72
 Toulouse/Montauban, France, July 16   26, 2012 INTERNATIONAL SUMMER SCHOOL ON GNSS GNSS Signals Christopher J. Hegarty The MITRE Corporation

GNSS Signals

Embed Size (px)

DESCRIPTION

ESA Document on GNSS Signal structures

Citation preview

  • Toulouse/Montauban, France, July 16 26, 2012

    INTERNATIONAL SUMMER SCHOOL ON GNSS

    GNSS Signals

    Christopher J. Hegarty

    The MITRE Corporation

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 2

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 3

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 4

    Binary Phase Shift Keying (BPSK)

    carrier

    T0

    =

    data bits, d(t)

    (+1 or -1)

    BPSK signal, s(t)

    (180 deg phase

    shift when data

    bit changes)

    Td

    f0= 1/T0 = carrier frequency (Hz) Rd= 1/Td = data rate (bits/s)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 5

    Direct Sequence Spread Spectrum

    =

    carrier

    spread spectrum

    waveform

    Tc

    Td

    data waveform

    modulated spread

    spectrum signal

    Rc= 1/Tc = chipping rate (chips/s)

    T0

    f0= 1/T0 = carrier frequency (Hz)

    Rd= 1/Td = data rate (bits/s)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 6

    Autocorrelation and Power Spectrum

    Let s(t) be a BPSK signal created with random data waveform d(t).

    Autocorrelation of data waveform:

    else

    TT

    tdtdER

    dd

    ,0

    ,1

    )()()(

    Power spectrum:

    2

    2

    2

    )(

    )(sin

    )()(

    d

    dd

    fj

    fT

    fTT

    deRfS

    Power spectrum describes how total power in signal is distributed in frequency domain.

    Note that ~90% of a BPSKs signal power is within +/-Rd Hz of carrier.

    R()

    0 Td -Td

    S(f)

    f Rd -Rd

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 7

    Why Spread?

    Direct sequence spreading allows precise ranging

    Use of different spreading waveforms for each satellite can provide a multiple access capability Multiple satellites can broadcast ranging signals at same

    frequencies

    Interference rejection

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 8

    DSSS Autocorrelation

    Tc

    Received signal:

    Receiver replica:

    Received signal

    Receiver replica

    Integrate & Dump

    Out Out

    -Tc Tc

    Autocorrelation

    +1

    -1 -1

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 9

    DSSS Cross-correlation

    Tc

    Received signal (SV

    j):

    Receiver replica (SV

    kj):

    Received signal

    Receiver replica

    Integrate & Dump

    Out

    Out

    Cross-correlation

    +1

    -1 -1

    One code selection goal is to select codes for each satellite to minimize cross-correlation.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 10

    Pseudorandom Sequences

    Sequence of bits generated at chip rate to produce spread spectrum waveform Periodic for open (unencrypted) signals, aperiodic

    for encrypted signals

    Desired attributes: Good autocorrelation and cross-correlation

    properties low amplitude sidelobes Balanced equal number of ones and zeros

    Also known as pseudorandom noise (PRN) sequences, spread spectrum sequences

    Often generated with linear feedback shift registers (LFSRs)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 11

    LFSR Example

    One Code Period

    1 2 3 4

    Code length = 24 - 1 = 15

    G(x) = 1 + x1 + x4

    Note: state (0,0,0,0) does not occur

    State 1 2 3 4

    1 1 1 1 1

    2 0 1 1 1

    3 1 0 1 1

    4 0 1 0 1

    5 1 0 1 0

    6 1 1 0 1

    7 0 1 1 0

    8 0 0 1 1

    9 1 0 0 1

    10 0 1 0 0

    11 0 0 1 0

    12 0 0 0 1

    13 1 0 0 0

    14 1 1 0 0

    15 1 1 1 0

    1 1 1 1 1 Code repeats

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 12

    Some PRN Sequence Families

    m is an arbitrary positive integer

    Source: No and Kumar, IEEE Trans. Info. Theory, March 1989.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 13

    Binary Offset Carrier Modulation

    =

    Carrier

    Spreading code

    Square wave

    Data

    BOC signal*

    *Shown at baseband, i.e., without carrier.

    Tsq

    fsq= 1/Tsq = subcarrier frequency (Hz)

    By convention, BOC(m,n) refers to a binary offset carrier modulation with m 1.023 MHz square wave subcarrier frequency and a n 1.023 MHz chipping rate.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    Sine-phased vs Cosine-Phased BOC

    14

    Spreading code

    Square wave

    Sine-phasing

    Spreading code

    Square wave

    Cosine-phasing

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    Multiplexing

    Many GNSS satellites broadcast two or more signals on each carrier frequency

    So that efficient switching-class amplifiers can be used on the spacecraft, multiplexing techniques that maintain constant envelope are preferred

    Such techniques include: Phase quadrature for two signals on a carrier frequency, one

    multiplies a sine the other a cosine

    Interplexing for three signals (Butman and Timor, IEEE Trans Comm., 1972)

    Majority vote for any odd number of signals

    Time division multiplexing

    Alternative BOC (ALTBOC)

    15

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    Constant Envelope

    16

    Constant envelope

    Not constant envelope

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    Dataless (Pilot) Components

    Many modern GNSS signals include a component that is not modulated by navigation data Both signal components are still modulated by a PRN

    Motivation allows carrier phase to be tracked using a phase locked loop (PLL) instead of a Costas loop A PLL can reliably track in 6 dB lower signal-to-noise ratio (SNR)

    conditions

    So, if one-half of the signal power is devoted to a dataless component, there is a net 3 dB SNR benefit

    Data demodulation suffers a power loss, but this can be overcome by forward error correction

    Data-modulated and dataless components are multiplexed on same carrier

    17

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    Secondary Codes

    Secondary codes with lengths up to 1800 bits are used in many modern GNSS signal designs Each repetition of the spreading waveform is kept as is or

    inverted following a deterministic pattern

    Also referred to as synchronization code

    Benefits: Reduces cross-correlation between signals

    Helps receiver synchronize with data bits

    Reduces impact of narrowband interference

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 19

    Polarization

    Current and planned GNSS signals are right hand circularly polarized (RHCP)

    User antenna should be also

    +

    +

    +

    -

    -

    -

    +

    +

    +

    -

    -

    -

    Linear Polarization

    1

    0

    RHCP

    E-field

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 20

    Relativistic Effects

    GNSS satellite clocks are set slow to appear at the desired

    frequencies to an observer on the ground.

    Source: Ashby, N., www.livingreviews.org

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 21

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 22

    GPS Navigation Signals

    Today - 2 navigation frequencies, 3 signals L1 = 1575.42 MHz (154 10.23 MHz)

    Coarse Acquisition (C/A) code

    Precision (P(Y)) code

    L2 = 1227.6 MHz (120 10.23 MHz) P(Y) code

    Future - 3 navigation frequencies, 8 signals L1 C/A, C, P(Y), and M-code

    L2 C, P(Y), and M-code

    L5 = 1176.45 MHz (115 10.23 MHz)

    L2C, M-code, and L5 are being broadcast by a growing subset of the satellites in the

    GPS constellation.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 23

    GPS Signal Evolution

    1227 MHz 1575 MHz 1176 MHz

    L2 L1 L5

    P(Y)

    P(Y)

    C/A

    P(Y)

    L2C M M

    Present Signals

    Signals After

    Modernization

    C/A

    P(Y)

    L1C

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 24

    GPS Spreading Codes

    Signal Chipping Rate Carrier frequency Comments

    (Mchip/s) (MHz)

    C/A 1.023 1575.42 (L1) 1023 chip Gold codes repeat

    every 1 ms

    L2C 1.023 1227.6 (L2) 2 codes per SV each at 511.5

    kHz, future

    P(Y) 10.23 L1 and L2 Repeats 1/week. When P-

    code is encrypted, referred to

    as Y-code

    L5 10.23 1176.45 (L5) 2 codes per SV, future

    M 5.115 L1 and L2 BOC(10,5) modulation

    future

    L1C 1.023 L1 BOC(1,1)/BOC(6,1) - future

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 25

    Signal Power Spectra

    Notes: (1) C/A codes actually have line spectra - continuous approximation shown.

    (2) L5 signal spectrum resembles P(Y), except that L5 is also a line spectrum.

    -15 -10 -5 0 5 10 150

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1x 10

    -6

    Offset from Carrier Frequency (MHz)

    Norm

    aliz

    ed P

    ow

    er S

    pectrum

    (W

    /Hz)

    C/A or L2C

    L1C

    P(Y)-code M-code

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 26

    C/A Code (PRN2) Spectrum

    2000190018001700160015001400130012001100100090080070060050040030020010000-100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    Frequency Offset from L1 (kHz)

    Pow

    er

    Spe

    ctr

    al

    Dens

    ity (

    dB

    c/H

    z)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 27

    Spacecraft Signal Generation

    Frequency Synthesizer

    (10.23 MHz)

    Navigation Data

    Unit

    C/A

    P(Y)

    L1 modulator/

    Power Amplifiers/

    Synthesizer

    L2 modulator/

    Power Amplifiers/

    Synthesizer

    Atomic clocks

    Combiner

    Phased

    array

    antenna

    Nuclear detonation

    detection

    signal (L3)

    Timing for all signals derived from 10.23 MHz atomic clock-based frequency

    synthesizer. Note that C/A and P(Y) are in quadrature on L1.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 28

    C/A Code Generation

    SHIFT REGISTER

    G GENERATOR 1

    1 2 3 4 5 6 7 8 9 10

    G GENERATOR 2

    SET TO

    "ALL ONES"

    +

    +

    +

    1 2 3 4 5 6 7 8 9 10

    1.023

    MBPS

    CLOCK

    SHIFT REGISTER

    +

    G = ---10101111111111 1

    G = ---01001111111111 2

    1023

    DECODE

    20 50 BPS DATA

    CLOCK

    G EPOCH

    1kBPS

    GOLD CODE XG (t)

    C/A CODE i

    XG

    C/A CODE 2 2i G

    S 1 S 2

    PHASE

    SELECTOR

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 29

    C/A Code Timing Relationships

    1023 etc.

    X1 Epoch @ 2/3 bps

    0 1 2 18 19 0

    1 ms 1023 BIT Gold Code @ 1023 kbps

    1023 1023 1023 1023

    Gold Code Epochs @ 1000/s

    Data @ 50 cps

    20 ms

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 30

    P-code Generation

    Generator based on four

    12-stage shift registers

    10.23 Mchips per second

    Reset once/week

    For details, see Interface

    Specification IS-GPS-200F

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 31

    Received Minimum Signal Levels

    -155.5

    -158.5

    -161.5

    -164.5

    0 o 5 o 20 o 40 o 60 o 80 o 100 o 90 o

    USER ELEVATION ANGLE (DEG)

    RE

    CE

    IVE

    D P

    OW

    ER

    OU

    T O

    F 3

    dB

    il U

    SE

    R A

    NT

    EN

    NA

    (dB

    W)

    C/A - L 1

    P - L 1

    P - L 2 or

    C/A - L 2

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 32

    Typical GPS L1 C/A Link Budget

    Power in dBW = 10 log10 (Power in W)

    Power in dBm = 10 log10 (Power in mW)

    1 mW = 0.001 W = 0 dBm = -30 dBW

    EARTH

    Free space

    path loss:

    -184.7 dB

    Transmit power:

    40 W

    = 16 dBW

    Antenna gain:

    12 dB

    Received Signal:

    2 10-16 W = -157 dBW

    Received signal power is less than the thermal noise power in the receiver.

    Thermal Noise

    (2 MHz bandwidth):

    1.4 10-14 W = -138.5 dBW

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 33

    C/A and P(Y) Navigation Data

    Each subframe is 300 bits (6 s @ 50 bps). Entire message repeats every 12.5 min

    (5 subframes 300 bits/subframe 25 pages = 37500 bits/message)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 34

    L2C Characteristics Summary

    L2 = 1227.6 MHz Minimum received power = -160 dBW PRN code chipping rate = 511.5 kHz for each

    of two codes

    Time Division Multiplexed (TDM) Signal Chip by chip multiplexing of two PRN sequences

    Total chip rate: 1.023 MHz

    Specification: IS-GPS-200F

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 35

    L2 Civil Signal Definitions

    L2C the L2 civil signal CM the L2C moderate length code

    10,230 chips, 20 milliseconds

    CL the L2C long code 767,250 chips, 1.5 second

    NAV the legacy navigation message provided by C/A and P(Y)

    CNAV improved L2C and L5 navigation data message format and contents

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 36

    IIF L2C Signal Generation

    C/A Code

    Generator

    10,230 Chip

    Code Generator

    767,250 Chip

    Code Generator

    L5-Like CNAV

    Message

    25 bits/sec

    Chip by Chip

    Multiplexer

    1.023 MHz

    Clock

    Transmitted

    Signal1/2

    A1

    A2B1

    B2

    Rate 1/2 FEC

    Legacy NAV

    Message

    50 bits/sec

    511.5 kHz Clock

    CM

    Code

    CL

    Code

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 37

    L2C Code Characteristics

    Codes are disjoint segments of a long-period maximal length code

    27-stage linear feedback shift register with multiple taps is short-cycled to get desired

    period

    Selected to have perfect balance

    Separate shift registers for each of the two codes

    1 cycle of CL & 75 cycles of CM every 1.5 s

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 38

    L2C Code Generator

    DELAY

    NUMBERS

    SHIFT DIRECTION

    OUTPUT

    INITIAL CONDITIONS ARE A FUNCTION OF PRN AND CODE PERIOD (MODERATE/LONG)

    1 3 1 1 3 3 2 3 3 2 2 3

    Linear shift register generator with 27 stages and 12 taps

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 39

    L5 Characteristics Summary

    L5 = 1176.45 MHz Minimum received power = -154.9 dBW Code chipping rate = 10.23 MHz QPSK Signal

    In-Phase (I5) = Data Channel

    Quadraphase (Q5) = Data-Free Channel

    Equal Power in I5 and Q5 (-157.9 dBW)

    Independent spreading codes on I5 and Q5

    Specification: IS-GPS-705

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 40

    L5 Characteristics Summary (contd)

    I and Q Modulation (1 kbps) Forward Error Correction (FEC) encoded 50 bps data on I5

    (100 sps)

    Further encoded with 10-bit Neuman-Hofman Code

    Q5 encoded with 20-bit Neuman-Hofman Code

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 41

    L5 Codes

    Codes with 2 - 13 stage shift registers Length of one (XA code) = 8190 chips

    Length of second (XB code) = 8191 chips

    Exclusive-ord together to generate longer code

    Chipping rate of 10.23 MHz Reset with 1 ms epochs (10,230 chips)

    Two codes per satellite (4096 available) One for I5, one for Q5

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 42

    L5 I and Q Code Generators

    1 2 3 4 5 6 7 8 9 10 11 12 13

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Exclusive OR

    Initial XBI State

    Exclusive OR

    All 1's

    1 ms Epoch

    Code Clock

    XA(t)

    XBI(t+niT

    c)

    XIi(t)

    XA Coder

    XBI Coder

    XBI State for SV i

    ResetXQ

    i(t)

    XBQ(t+niT

    c)

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Initial XBQ State

    Exclusive OR

    XBQ Coder

    XBQ State for SV i

    Decode 1111111111101

    Reset to all 1s on next clock

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 43

    L5 Neuman-Hofman Codes

    Encoded symbols and carrier Modulate at PRN code epoch rate

    Spreads PRN code 1 kHz spectral lines to 50 Hz spectral lines (including FEC)

    Reduces effect of narrowband interference by 13 dB

    Reduces SV cross-correlation most of the time

    Provides more robust symbol/bit synchronization

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 44

    10-ms Neuman-Hofman Code on I5

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0 1 2 3 4 5 6 7 8 9 10

    Code Delay - Milliseconds

    Neu

    man

    -Ho

    ffm

    an

    Co

    de V

    alu

    e

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 45

    20-ms Neuman-Hofman Code on Q5

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

    Code Delay - Milliseconds

    Neu

    man

    -Ho

    ffm

    an

    Co

    de V

    alu

    e

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 46

    L5 Data Content and Format

    Six-Second 300-bit Messages Format with 24-bit cyclic redundancy code (CRC)

    (same as satellite-based augmentation systems)

    Convolutionally encoded: rate , length-7

    Messages scheduled for optimum receiver performance

    Lined up with L1 sub-frame epochs

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 47

    M-code

    Unlike current GPS signals, M-code is generated with four components 10.23 MHz square wave, in addition to carrier, spreading

    waveform, and data

    Creates an effect similar to amplitude modulation - double sideband (AM-DSB) i.e., moves signal energy away from carrier to upper and lower

    sidebands

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 48

    M-code Generation

    =

    Carrier (L1 or

    L2)

    5.115 Mchip/s

    spreading code

    10.23 MHz

    square wave

    Data

    M-code signal*

    *Shown at baseband, i.e., without carrier.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 49

    M-code Autocorrelation

    Note the presence of multiple peaks due to the square wave subcarrier.

    -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Auto

    corr

    ela

    tion

    Delay (microseconds)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 50

    L5, L2C, and M-code Nav Data

    Improvements made to clock and ephemeris representation

    Clock resolution significantly enhanced Legacy message resolution ~ .5 ns

    Ephemeris Resolution enhanced

    Rate terms added for semi-major axis, mean motion, and inclination improve curve fit

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 51

    L1C

    New L1 civil signal on GPS IIIA+ Interoperable with GALILEO L1 signal

    Modulation is multiplexing of BOC(1,1) and BOC(6,1) symbols referred to as multiplexed BOC (MBOC)

    Planned features: Dataless component, powerful forward error correction,

    length-10230 PRN codes

    Specified in IS-GPS-800

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 52

    L1C MBOC

    -15 -10 -5 0 5 10 15-95

    -90

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    Frequency (MHz)

    Pow

    er S

    pect

    ral D

    ensi

    ty (d

    BW

    /Hz)

    C/A Code

    BOC(1,1)

    TMBOC

    -15 -10 -5 0 5 10 15-95

    -90

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    Frequency (MHz)

    Pow

    er S

    pect

    ral D

    ensi

    ty (d

    BW

    /Hz)

    C/A Code

    BOC(1,1)

    TMBOC

    (1,1) (6,1)29 4

    33 33Pilot BOC BOCf f f

    (1,1)Data BOCf f

    (1,1) (6,1)

    3 1

    4 4

    10 1

    11 11

    Signal Pilot Data

    BOC BOC

    f f f

    f f

    25% Power Data Component

    75% Power Pilot Component

    BOC(1,1) BOC(6,1)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 54

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 55

    Current GLONASS Signals

    DSSS modulation Frequency Division Multiple Access (FDMA)

    scheme with multiple carriers in two sub-bands

    Standard accuracy signal - 511 kHz chip rate, length-511 maximal-length codes

    High accuracy signal 5.11 MHz chip rate, encrypted

    Data at 50 bps, Manchester-encoded

    1 1602 0.5625 MHzKf K

    2 17 / 9K Kf f

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 56

    Standard Accuracy PRN Generation

    See GLONASS Interface Control Document, version 5.1 for further signal details.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 57

    Evolution of GLONASS Signals

    GLONASS-K1 (launched Feb 2011) is broadcasting a test 10.23 MHz chip

    rate CDMA signal at 1202.025 MHz. CDMA signals for L1, L2, L3 and

    planned for future satellites.

    Frequency (MHz)

    L1 (~1593 1612) L2 (~1238 1593) L3

    (1164 1215 MHz band)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 58

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 59

    Galileo Frequency Bands

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 60

    Frequencies and Power Levels

    CS = Commercial Service

    SoL = Safety of Life Service

    Note that carrier frequencies were selected to be integer

    multiples of 10.23 MHz for interoperability with GPS.

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 61

    PRN Codes

    E5 primary codes may be generated with LFSRs or stored in memory

    E1 primary codes are stored in memory E6 codes are not disclosed in Galileo OS ICD

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 62

    E5 Signal Characteristics

    E5 is a wideband signal, centered at 1191.795 MHz Generated using alternative BOC (AltBOC) technique Similar in appearance to two coherently generated DSSS

    signals with 10.23 MHz chip rates and centered at +/-

    15.345 MHz from 1191.795 MHz

    E5a at 1176.45 MHz E5b at 1207.14 MHz E5a and E5b each have data and pilot components

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 63

    E6 Signal Characteristics

    E6 includes 3 components: A (for Public Regulated Service), B & C (for Commercial Service)

    CS signal is DSSS modulated with 5.115 MHz chip rate High rate data: 500 bps/1000 sps Data and pilot components

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 64

    E1 Signal Characteristics

    E1 includes 3 components: A (for Public Regulated Service), B & C (for Open, Safety of Life, and Commercial

    Services)

    B&C components represent Galileos implementation of MBOC (interoperable with GPS L1C)

    Composite BOC (CBOC) technique used to achieve mixture (in power) of 10/11 BOC(1,1) and 1/11 BOC(6,1)

    Data (125 bps/250 sps) and pilot components (50-50% power split)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 65

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    COMPASS Signals

    66

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 67

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    IRNSS Signal Characteristics

    68

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 69

    OVERVIEW

    Modulation basics GPS signals GLONASS signals GALILEO signals COMPASS signals IRNSS signals QZSS signals

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    QZSS Signal Characteristics

    70

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE

    Summary of GNSS Signal Plans

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    Future CDMA signal

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

    SBAS

    QZSS (Japan)

    IRNSS (India)

    COMPASS (China)

    Galileo (Europe)

    GLONASS (Russia)

    GPS (US)

    L1 L5 L2

    Compass & IRNSS In S-band

    1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300

    Frequency (MHz)

  • ESA INTERNATIONAL SUMMER SCHOOL ON GNSS

    MITRE 72

    1. Kaplan, E., and C. Hegarty (Eds.), Understanding GPS: Principles and Applications, 2nd Edition, Artech House, 2006.

    2. Misra, P., and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 2nd Edition, Ganga-Jumana Press, 2006.

    3. GPS Interface Specifications, available from www.gps.gov 4. GALILEO Open Service Signal in Space Interface Control

    Document, available from www.gsa.europa.eu

    5. GLONASS Interface Control Document, available from www.glonass-ianc.rsa.ru

    6. COMPASS information from: www.unoosa.org/pdf/icg/2010/ICG5/18october/04.pdf

    7. IRNSS information from: www.unoosa.org/pdf/icg/2010/ICG5/18october/05.pdf

    8. QZSS ICD available from: qzss.jaxa.jp/is-qzss/index_e.html

    References