Transcript
Page 1: Fundamental theorem of calculus II

1

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

h (𝑑 )𝑑 h𝑑𝑑

Area under the curve

Integrate

Page 2: Fundamental theorem of calculus II

Area under the curve

2

π‘₯0

𝑓 (π‘₯ )

π‘π‘Ž

Page 3: Fundamental theorem of calculus II

3

π‘₯0

𝑓 (π‘₯ )

π‘π‘Ž

𝑓 (π‘Ž+βˆ† π‘₯ )

βˆ† π‘₯π‘Ž+βˆ†π‘₯

βˆ† 𝐴1βˆ† 𝐴2βˆ† 𝐴3βˆ† 𝐴4

STOPVerify that this sum makes sense. There are values of Dx that break this picture. What are they?

𝐴≅ βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ† π‘₯

𝑓 (π‘Ž+(π‘˜βˆ’1 )βˆ† π‘₯ )βˆ™ βˆ†π‘₯βˆ† 𝐴

Area under the curve

Page 4: Fundamental theorem of calculus II

π‘π‘Žπ‘₯

0

𝑓 (π‘₯ )𝑓 (π‘₯ )

4

𝐴≔ limβˆ†π‘₯β†’0

βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ†π‘₯

𝑓 (π‘Ž+ (π‘˜βˆ’1 )βˆ† π‘₯ ) βˆ™βˆ†π‘₯

≔

𝐴= ∫π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ ) 𝑑π‘₯

β€œDefinite integral”

STOP𝑑?𝑑π‘₯= lim

βˆ† π‘₯β†’0

Ξ” ?Ξ”π‘₯

We wrote a differential. What is coordinately shrinking with ?

𝐴≅ βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ† π‘₯

𝑓 (π‘Ž+(π‘˜βˆ’1 )βˆ† π‘₯ )βˆ™ βˆ†π‘₯

Area under the curve

βˆ† 𝐴

Page 5: Fundamental theorem of calculus II

𝐴= ∫π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ ) 𝑑π‘₯

π‘₯0

𝑓 (π‘₯ )

5

π‘π‘Ž

𝑓 (π‘₯ )=2π‘₯

2π‘Ž

2𝑏

2π‘βˆ’2π‘Ž

𝐴= (2π‘Ž ) (π‘βˆ’π‘Ž )+ 12(2π‘βˆ’2π‘Ž ) (π‘βˆ’π‘Ž )

𝐴= (π‘Ž+𝑏) (π‘βˆ’π‘Ž )𝐴=𝑏2βˆ’π‘Ž2

STOP𝑑 𝐴𝑑𝑏|

𝑏=π‘₯=2 π‘₯

If we hold a in place, the derivative of A β€œhappens” to be

Differentiation β€œundoes” integration. Do you remember why?

Example: Area under a line

Page 6: Fundamental theorem of calculus II

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

6

h (𝑑 )𝑑 h𝑑𝑑

Area under the curve

Integrate

Page 7: Fundamental theorem of calculus II

FToC: Differentiation β€œundoes” integration

7

𝐴= ∫π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ ) 𝑑π‘₯

𝑓 (π‘₯ )

π‘Ž

𝐴 (π‘₯0+βˆ† π‘₯ )=Area of

𝐴 (π‘₯0 )=Area of

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )=Area of

limβˆ† π‘₯β†’0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )βˆ†π‘₯

Want

π‘₯0 π‘₯0π‘₯0+βˆ† π‘₯

Page 8: Fundamental theorem of calculus II

FToC: Differentiation β€œundoes” integration

8

𝑓 (π‘₯ )

π‘Ž

limβˆ† π‘₯β†’0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )βˆ†π‘₯

Want

π‘₯0π‘₯0+βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )=Area of

π‘₯0

Page 9: Fundamental theorem of calculus II

9

𝑓 (π‘₯ )

π‘Ž

limβˆ† π‘₯β†’0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )βˆ†π‘₯

Want

π‘₯0π‘₯

0 π‘₯0+βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )=Area of

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )β‰… Area of

𝑓 (π‘₯0 )

βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝐴 (π‘₯0 )β‰… 𝑓 (π‘₯0 )βˆ† π‘₯

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’π΄ (π‘₯0 )βˆ† π‘₯ β‰… 𝑓 (π‘₯0 )

𝑑 𝐴𝑑𝑏|

𝑏=π‘₯0= 𝑓 (π‘₯0 )

𝐴

FToC: Differentiation β€œundoes” integration

Page 10: Fundamental theorem of calculus II

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

10

Area under the curve

h (𝑑 )𝑑 h𝑑𝑑 Integrate

Page 11: Fundamental theorem of calculus II

𝑓 (π‘₯ )

π‘₯0

FToC: Integration β€œundoes” differentiation

11

π‘₯𝐷0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

π‘Ž

π‘Ž

𝑏

𝑏

βˆ† 𝐴= 𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0βˆ† π‘₯

βˆ† π‘₯βˆ† 𝑓 β‰… 𝑑 𝑓

𝑑 π‘₯|π‘₯=π‘₯0

βˆ†π‘₯

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)π‘₯0

π‘₯0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0

βˆ† π‘₯

Page 12: Fundamental theorem of calculus II

𝑓 (π‘₯ )

π‘₯0

π‘₯𝐷0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

FToC: Integration β€œundoes” differentiation

12

π‘Ž

π‘Ž

𝑏

𝑏

𝑓 (𝑏)

𝑓 (π‘Ž )

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)π‘₯0

π‘₯0

Page 13: Fundamental theorem of calculus II

13

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

=𝑛π‘₯π·π‘›βˆ’1

𝑓 (π‘₯ )=π‘₯𝑛

∫π‘₯ 𝐷=π‘Ž

𝑏

𝑛π‘₯π·π‘›βˆ’1𝑑π‘₯𝐷=𝑏

π‘›βˆ’π‘Žπ‘›

βˆ«π‘›π‘₯π‘›βˆ’1𝑑π‘₯=π‘₯𝑛+𝐢

∫ cos (πœƒ )π‘‘πœƒ=sin (πœƒ )+𝐢

βˆ«βˆ’ sin (πœƒ )π‘‘πœƒ=cos (πœƒ )+𝐢π‘₯π‘₯

+𝐢

STOP 𝑑 (stuff ΒΏbe differentiated )𝑑π‘₯ =result

Generic differentiation ruleNotion of anti-derivative: Instead of maligning the indefinite integral as the result of β€œforgetting” to write down symbols in a definite integral, one often says that, in the context of an equation lacking beginning and end points, such as , the β€œcurvy S” indicates merely that taking the derivative of gives . This kind of use of language does not require discussion of the notion of area under a curve.

Example integral table

Page 14: Fundamental theorem of calculus II

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

14

Area under the curve

h (𝑑 )𝑑 h𝑑𝑑 Integrate

Page 15: Fundamental theorem of calculus II

∫π‘₯=π‘Ž

𝑏

𝑔 ( 𝑓 (π‘₯ ) )   𝑑 𝑓𝑑 π‘₯|π‘₯ π‘‘π‘₯= ∫

𝑓 = 𝑓 (π‘Ž )

𝑓 (𝑏 )

𝑔 ( 𝑓 )  π‘‘ 𝑓

βˆ† π‘₯

15

π‘₯0

𝑓

𝑔

𝑓 (π‘₯ )

π‘Ž 𝑏

βˆ† 𝑓 βˆ† 𝑓 β‰… 𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0βˆ†π‘₯

βˆ‘π‘˜=1

π‘βˆ’π‘Žβˆ†π‘₯

𝑔 ( 𝑓 (π‘Ž+(π‘˜βˆ’1 )βˆ† π‘₯ ) ) 𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘Ž+(π‘˜βˆ’1)βˆ† π‘₯

βˆ† π‘₯

π‘₯0

𝑔 ( 𝑓 (π‘₯ ) )

𝑔 (𝑓(π‘₯0) )

𝑓 (π‘Ž )

𝑓 (𝑏)

β‰…

Change of variables

Page 16: Fundamental theorem of calculus II

Change of variables example: Trigonometric functions

16

∫π‘₯=π‘Ž

𝑏

𝑔 ( 𝑓 (π‘₯ ) )   𝑑 𝑓𝑑 π‘₯|π‘₯ π‘‘π‘₯= ∫

𝑓 = 𝑓 (π‘Ž )

𝑓 (𝑏 )

𝑔 ( 𝑓 )   𝑑 𝑓

π‘₯0

𝑓

𝑔

𝑓 (π‘₯ )

π‘Ž 𝑏

βˆ† 𝑓𝑔 ( 𝑓 (π‘₯ ) )

βˆ«πœƒ=π‘Ž

𝑏

3 ( sin (πœƒ ) )2 cos (πœƒ )  π‘‘πœƒ=?

𝑓 (πœƒ )=sin (πœƒ )Choose to identify 𝑑 𝑓

π‘‘πœƒ|πœƒ=cos (πœƒ )

βˆ«πœƒ=π‘Ž

𝑏

3 ( 𝑓 (πœƒ ) )2 𝑑 π‘“π‘‘πœƒ|πœƒπ‘‘πœƒ= ∫

𝑓 =sin (π‘Ž )

sin (𝑏 )

3 ( 𝑓 )2𝑑 𝑓

ΒΏ ( sin (𝑏) )3βˆ’ (sin (π‘Ž ) )3ΒΏ 𝑓 3|𝑓= sin (𝑏 )βˆ’ 𝑓 3|𝑓 =sin (π‘Ž )

∫ 3 𝑓 2𝑑 𝑓= 𝑓 3+𝐢Find in integration table:

Page 17: Fundamental theorem of calculus II

Area under the curve

Fundamental theorem of calculus II

∫π‘₯ 𝐷=π‘Ž

𝑏 𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯𝐷

 π‘‘π‘₯𝐷= 𝑓 (𝑏 )βˆ’ 𝑓 (π‘Ž)

𝑑𝑑𝑏 ( ∫

π‘₯=π‘Ž

π‘₯=𝑏

𝑓 (π‘₯ )𝑑π‘₯)|𝑏=π‘₯0= 𝑓 (π‘₯0 )

Fundamental theorem of calculus I Change of variables

Integrals

17

h (𝑑 )𝑑 h𝑑𝑑 Integrate