Frontiers Research 2012

Embed Size (px)

Citation preview

  • 8/2/2019 Frontiers Research 2012

    1/35

    Extremes:violent events close up

    Nigel C Woolsey

    York Plasma InstituteDepartment of Physics

    [email protected]

    Cassiopeia A, in X-rays at 300 yrsNASA/CXC/SAO

  • 8/2/2019 Frontiers Research 2012

    2/35

    Outline

    High power lasers

    Laser-plasma physics

    Fusion (inertial confinement fusion, ICF)

    Laboratory astrophysics

  • 8/2/2019 Frontiers Research 2012

    3/35

    Collaborations & funding

    My students and post docs

    Ozgur, Rachel and Rob

    United Kingdom

    Central Laser Facility, Culham Centre for Fusion, Oxford

    France Ecole Polytechnique, CEA, lObservatoire de Paris

    Japan

    Osaka University (ILE & Graduate School)

    USA

    Livermore (LLNL), Rochester (LLE), Princeton

  • 8/2/2019 Frontiers Research 2012

    4/35

  • 8/2/2019 Frontiers Research 2012

    5/35

    These are big,National Ignition Facilityoccupies space of 3 football pitches

    Part 1

    High energy, high power lasers

  • 8/2/2019 Frontiers Research 2012

    6/35

    Expensive and massive

    NIF has 192 beams and delivers 0.5 PW

  • 8/2/2019 Frontiers Research 2012

    7/35

    The 192 beams go to a 10 metre target chamber

    This is the best option for laser fusion

  • 8/2/2019 Frontiers Research 2012

    8/35

    The oscillator(start here with nJs)

    Stretch in time

  • 8/2/2019 Frontiers Research 2012

    9/35

    Nd:Glass lasers

    These lasers operate at a wavelength of 1.53 m(photon energy ~1eV)

    For many applications the laser wavelength is converted

    to the UV a process called harmonic conversion

    3rd harmonic gives 1.053 m/3 = 0.351 m

    This increases the plasma density (by factor 10) at whichthe laser is absorbed

    It increases the intensity (by factor 10) at whichresonance absorption dominates

  • 8/2/2019 Frontiers Research 2012

    10/35

    Use lasers to createscaled dynamicalsystems (e.g. shocks)

    Laser-plasma physics

    Part 2

  • 8/2/2019 Frontiers Research 2012

    11/35

    What happens

    Laser first hits a solid Electrons absorb photons until energies exceed the

    work function (called multi-photon absorption)

    Occurs at intensities of ~109 W/cm2(note mixed units)

    These electrons then collide with ions efficientlyabsorbing laser energy (called collisional absorption orinverse bremsstrahlung)

    Occurs at intensities up to 1016 W/cm2

    Above 1016 W/cm2 resonance (or collisionless)absorption dominates

  • 8/2/2019 Frontiers Research 2012

    12/35

    Use lasers to deposit lots of energyinto small volumes

    Initial laser ablation from solid surface

    Main part of laser pulse interacts with plasma plume,

    absorbed up to a critical density

    Critical density = density at which plasma frequencyequals laser frequency

    Laser

    0

    2

    e

    epe

    m

    enlaser

    laser

    c

    2

    3

    2laser

    21

    cm

    m

    1022

    22

    4

    laser

    ecrit

    e

    cmn

  • 8/2/2019 Frontiers Research 2012

    13/35

  • 8/2/2019 Frontiers Research 2012

    14/35

    Intensity

    Pressure from momentum balance, p = momentum flux

    Apply Newtons 2nd law: P = F/Area

    Laser

    Pressure generated by a modest laser

    1 mm

    Shockedor

    ramped

    Mbar201121

    mI21MbarP

    3232

    14abl

    2Wcm10s)(10cm)(0.05

    J10

    timeareaspot

    EnergyI 1492

    3

    0

    12g10azgA

    FP

    z

    = 2.7 gcm-3

    z = 50 m

    2 1012 Pa

  • 8/2/2019 Frontiers Research 2012

    15/35

    Use lasers to createscaled dynamicalsystems (e.g. shocks)

    What is inertial confinement fusion?

    Part 3

  • 8/2/2019 Frontiers Research 2012

    16/35

    D + T collide, tunnel, fuse and release energy

    Neutron carries away bulk of the energy (14.1MeV)

    3.5 MeV particle is important for ignition and burn

    Energy released from fusion is captured in a blanket &

    used to heat a steam turbine

    Use deuterium and tritium isotopes of H

    Q = 17.6 MeV

  • 8/2/2019 Frontiers Research 2012

    17/35

    particle ignition and burn

    The conditions (e.g. temperatures) needed are demanding.

    So heat a small part of the DT to produce fusion and then

    the particle to ignite and burn the rest

  • 8/2/2019 Frontiers Research 2012

    18/35

    The density-radius product (rho-r)

    Need to re-use of boot strap the particles

    The particles released by DT reaction reabsorbed in

    hot region if rho-r > 0.3g/cm

    2

    (~ the particle range)

    In solid density (0.22 g/cm3) this requires cms of DT

    This is a lot. Risky! And Uncontrolled.

  • 8/2/2019 Frontiers Research 2012

    19/35

    The controlledICF approach ..

    Take a small (1 mg) of DT,contain and freeze this aspherical capsule

    Frozen DT (18 K) density is0.22 g/cm3

    The next step is to compress thisx1000 solid density

    At x1000 solid density heat a

    central region to form a hot spot

  • 8/2/2019 Frontiers Research 2012

    20/35

    Lasers compress the capsule

    Reach 1000x solid density

    The trick is to do this with a laser, keeping the DT cool,and using the hot spot particles to heat the material

    Lasers Compression IgnitionAcceleration

    1. 2. 3. 4.

  • 8/2/2019 Frontiers Research 2012

    21/35

    Use deuterium and tritium isotopes of H

    The isotopes of hydrogen collide, fuse and releaseenergy

    This all occurs very quickly

    Fusion lasts around 10 ps

  • 8/2/2019 Frontiers Research 2012

    22/35

    Problems

    Rayleigh-Taylor fluid instability

    This problem is solved by ensuring extremely uniform capsulesand laser focal spots

    Electron preheat The laser generates high-energy electrons via resonance

    absorption, and plasma instabilities

    Solved (in part) by using short wavelength, UV, lasers

    These are major & interesting challenges today

    In a power plant the process needs repeating 5 to 10x a

    second

  • 8/2/2019 Frontiers Research 2012

    23/35

    Use lasers to createscaled dynamicalsystems (e.g. shocks)

    What is laboratory astrophysics?

    supernova remnant isan example of shock

    Credit: NASA

    Part 4

  • 8/2/2019 Frontiers Research 2012

    24/35

    Plasma physics is important to

    Cosmic microwave background Large scale structure

    Reionisation epoch

    Gravitational collapse

    Primordial magnetic field Galactic formation

    Stellar evolution

    Nuclear reactions

    Relativistic processes Cosmic rays

    Jets

    Gamma Ray Bursters

    It is possible to addresssome aspects of these

    in the laboratory

    Shocks & remnants of asupernova explosion

  • 8/2/2019 Frontiers Research 2012

    25/35

    Interstellar medium

    The local interstellar medium (ISM) composition is typical

    Energy density of all components ~ 1 eV/cm3

    Supernovae and supernova remnants

    drive cosmic rays and grow magnetic fields

    What can experiment tell us?

    Component Energy density Pressure (J/m3)

    Stellar radiation 0.7 eV/cm3 1.1 10-13 Pa

    Cosmic microwave 0.4 eV/cm3

    6.4 10-14

    PaTurbulent motion 0.5 eV/cm3 8.0 10-14 Pa

    Cosmic rays 1.6 eV/cm3 2.6 10-13 Pa

    Magnetic field 1.5 eV/cm3 2.4 10-13 Pa

  • 8/2/2019 Frontiers Research 2012

    26/35

    The typical supernova remnant

    Launches 1 solar mass

    10,000 km/s

    1044 J

    Pressure

    pressure: 10-7 Pa

    1000 yrs old

    30 light-yrs across

    Into the ISM

    1 particle / cm3

    few G B field

    Astronomy Picture of the Day4th June, 2008

    blue x-rayyellowish optical

    red radio

  • 8/2/2019 Frontiers Research 2012

    27/35

    It can be done!

    Snapshot scaling is based on ideal MHD (Ryutov et al.)

    Create collisionless shocks in the laboratory

    Quantity SNR Laser

    Distance 3x1016

    m 5x10-3

    m

    Time 100 yrs 500 ps

    Density 1 cm-3 1018 cm-3

    Speed 109

    cm/s 108

    cm/s

    Magnetic 10-10

    T 20 T

    Woolsey et al., Phys Plasmas 8, 2439 (2001)

    labSNR

    labb

    cSNR

    labSNR

    labc

    bSNR

    labSNR

    c

    b

    a

    a

    BB

    vv

    rr

    =

    =

    =

  • 8/2/2019 Frontiers Research 2012

    28/35

    G Gre ori et al. Nature481, 480-483 2012 doi:10.1038/nature10747

    Experimental set-up showing the laser beams anddiagnostics configuration.

  • 8/2/2019 Frontiers Research 2012

    29/35

    Plasma Jets

    Plasma jets will be discussed by Chris Gregory on Friday

    Gregory, et al, Phys Plasmas (2010); ApJ (2008); PPCF (2008)

    Waugh et al, Astrophys. Space Sci. (2009)

    2 mm

    Shadowgraph and self emission taken

    at the same time (85 ns) for the sameshot

    Jets in 100mb He:+3, +4,+5 ns

    Top: phasemapsBottom: electron maps

  • 8/2/2019 Frontiers Research 2012

    30/35

    Why lab astro

    Good science that complements observations &numerical simulations

    Detail of shocks and plasma conditions that are superiorto astrophysical observations

    Repeatable, controllable

    Access conditions that are inaccessible to numericalsimulation

    study extended spatial and temporal scales

    Once scaled, can study additional non-scalable physics

    non-linear, multi-scale physics

    There are limitations too

  • 8/2/2019 Frontiers Research 2012

    31/35

    Plasma temperatures and densities

    RELATIVISTIC PLASMAS

    QUANTUMPLASMAS

    CLASSICALPLASMAS

    stronglycoupledplasmas

    Pulsar

    MFE

    IFESolar

    Corona

    Dis-

    chargeIono-sphere

    SolarWind

    Magneto-sphere

    Non-neutral

    Thermal

    processing

    Lightning

    White

    Dwarfs

    Electrons inMetals

    SolarInterior

    kBT=mc2

    EF=e2n1/3

    10

    6

    104

    102

    100

    10-2

    10-4

    Tempe

    rature(eV)

    1 1010

    1020

    1030

    Density (cm-3)

    uLHRe

    uLPe H

    m

    H

    mD

    uLRe

    R

    H

    r

    uLPe

    Astronomical systems are large, LH is huge

    Flow speeds, uare also large

    Use magneto-hydrodynamics

    small viscosities, resistivities and diffusivities

  • 8/2/2019 Frontiers Research 2012

    32/35

    Conclude

    The science possible with high energy, high power laseris diverse weve looked at:

    Fusion: addressing the energy need

    Astrophysics: advancing fundamental knowledge

    Both rely on advances in

    Plasma physics

    Laser technology Computational modelling

    They use very similar tools by pursuing one we pursue

    the other

  • 8/2/2019 Frontiers Research 2012

    33/35

    Thank you

  • 8/2/2019 Frontiers Research 2012

    34/35

    Suggested papers

    Lab astro

    Gregori et al. Nature 481, 480 (2012)

    H-S Park et al. High Energy Density Physics 8, 38e45 (2012)

    Kuramitsu et al. Phys. Rev. Lett. 106, 175002 (2011)

    Woolsey et al. Plasma Phys. Control. Fusion 46, B397-B405 (2004)

    ICF

    Dunne et al. Nature Physics 2, 2 (2006)

    Pasley and Stephens, Phys. Plasmas 14, 054501, (2007) Ribeyre et al Plasma Phys. Control. Fusion 50 025007 (2008 )

    Green et al. Phys. Rev. Lett. 100, 015003 (2008)

    Woolsey et al. Phys. Rev. E 53, 6396, (1996)

  • 8/2/2019 Frontiers Research 2012

    35/35

    Latest updates (Nov 2011)

    Presented at the annual plasma meeting in USA

    http://pop.aip.org/53rd_meeting

    Astrophysical jets (tutorial)

    http://pop.aip.org/polopoly_fs/1.2688788!/menu/standard/file/FR1Stone.pdf

    http://www.sciencemag.org/content/284/5419/1488

    Inertial confinement fusion

    http://pop.aip.org/polopoly_fs/1.2688123!/menu/standard/file/BI3Glenzer.pdf

    LIFE (https://life.llnl.gov/), HiPER (http://www.hiper-laser.org/)

    http://pop.aip.org/53rd_meetinghttp://pop.aip.org/polopoly_fs/1.2688788!/menu/standard/file/FR1Stone.pdfhttp://pop.aip.org/polopoly_fs/1.2688788!/menu/standard/file/FR1Stone.pdfhttp://www.sciencemag.org/content/284/5419/1488http://pop.aip.org/polopoly_fs/1.2688123!/menu/standard/file/BI3Glenzer.pdfhttp://pop.aip.org/polopoly_fs/1.2688123!/menu/standard/file/BI3Glenzer.pdfhttps://life.llnl.gov/https://life.llnl.gov/https://life.llnl.gov/http://pop.aip.org/polopoly_fs/1.2688123!/menu/standard/file/BI3Glenzer.pdfhttp://pop.aip.org/polopoly_fs/1.2688123!/menu/standard/file/BI3Glenzer.pdfhttp://pop.aip.org/polopoly_fs/1.2688123!/menu/standard/file/BI3Glenzer.pdfhttp://www.sciencemag.org/content/284/5419/1488http://www.sciencemag.org/content/284/5419/1488http://pop.aip.org/polopoly_fs/1.2688788!/menu/standard/file/FR1Stone.pdfhttp://pop.aip.org/polopoly_fs/1.2688788!/menu/standard/file/FR1Stone.pdfhttp://pop.aip.org/polopoly_fs/1.2688788!/menu/standard/file/FR1Stone.pdfhttp://pop.aip.org/53rd_meeting