17
1 Fundamental theorem of calculus II ∫ = | = = ( ) βˆ’ ( ) ( ∫ = = ( ) ) | = 0 = ( 0 ) Fundamental theorem of calculus I Change of variables Integrals h ( ) h Area under the curve Integrate

Fundamental theorem of calculus II

  • Upload
    pepin

  • View
    44

  • Download
    3

Embed Size (px)

DESCRIPTION

Integrals. Integrate. Area under the curve. Fundamental theorem of calculus I. Change of variables. Fundamental theorem of calculus II. Area under the curve. 0. Area under the curve. Verify that this sum makes sense. There are values of D x that break this picture. What are they?. 0. - PowerPoint PPT Presentation

Citation preview

Page 1: Fundamental theorem of calculus II

1

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

h (𝑑 )𝑑 h𝑑𝑑

Area under the curve

Integrate

Page 2: Fundamental theorem of calculus II

Area under the curve

2

π‘₯0

𝑓 (π‘₯ )

π‘π‘Ž

Page 3: Fundamental theorem of calculus II

3

π‘₯0

𝑓 (π‘₯ )

π‘π‘Ž

𝑓 (π‘Ž+βˆ† π‘₯ )

βˆ† π‘₯π‘Ž+βˆ†π‘₯

βˆ† 𝐴1βˆ† 𝐴2βˆ† 𝐴3βˆ† 𝐴4

STOPVerify that this sum makes sense. There are values of Dx that break this picture. What are they?

𝐴≅ βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ† π‘₯

𝑓 (π‘Ž+(π‘˜βˆ’1 )βˆ† π‘₯ )βˆ™ βˆ†π‘₯βˆ† 𝐴

Area under the curve

Page 4: Fundamental theorem of calculus II

π‘π‘Žπ‘₯

0

𝑓 (π‘₯ )𝑓 (π‘₯ )

4

𝐴≔ limβˆ†π‘₯β†’0

βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ†π‘₯

𝑓 (π‘Ž+ (π‘˜βˆ’1 )βˆ† π‘₯ ) βˆ™βˆ†π‘₯

≔

𝐴= ∫π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ ) 𝑑π‘₯

β€œDefinite integral”

STOP𝑑?𝑑π‘₯= lim

βˆ† π‘₯β†’0

Ξ” ?Ξ”π‘₯

We wrote a differential. What is coordinately shrinking with ?

𝐴≅ βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ† π‘₯

𝑓 (π‘Ž+(π‘˜βˆ’1 )βˆ† π‘₯ )βˆ™ βˆ†π‘₯

Area under the curve

βˆ† 𝐴

Page 5: Fundamental theorem of calculus II

𝐴= ∫π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ ) 𝑑π‘₯

π‘₯0

𝑓 (π‘₯ )

5

π‘π‘Ž

𝑓 (π‘₯ )=2π‘₯

2π‘Ž

2𝑏

2π‘βˆ’2π‘Ž

𝐴= (2π‘Ž ) (π‘βˆ’π‘Ž )+ 12(2π‘βˆ’2π‘Ž ) (π‘βˆ’π‘Ž )

𝐴= (π‘Ž+𝑏) (π‘βˆ’π‘Ž )𝐴=𝑏2βˆ’π‘Ž2

STOP𝑑 𝐴𝑑𝑏|

𝑏=π‘₯=2 π‘₯

If we hold a in place, the derivative of A β€œhappens” to be

Differentiation β€œundoes” integration. Do you remember why?

Example: Area under a line

Page 6: Fundamental theorem of calculus II

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

6

h (𝑑 )𝑑 h𝑑𝑑

Area under the curve

Integrate

Page 7: Fundamental theorem of calculus II

FToC: Differentiation β€œundoes” integration

7

𝐴= ∫π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ ) 𝑑π‘₯

𝑓 (π‘₯ )

π‘Ž

𝐴 (π‘₯0+βˆ† π‘₯ )=Area of

𝐴 (π‘₯0 )=Area of

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )=Area of

limβˆ† π‘₯β†’0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )βˆ†π‘₯

Want

π‘₯0 π‘₯0π‘₯0+βˆ† π‘₯

Page 8: Fundamental theorem of calculus II

FToC: Differentiation β€œundoes” integration

8

𝑓 (π‘₯ )

π‘Ž

limβˆ† π‘₯β†’0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )βˆ†π‘₯

Want

π‘₯0π‘₯0+βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )=Area of

π‘₯0

Page 9: Fundamental theorem of calculus II

9

𝑓 (π‘₯ )

π‘Ž

limβˆ† π‘₯β†’0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )βˆ†π‘₯

Want

π‘₯0π‘₯

0 π‘₯0+βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )=Area of

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )β‰… Area of

𝑓 (π‘₯0 )

βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )β‰… 𝑓 (π‘₯0 )βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’π΄ (π‘₯0 )βˆ† π‘₯ β‰… 𝑓 (π‘₯0 )

𝑑 𝐴𝑑𝑏|

𝑏=π‘₯0= 𝑓 (π‘₯0 )

𝐴

FToC: Differentiation β€œundoes” integration

Page 10: Fundamental theorem of calculus II

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

10

Area under the curve

h (𝑑 )𝑑 h𝑑𝑑 Integrate

Page 11: Fundamental theorem of calculus II

𝑓 (π‘₯ )

π‘₯0

FToC: Integration β€œundoes” differentiation

11

π‘₯𝐷0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

π‘Ž

π‘Ž

𝑏

𝑏

βˆ† 𝐴= 𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0βˆ† π‘₯

βˆ† π‘₯βˆ† 𝑓 β‰… 𝑑 𝑓

𝑑 π‘₯|π‘₯=π‘₯0

βˆ†π‘₯

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)π‘₯0

π‘₯0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0

βˆ† π‘₯

Page 12: Fundamental theorem of calculus II

𝑓 (π‘₯ )

π‘₯0

π‘₯𝐷0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

FToC: Integration β€œundoes” differentiation

12

π‘Ž

π‘Ž

𝑏

𝑏

𝑓 (𝑏)

𝑓 (π‘Ž )

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)π‘₯0

π‘₯0

Page 13: Fundamental theorem of calculus II

13

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

=𝑛π‘₯π·π‘›βˆ’1

𝑓 (π‘₯ )=π‘₯𝑛

∫π‘₯ 𝐷=π‘Ž

𝑏

𝑛π‘₯π·π‘›βˆ’1𝑑π‘₯𝐷=𝑏

π‘›βˆ’π‘Žπ‘›

βˆ«π‘›π‘₯π‘›βˆ’1𝑑π‘₯=π‘₯𝑛+𝐢

∫ cos (πœƒ )π‘‘πœƒ=sin (πœƒ )+𝐢

βˆ«βˆ’ sin (πœƒ )π‘‘πœƒ=cos (πœƒ )+𝐢π‘₯π‘₯

+𝐢

STOP 𝑑 (stuff ΒΏbe differentiated )𝑑π‘₯ =result

Generic differentiation ruleNotion of anti-derivative: Instead of maligning the indefinite integral as the result of β€œforgetting” to write down symbols in a definite integral, one often says that, in the context of an equation lacking beginning and end points, such as , the β€œcurvy S” indicates merely that taking the derivative of gives . This kind of use of language does not require discussion of the notion of area under a curve.

Example integral table

Page 14: Fundamental theorem of calculus II

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

14

Area under the curve

h (𝑑 )𝑑 h𝑑𝑑 Integrate

Page 15: Fundamental theorem of calculus II

∫π‘₯=π‘Ž

𝑏

𝑔 ( 𝑓 (π‘₯ ) )   𝑑 𝑓𝑑 π‘₯|π‘₯ π‘‘π‘₯= ∫

𝑓 = 𝑓 (π‘Ž )

𝑓 (𝑏 )

𝑔 ( 𝑓 )  π‘‘ 𝑓

βˆ† π‘₯

15

π‘₯0

𝑓

𝑔

𝑓 (π‘₯ )

π‘Ž 𝑏

βˆ† 𝑓 βˆ† 𝑓 β‰… 𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0βˆ†π‘₯

βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ†π‘₯

𝑔 ( 𝑓 (π‘Ž+(π‘˜βˆ’1 )βˆ† π‘₯ ) ) 𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘Ž+(π‘˜βˆ’1)βˆ† π‘₯

βˆ† π‘₯

π‘₯0

𝑔 ( 𝑓 (π‘₯ ) )

𝑔 (𝑓(π‘₯0) )

𝑓 (π‘Ž )

𝑓 (𝑏)

β‰…

Change of variables

Page 16: Fundamental theorem of calculus II

Change of variables example: Trigonometric functions

16

∫π‘₯=π‘Ž

𝑏

𝑔 ( 𝑓 (π‘₯ ) )   𝑑 𝑓𝑑 π‘₯|π‘₯ π‘‘π‘₯= ∫

𝑓 = 𝑓 (π‘Ž )

𝑓 (𝑏 )

𝑔 ( 𝑓 )   𝑑 𝑓

π‘₯0

𝑓

𝑔

𝑓 (π‘₯ )

π‘Ž 𝑏

βˆ† 𝑓𝑔 ( 𝑓 (π‘₯ ) )

βˆ«πœƒ=π‘Ž

𝑏

3 ( sin (πœƒ ) )2 cos (πœƒ )  π‘‘πœƒ=?

𝑓 (πœƒ )=sin (πœƒ )Choose to identify 𝑑 𝑓

π‘‘πœƒ|πœƒ=cos (πœƒ )

βˆ«πœƒ=π‘Ž

𝑏

3 ( 𝑓 (πœƒ ) )2 𝑑 π‘“π‘‘πœƒ|πœƒπ‘‘πœƒ= ∫

𝑓 =sin (π‘Ž )

sin (𝑏 )

3 ( 𝑓 )2𝑑 𝑓

ΒΏ ( sin (𝑏) )3βˆ’ (sin (π‘Ž ) )3ΒΏ 𝑓 3|𝑓= sin (𝑏 )βˆ’ 𝑓 3|𝑓 =sin (π‘Ž )

∫ 3 𝑓 2𝑑 𝑓= 𝑓 3+𝐢Find in integration table:

Page 17: Fundamental theorem of calculus II

Area under the curve

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

17

h (𝑑 )𝑑 h𝑑𝑑 Integrate