28
July 21, 2006 Ricardo Simões 1,2 , J.C. Viana 1 , G.R. Dias 1 , and A.M. Cunha 1 Multi Multi - - scale Hierarchical Approach for Mechanical scale Hierarchical Approach for Mechanical Analysis of Polymeric Materials Analysis of Polymeric Materials 1 Institute for Polymers and Composites (IPC) University of Minho, Guimarães, Portugal; http://ipc.uminho.pt/ [email protected] 2 Escola Superior de Tecnologia Instituto Politécnico do Cávado e do Ave Barcelos, Portugal [email protected] 8th MESOMECHANICS, 2006

G.R. Dias , and A.M. Cunhameso2006/presentations/Meso_25.pdf · Experimental vs simulation capabilities SIMS, RBS Optical Length scale Time scale > 10-1 m 10-3 m 10-7 m 10-9 m

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

July 21, 2006

Ricardo Simões1,2, J.C. Viana1,G.R. Dias1, and A.M. Cunha1

MultiMulti--scale Hierarchical Approach for Mechanical scale Hierarchical Approach for Mechanical Analysis of Polymeric MaterialsAnalysis of Polymeric Materials

1 Institute for Polymers and Composites (IPC)University of Minho, Guimarães, Portugal;http://ipc.uminho.pt/ [email protected]

2 Escola Superior de TecnologiaInstituto Politécnico do Cávado e do AveBarcelos, Portugal [email protected]

8th MESOMECHANICS, 2006

MultiMulti--scale modelling scale modelling approachapproach

Skin-core structure

spherulitic structure

MolecularÅscale

Macroscalecmscale

Spheruliticµmscale

Lamelarnmscale

Skin- coremmscale

10-3 m10-2 m 10-6 m 10-8 m 10-9 m 10-10 m

continuous milieu

discontinuous milieu

lamellar structure

crystal structure

macromolecule

Experimental Experimental vsvs simulation capabilitiessimulation capabilities

SIMS, RBS

Optical

Length scale

Time scale

> 10-1 m

10-3 m

10-7 m

10-9 m

< 10-11 m

Quantum simulations

Atomistic /molecular simulations

Continuum simulations

10-5 m

< 10-14 s 10-12 s 10-6 s > 10-2 s10-10 s 10-4 s10-8 s

XPS

SXAS, SXES

Mesoscopic simulations

AES, ELS

Micromechanics simulations

XRDSEM, TEM

Neutron diffraction

LEED, RHEEDSTM, AFM

New material architecture concepts

Envisaged new

functionalities

Core modelling code

Applied multi-scale hierarchical simulation codes

New material architecture concepts validation

Materials with new / enhanced functionalities

Manufacturing and cost viability

assessment

Computer generation of material architectures

Mechanical

Thermal

Magnetic

BarrierMacroscale

Mesoscale

Molecular

Microscale

NC 1 NC 2 NC 3 ... NC n

3D visualization

andanimation

codes

Specifications

ConceptualizationModelling

Simulation

Visualization

Validation

FeasibilityNew Solutions

Recursive project flow

Main project flow

Hierarchical length scale

Computercode

Concept

General research strategyGeneral research strategy

MultiMulti--scale modelling approachscale modelling approach

MultiMulti--scale modelling approachscale modelling approach

Solid model

Prediction of local microstructurebased on thermomechanical conditions

Flow simulation

Research activitiesResearch activities

- Macroscale/microscale (FEM-based)structural simulations (Abaqus)flow simulations (Moldflow)processing-microstructure-properties relationships

- Molecular/mesoscale (MD)amorphous, semi-crystalline, and nano-filled structurestension, compression, shear, and complex loading modesmechanical, electrical, and barrier propertiesnanostructure-properties relationships

MacroMacro--micro couplingmicro coupling

MacroMacro--micro couplingmicro coupling

Stress Results S33

Skin

Core

Disp Results u3

MACRO- Element Formulation :C3D8r – Reduced Integration (Hourglass Control)

C3D8 – Full Integration

N1 N2

N3N4

N5 N6

N7 N8

ICE (implicit constitutive equation) – FormulationFEM model for local microstructure

Evaluation material point coincides with macro element

Gauss point

ICE1

ICE2

ICE3

ICEn

Microstructure 1

Microstructure 2

Microstructure 3

Microstructure n

Molecular dynamicsMolecular dynamics

Molecular DynamicsMolecular Dynamics

First MD in 1957: B. J. Alder and T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)

N ~ 100 – 100,000Periodic boundariesPrescribed U(r)

Specification of N, V, T

Solving Newton’s equations Fi = mi ai

Calculation of ri(t), vi(t)

Obtaining Properties (equilibrium and non-equilibrium)

Averaging

Statistical segment model of a polymer chain (mesoscale coarse-grain)

The molecular dynamics (MD) method was employed for simulating time-dependent behavior.

Simulation modelSimulation model

Interactions between particles are described by potentials.Different potentials for:- crystalline and amorphous;- primary and secondary bonds.

- Ecrystalline / Eamorphous

- Fprimary / Fsecondary

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0.5 1 1.5 2 2.5r

F (r)

Intramolecular

Intermolecular

Nanofiber-Chain

MD material generationMD material generation

Material generationMaterial generation

We obtain a polymeric structure of coiled chains by emulating the step-wise polymerization process

InterlamelarInterlamelar phenomenaphenomena

InterlamelarInterlamelar simulationssimulations

Degree of

packing

Lamella thicknessAmorphous region thickness

Amorphousregion

orientation

InterlamelarInterlamelar simulationssimulations

Tension Shear

InterlamelarInterlamelar simulations simulations -- tensiletensileLamella and amorphous region size effects (0.85 y-or)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

ε

(For

ce)

lt,at = 5 (15)lt = 5, at = 10 (20)lt = 5, at = 15 (25)lt = 10, at = 5 (25)lt,at = 10 (30)lt = 10, at = 15 (35)lt = 15, at = 5 (35)lt = 15, at = 10 (40)lt,at = 15 (45)

InterlamelarInterlamelar simulationssimulations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ε

σ

sheartensile

Nanofilled polymersNanofilled polymers

Nanofiber concentrationNanofiber length (and length distribution)OrientationDispersionNanofiber functionalizationMatrix strength

OffOff--lattice approach lattice approach –– main variablesmain variables

Nanofiber concentration : 0.65%, 1.2%, 2.5%, 5.3%Nanofiber length (and length distribution) : L/D = 4, 14, 21, 27 ± 0Orientation : parallel, perpendicular, randomDispersionNanofiber functionalizationMatrix strength

OffOff--lattice approach lattice approach –– main variablesmain variables

MD MD –– fiber concentration effectfiber concentration effect

Isotropic; L/D = 27

Effect of the nanofiber concentration

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2

Nsteps (x1E6)

stra

in

Vf = 0%Vf = 0.65%Vf = 1.2%Vf = 2.5%Vf = 5.3%

Effect of the nanofiber concentration on properties

0

0.5

1

1.5

2

2.5

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Vf (%)

E

0.000.05

0.100.15

0.200.25

0.300.35

0.400.45

0.50

σy

MD MD –– fiber concentration effectfiber concentration effect

Isotropic; L/D = 27

Forces on fibersForces on fibers

AcknowledgmentsAcknowledgments

Fundação para a Ciência e a Tecnologia, Lisbon, through the

3º Quadro Comunitário de Apoio (RS) and the

POCTI and FEDER programmes (IPC)

Witold Brostow, University of North Texas

High-Performance Computing Initiative, Univ. North Texas, Denton TX, USA

United States Air Force Research Laboratories

Wright-Patterson Air Force Base, Dayton OH, USA

Selected referencesSelected references

W. Brostow, A. M. Cunha, J. Quintanilla and R. Simoes, Macromol. Theory & Simul. 11: 308 (2002)

R. Simoes, W. Brostow, and A. M. Cunha, Polymer 45: 7767 (2004)

R. Simoes, A.M. Cunha, W. Brostow, Computational Materials Science 36: 319, (2006)

R. Simoes, A.M. Cunha, W. Brostow, Modelling & Simulation in Materials Sci & Eng 14: 157 (2006)

[email protected]