Cl- + Ag+  AgCl ppt

Mass AgCl precipitate is directly related to

%Cl- in the water sample

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 7/40

General 

Steps 

in 

Gravimetry

Dry and weigh sample

Dissolve sample

 Add precipitating reagent in excess

Coagulate precipitate usually by heating

Filtration-separate ppt from mother liquor 

Wash precipitate (peptization) Dry and weigh to constant weight

7

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 8/40

Precipitation 

Gravimetry

  The analyte is converted to a stable and pure precipitate of  known 

composition.   For example: Ca determination method in natural  waters by  

 Association of 

 Official

  Analytical

 Chemist.

  Ca2+ in natural  water sample directly  related to CaO

8

NH3

+H2C2O4

2NH4

+

+C2O4

2-

Ca2+

+ C2O42-

CaC2O4 (s)

CaC2O4 (s) CaO(s)+CO(g)+ CO2(g)

Ca2+

CaO

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 9/40

1. Properties of  Precipitates

 Low solubility 

‐   No significant loss of  the analyte occurs during 

filtration and

  washing

 High purity 

  Stable under atmospheric conditions

 Known composition

  After drying and ignition, known chemical composition

 Easy  to

 separate

 from

 reaction

 mixture

 and

 filtered

 and

 

 washed free of  impurities

9

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 10/40

2. 

Precipitating 

Reagents: 

 precipitants  Gravimetric precipitating agent should react specifically  

or at least selectively   with the analyte.

 Specific reagents react only   with a single chemical species.  E.g.. Dimethylglyoxime, is a specific reagent that only  precipitates Ni2+ ions from alkaline solutions.

 Selective reagents are more common and reacts  with a 

limited number of  species.  E.g..  AgNO3, the common 

ions 

that 

it 

precipitates 

from 

acidic 

solutions 

are 

Cl‐

Br‐

, I‐ and SCN‐.

10

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 11/40

Table 

1.0 

Selected 

Gravimetric 

Method 

for 

Inorganic 

Cations 

Based 

on 

Precipitation

11

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 12/40

Table 

1.0 

Selected 

Gravimetric 

Method 

for 

Inorganic 

Anions 

Based 

on 

Precipitation

12

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 13/40

Organic precipitating agents are chelating agents.

They form insoluble metal chelates.

©Gary Christian,

 Anal yt ical Chemistry,6th Ed. (Wiley)

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 14/40

3. 

Solubility 

considerations

 Factors responsible for solubility  loss of  precipitates

a.. Composition of 

 solution

 in

  which

 ppt

 forms

b.. pH of  solution

c.. Solvent type (aqueous and non‐aqueous)

14

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 15/40

a. Composition of  Solution

●   Add only  enough precipitating reagent till the precipitation is in 

dynamic equilibrium, any  extra addition of  precipitants  will increase 

solubility  of  ppt’s.

●   Ag+ can be determined gravimetrically  by  adding Cl‐ as a precipitant forming  AgCl precipitate. 

Consider the equilibrium:

 Ag+

(aq) + Cl

(aq) 

 AgCl 

(s)   One might conclude that addition of  Cl‐ at equilibrium  would 

increase precipitation 

however, it has been 

observed that an increase in 

the equilibrium

 concentration

 of 

 Cl‐

forms  more soluble chlorides and increases solubility  of  the  AgCl ppt (fig..)

15

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 16/40

b. 

 pH

2..pH of  solution in  which the ppt forms.  For example 

hydroxides ppts as Fe(OH)3 are more soluble at low 

pH’s 

 were 

[OH

is 

small. 

 Why?  At lower pH’s [H+] is greater therefore more 

electrostatic attraction of  H+ to ppt OH‐ occurs, breaking the ppt OH bond and solvation occurs.  Like 

 wise ppt’s

 containing

 acidic

 ions

 are

 more

 soluble

 at

 higher pH’s  were [H+] is low. Explain.

 What is solvation?

 Electrostatic attraction

 of 

 + and

 – charged

 ends

 to

 the

 ppt ions and dissolving the ppt.

16

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 17/40

c. 

Solvent Type

..solubility  can be affected by  solvent type (aqueous or non‐aqueous solvents)

  Aqueous‐ a

 solution

  with

  water

 as

 the

 solvent,

 ppt

solubility  is greater in this solution because the  water molecules stabilize the ions by  solvation process.

  Non‐aqueous

‐ solution

  with

 no

  water

 mainly 

 organic

 solvents. Organic solvents have poorer solvating ability  leads to smaller solubility  product. 

  List some

 examples

 of 

 aqueous

 and

 non

‐aqueous

 solvents and explain how solvent type effects solubility  of  precipitates.

17

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 18/40

4. Mechanism of  Precipitate Formation

 Precipitates form by  nucleation  and by  particle growth. If nucleationpredominates, a large number of   very fine  particles results; if particlegrowth predominates, a smaller number of  larger particles is obtained.

  In nucleation,   a few ions, atoms, or molecules come together to form stable solid . Often these nuclei form on the surface of suspendedsolid contaminants, such as dust particles.

  Further precipitation then involves a competition between additionalnucleation and growth on existing nuclei.

  If nucleation predominates, a precipitate containing a large number of small particles results; if growth predominates, a smaller number of 

larger particles is produced.   The rate of nucleation is believed to increase vastly with increasing

relative super saturation. On the contrary, the rate of particle growth isonly moderately enhanced by high relative super saturations.

18

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 19/40

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 20/40

5. Experimental Control of  Particle Size

a,. Super‐saturation

 Problems faced

 during

 Precipitation

 ProcessDuring the precipitation process, super saturation occurs 

(this should be minimized) followed by  nucleation and 

precipitation.

Supersaturated solution is an unstable solution that contains a high

 solute

 concentration.

  With

 time

 super

 saturation

 is

 relieved by  precipitation of  the excess solute.

 Experimental variables that minimize supersaturation

and thus produce crystalline precipitates include◦Precipitate from hot solutions (increase Temperature)◦Precipitate from dilute solutions◦Slow addition of  precipitating agent  with good stirring 

◦Controlling pH

20

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 21/40

b. 

Colloidal 

Precipitates

 Colloids are so small to hold on a filter and they  can 

settle down in solution as  well due to Brwonian motion 

(stochastic process,

 random

 fluctuation).

 In

 order

 to

 

have the colloids filterable,  we can coagulate or agglomerate.

 Coagulation of  Colloids: It can be hastened by  heating, stirring and adding an electrolyte. 

21

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 22/40

6. Impurity of  precipitates: Coprecipitation

 Precipitation gravimetry is based on knownstoichiometry between the analyte mass and ppt mass ,

therefore precipitate must be free of impurities. Greatest source of impurities results from chemical orphysical interactions occurring at the ppt surface.

 A ppt is generally crystalline with a well defined latticestructure of cations and anions.

 Those cations or anions at the surface carry respectively 

a (+) or (–) ve charge as a result of incompletecoordination. Example AgCl Any impurity in the ppt must be removed before taking

its weight.

22

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 23/40

Coprecipitation: 

Inclusion 

and 

Occlusion

  A phenomenon in which otherwise soluble compounds areremoved from solution during precipitate formation.

  There are four types of co‐precipitation: Inclusion, surfaceadsorption and occlusion.

  Inclusion: chemical species similar to precipitating ions may substitute into the chemical lattice via chemical adsorption. Thisis very difficult to remove but recrystallization process often

minimizes.   Surface adsorption: soluble compound is carried out of solution on

the surface of coagulated colloid particle. Such easily bound watercan be removed via digestion in mother liquor.

 Occlusion: a compound is trapped within a pocket formed duringrapid crystal growth.

23

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 24/40

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 25/40

8. Applications of  Gravimetric Methods

 Gravimetric methods have been developed for mostinorganic anions and cations as well as neutral speciessuch as water, sulfur dioxide, carbon dioxide, andiodine.

 A variety of organic substances can also be easily determined gravimetrically. Examples: lactose in milkproducts, salicylates in drug formulations, nicotine in

pesticides etc.

25

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 26/40

 Inorganic Precipitating Agents:   Table 12‐2 in the

textbook.

 Reducing Agents:  Table 12‐3 shows the reagents can

convert the an analyte to its elemental form.   Organic Precipitating Agents:  There are numerous

examples of this type. In one form of organic reagents,

they produce sparingly soluble non‐ionic coordinationcompounds; In the other forms products with largely 

ionic bonds.

 Organic Functional Group Analysis:  See Table 12

4in the textbook

 Volatilization Gravimetry:   Based on volatilization

such as water and carbon dioxide determination.26

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 27/40

Organic precipitants

27

N

OH

+ Mg2+

N

O

N

O

Mg

2 2H+

8-Hydroxquinoline (oxine)

Dimethylglyoxime

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 28/40

28

What Do We Get Out of Gravimetry?

• % of analyte, % A

• %A = weight of analyte x 100weight of sample

• weight of ppt directly obtained ->?A

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 29/40

29

How Do We Get %A?

• % A = weight of ppt x gravimetric factor (G.F.) x 100

weight of sample

• G.F. = Molar mass of analyte X a (mol analyte/mol ppt)

Molar mass of precipitate b

• a: mole analyte; b. mole precipitate

• Hence, a/b give mole ration fraction

• G.F. = # grams of analyte per 1 gram

precipitate

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 30/40

30

The Gravimetric Factor 

• G.F. = Mr. analyte X a (mol analyte/mol ppt)

Mr. precipitate b

• Analyte ppt G.F.?

CaO CaCO3

FeS BaSO4

PbCl2 PbCrO4

UO2(NO3)2.6H2O U3O8

Cr2O3 Ag2CrO4

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 31/40

31

Gravimetric Factor 

• Analyte ppt G.F.CaO CaCO3 CaO/CaCO3 x 1/1

FeS BaSO4 FeS/BaSO4 x 1/1

PbCl2 PbCrO4 PbCl2/PbCrO4 x 1/1UO2(NO3)2 U3O8 3UO2(NO3)2/U3O8 x 3/1

Cr 2O3 Ag2Cr O4 Cr 2O3/2Ag2CrO4 x 1/2

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 32/40

32

Example 10.1:

An ore is analyzed for the manganese

content by converting the manganese to

Mn3O4 and weighing it. If 1.52-g sample

yields Mn3O4 weighing 0.126-g, what

would be the percent Mn2O3 in thesample? The percent Mn?

Molar mass:

Mn2O3=157.9; Mn3O4= 228.8; Mn=54.94

Ref: Gary D Christian 6th ed p-323

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 33/40

33

Example 10.2:

Orthophosphate (PO33-) is determined by

weighing as ammonium phosphomolybdate,

(NH4)PO4.12MoO3. Calculate the

percentage P and P2O5 if 1.1682-g

precipitate ere obtained from a 0.2711-gsample.

Molar mass:

(NH4)PO4.12MoO3 =1876.5; P2O5= 141.95;

P=30.97

Ref: Gary D Christian 6th ed p-323

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 34/40

34

Example 10.3:

The Aluminum in a 0.910g sample of impure

ammonium aluminum sulfate was precipitated

with aqueous ammonia as the hydrous

Al2O3.xH2O. The precipitate was filtered and

ignited at 1000oC to give anhydrous Al2O3,which weighed 0.2001g.

Express the result of this analysis in terms of:

a. % Al2O3 b. % Al in the sample.

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 35/40

Example 10.4 An iron ore was analyzed by dissolving a

1.1324-g sample in concentrated HCl. The

resulting solution was diluted with waterand iron (III) was precipitated as the

hydrous oxide Fe2O3.xH2O by the additionof NH3. After filtration and washing the

precipitate was ignited to give 0.5394-g of

pure Fe2O3 (159.69 g/mol). Calculate the % Fe (55.847 g/mol), %

Fe3O

4(231.54 g/mol) in the sample.

35

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 36/40

Example: 10.5 

The calcium in a 200.0 mL sample of  a natural  water 

 was determined

 by 

 precipitating

 the

 cation as

 CaC2O4.  The precipitate  was filtered,  washed, and 

ignited in a crucible  with an empty  mass of  26.6002 

g. 

The mass

 of 

 the

 crucible

 plus

 CaO (fwt 56.077

 g/mol)  was 26.7134 g.  Calculate the concentration 

of  Ca (fwt 40.078 g/mol) in the  water in units of  

grams per

 100

 mL.

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 37/40

Example 10.6 

 An iron ore  was analyzed by  dissolving a 1.1324 g 

sample in concentrated HCl.  The resulting 

solution  was

 diluted

  with

  water,

 and

 the

 iron(III)

  was precipitated as the hydrous oxide Fe2O3.xH2O 

by  addition of  NH3.  After filtration and  washing, the residue  was ignited at high temperature to give 

0.5394 g pure

 Fe2O3 (fwt 159.69

 g/mol).

 Calculate

 

(a) the % Fe (fwt 55.847 g/mol) and (b) % Fe3O4 

(fwt 231.54 g/mol) in the sample.

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 38/40

Example 10.7 

 A  0.2356 g sample containing only  NaCl (fwt 58.44 

g/mol) and BaCl2 (fwt 208.23 g/mol)  yielded 0.4637 

g of 

 dried

  AgCl (fwt 143.32

 g/mol).

 Calculate

 the

 

percent of  each halogen compound in the sample.

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 39/40

8/10/2019 Gravimetri - Kimia Analitik

http://slidepdf.com/reader/full/gravimetri-kimia-analitik 40/40

More 

Review 

Questions1. Treatment of  a 0.2500‐g sample of  impure potassium chloride  with an excess of   AgNO3

resulted in the formation of  0.2912‐g of   AgCl. Calculate the percentage of  KCl in the 

sample. (Molar mass  AgCl 143.321 g/mol, KCl 74.551 g/mol)

2.  An

 iron

 ore

  was

 analyzed

 by 

 dissolving

 a 1.1324

‐g sample

 in

 concentrated

 HCl.

 The

 

resulting solution  was diluted  with  water and iron (III)  was precipitated as the hydrous oxide Fe2O3.xH2O by  the addition of  NH3.  After filtration and  washing the precipitate  was ignited to give 0.5394‐g of  pure Fe2O3 (159.69 g/mol). 

3. Calculate the % Fe (55.847 g/mol), % Fe‐3O4 (231.54 g/mol) in the sample.

The aluminum content of  an alloy  is determined gravimetrically  by  precipitating it to 

 Al(C9H6ON)3.  If  a 1.021‐g sample  yielded 0.1862‐g of  precipitate,  what is the percent aluminum in the alloy?

4. State the problem often faced during precipitation process.  How can  you as chemists minimize it?

5.  What are the steps involved in gravimetric analysis?