91
Free Powerpoint Templates Page 1 KULIAH X KULIAH X EXTERNAL EXTERNAL INCOMPRESSIBLE INCOMPRESSIBLE VISCOUS FLOW VISCOUS FLOW Nazaruddin Sinaga Nazaruddin Sinaga

Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Embed Size (px)

Citation preview

Page 1: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Free Powerpoint TemplatesPage 1

KULIAH XKULIAH XEXTERNAL EXTERNAL

INCOMPRESSIBLE INCOMPRESSIBLE VISCOUS FLOWVISCOUS FLOW

Nazaruddin SinagaNazaruddin Sinaga

Page 2: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 3: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 4: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Main TopicsMain Topics• The Boundary-Layer Concept• Boundary-Layer Thickness• Laminar Flat-Plate Boundary Layer: Exact Solution• Momentum Integral Equation• Use of the Momentum Equation for Flow with Zero

Pressure Gradient• Pressure Gradients in Boundary-Layer Flow• Drag• Lift

Page 5: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

The Boundary-Layer Concept

Page 6: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

The Boundary-Layer Concept

Page 7: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Boundary Layer Thickness

Page 8: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Boundary Layer Thickness

• Disturbance Thickness, where

Displacement Thickness, *

Momentum Thickness,

Page 9: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 10: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 11: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 12: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 13: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 14: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Boundary Layer LawsBoundary Layer Laws

1. The velocity is zero at the wall (u = 0 at y = 0)

2. The velocity is a maximum at the top of the layer (u = um at = )

3. The gradient of BL is zero at the top of the layer (du/dy = 0 at y = )

4. The gradient is constant at the wall (du/dy = C at y = 0)

5. Following from (4): (d2u/dy2 = 0 at y = 0)

Page 15: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Navier-Stokes EquationNavier-Stokes EquationCartesian CoordinatesCartesian Coordinates

Continuity

X-momentum

Y-momentum

Z-momentum

Page 16: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Laminar Flat-PlateLaminar Flat-PlateBoundary Layer: Exact SolutionBoundary Layer: Exact Solution

• Governing Equations

• For incompresible steady 2D cases:

Page 17: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Laminar Flat-PlateBoundary Layer: Exact Solution

• Boundary Conditions

Page 18: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Laminar Flat-PlateBoundary Layer: Exact Solution

• Equations are Coupled, Nonlinear, Partial Differential Equations

• Blassius Solution:– Transform to single, higher-order, nonlinear, ordinary

differential equation

Page 19: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Boundary Layer Procedure

• Before defining and * and are there analytical solutions to the BL equations?– Unfortunately, NO

• Blasius Similarity Solution boundary layer on a flat plate, constant edge velocity, zero external pressure gradient

Page 20: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blasius Similarity Solution• Blasius introduced similarity variables

• This reduces the BLE to

• This ODE can be solved using Runge-Kutta technique

• Result is a BL profile which holds at every station along the flat plate

Page 21: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blasius Similarity Solution

Page 22: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blasius Similarity Solution

• Boundary layer thickness can be computed by assuming that corresponds to point where U/Ue = 0.990. At this point, = 4.91, therefore

• Wall shear stress w and friction coefficient Cf,x can be directly related to Blasius solution

Recall

Page 23: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Displacement Thickness• Displacement thickness * is the imaginary

increase in thickness of the wall (or body), as seen by the outer flow, and is due to the effect of a growing BL.

• Expression for * is based upon control volume analysis of conservation of mass

• Blasius profile for laminar BL can be integrated to give

(1/3 of )

Page 24: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Momentum Thickness• Momentum thickness is another

measure of boundary layer thickness.

• Defined as the loss of momentum flux per unit width divided by U2 due to the presence of the growing BL.

• Derived using CV analysis.

for Blasius solution, identical to Cf,x

Page 25: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Turbulent Boundary Layer

Illustration of unsteadiness of a turbulent BL

Black lines: instantaneousPink line: time-averaged

Comparison of laminar and turbulent BL profiles

Page 26: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Turbulent Boundary Layer

• All BL variables [U(y), , *, ] are determined empirically.

• One common empirical approximation for the time-averaged velocity profile is the one-seventh-power law

Page 27: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga
Page 28: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

• Results of Numerical Analysis

Page 29: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Momentum Integral Equation

• Provides Approximate Alternative to Exact (Blassius) Solution

Page 30: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Momentum Integral Equation

Equation is used to estimate the boundary-layer thickness as a function of x:

1. Obtain a first approximation to the freestream velocity distribution, U(x). The pressure in the boundary layer is related to the freestream velocity, U(x), using the Bernoulli equation

2. Assume a reasonable velocity-profile shape inside the boundary layer

3. Derive an expression for w using the results obtained from item 2

Page 31: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Simplify Momentum Integral Equation(Item 1)

The Momentum Integral Equation becomes

Page 32: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Laminar Flow– Example: Assume a Polynomial Velocity Profile (Item 2)

• The wall shear stress w is then (Item 3)

Page 33: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Laminar Flow Results(Polynomial Velocity Profile)

Compare to Exact (Blassius) results!

Page 34: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Turbulent Flow– Example: 1/7-Power Law Profile (Item 2)

Page 35: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Turbulent Flow Results(1/7-Power Law Profile)

Page 36: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Pressure Gradients in Boundary-Layer Flow

Page 37: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

DRAG AND LIFTDRAG AND LIFT• Fluid dynamic forces are

due to pressure and viscous forces acting on the body surface.

• Drag: component parallel to flow direction.

• Lift: component normal to flow direction.

Page 38: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag and Lift• Lift and drag forces can be found by

integrating pressure and wall-shear stress.

Page 39: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag and Lift

• In addition to geometry, lift FL and drag FD forces are a function of density and velocity V.

• Dimensional analysis gives 2 dimensionless parameters: lift and drag coefficients.

• Area A can be frontal area (drag applications), planform area (wing aerodynamics), or wetted-surface area (ship hydrodynamics).

Page 40: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag

• Drag Coefficient

with

or

Page 41: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Pure Friction Drag: Flat Plate Parallel to

the Flow• Pure Pressure Drag: Flat Plate

Perpendicular to the Flow• Friction and Pressure Drag: Flow over a

Sphere and Cylinder• Streamlining

Page 42: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Flow over a Flat Plate Parallel to the Flow: Friction

Drag

Boundary Layer can be 100% laminar, partly laminar and partly turbulent, or essentially 100% turbulent; hence several different drag coefficients are available

Page 43: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Flow over a Flat Plate Parallel to the Flow: Friction

Drag (Continued)

Laminar BL:

Turbulent BL:

… plus others for transitional flow

Page 44: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag Coefficient

Page 45: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Flow over a Flat Plate Perpendicular to the

Flow: Pressure Drag

Drag coefficients are usually obtained empirically

Page 46: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Flow over a Flat Plate Perpendicular to the

Flow: Pressure Drag (Continued)

Page 47: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Flow over a Sphere : Friction and Pressure Drag

Page 48: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag• Flow over a Cylinder: Friction and Pressure

Drag

Page 49: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Streamlining• Used to Reduce Wake and Pressure Drag

Page 50: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift• Mostly applies to Airfoils

Note: Based on planform area Ap

Page 51: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift

• Examples: NACA 23015; NACA 662-215

Page 52: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift• Induced Drag

Page 53: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift• Induced Drag (Continued)

Reduction in Effective Angle of Attack:

Finite Wing Drag Coefficient:

Page 54: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift

• Induced Drag (Continued)

Page 55: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Fluid Dynamic Forces and Moments

Ships in waves present one of the most difficult 6DOF problems.

Airplane in level steady flight: drag = thrust and lift = weight.

Page 56: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Example: Automobile DragScion XB Porsche 911

CD = 1.0, A = 25 ft2, CDA = 25 ft2 CD = 0.28, A = 10 ft2, CDA = 2.8 ft2

• Drag force FD=1/2V2(CDA) will be ~ 10 times larger for Scion XB

• Source is large CD and large projected area

• Power consumption P = FDV =1/2V3(CDA) for both scales with V3!

Page 57: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Drag and Lift

• For applications such as tapered wings, CL and CD may be a function of span location. For these applications, a local CL,x and CD,x are introduced and the total lift and drag is determined by integration over the span L

Page 58: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Friction and Pressure Drag• Fluid dynamic forces are comprised

of pressure and friction effects.• Often useful to decompose,

– FD = FD,friction + FD,pressure

– CD = CD,friction + CD,pressure • This forms the basis of ship model

testing where it is assumed that– CD,pressure = f(Fr)– CD,friction = f(Re)

Friction drag

Pressure drag

Friction & pressure drag

Page 59: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Streamlining• Streamlining reduces drag

by reducing FD,pressure, at the cost of increasing wetted surface area and FD,friction.

• Goal is to eliminate flow separation and minimize total drag FD

• Also improves structural acoustics since separation and vortex shedding can excite structural modes.

Page 60: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Streamlining

Page 61: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Streamlining via Active Flow Control

• Pneumatic controls for blowing air from slots: reduces drag, improves fuel economy for heavy trucks (Dr. Robert Englar, Georgia Tech Research Institute).

Page 62: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

CD of Common Geometries• For many geometries, total drag CD is

constant for Re > 104 • CD can be very dependent upon

orientation of body.• As a crude approximation,

superposition can be used to add CD from various components of a system to obtain overall drag. However, there is no mathematical reason (e.g., linear PDE's) for the success of doing this.

Page 63: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

CD of Common Geometries

Page 64: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

CD of Common Geometries

Page 65: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

CD of Common Geometries

Page 66: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Flat Plate Drag

• Drag on flat plate is solely due to friction created by laminar, transitional, and turbulent boundary layers.

Page 67: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Flat Plate Drag• Local friction coefficient

– Laminar:

– Turbulent:

• Average friction coefficient

– Laminar:

– Turbulent:

For some cases, plate is long enough for turbulent flow, but not long enough to neglect laminar portion

Page 68: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Effect of Roughness• Similar to Moody Chart

for pipe flow• Laminar flow unaffected

by roughness• Turbulent flow

significantly affected: Cf can increase by 7x for a given Re

Page 69: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Cylinder and Sphere Drag

Page 70: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Cylinder and Sphere Drag• Flow is strong function of

Re.• Wake narrows for turbulent

flow since TBL (turbulent boundary layer) is more resistant to separation due to adverse pressure gradient.

• sep,lam ≈ 80º

• sep,turb ≈ 140º

Page 71: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Effect of Surface Roughness

Page 72: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift• Lift is the net force (due

to pressure and viscous forces) perpendicular to flow direction.

• Lift coefficient

• A=bc is the planform area

Page 73: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Computing Lift• Potential-flow approximation gives accurate

CL for angles of attack below stall: boundary layer can be neglected.

• Thin-foil theory: superposition of uniform stream and vortices on mean camber line.

• Java-applet panel codes available online: http://www.aa.nps.navy.mil/~jones/online_tools/panel2/

• Kutta condition required at trailing edge: fixes stagnation pt at TE.

Page 74: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Effect of Angle of Attack• Thin-foil theory shows that

CL≈2 for < stall

• Therefore, lift increases linearly with

• Objective for most applications is to achieve maximum CL/CD ratio.

• CD determined from wind-tunnel or CFD (BLE or NSE).

• CL/CD increases (up to order 100) until stall.

Page 75: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Effect of Foil Shape• Thickness and camber

influences pressure distribution (and load distribution) and location of flow separation.

• Foil database compiled by Selig (UIUC)http://www.aae.uiuc.edu/m-selig/ads.html

Page 76: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Effect of Foil Shape

• Figures from NPS airfoil java applet.

• Color contours of pressure field

• Streamlines through velocity field

• Plot of surface pressure

• Camber and thickness shown to have large impact on flow field.

Page 77: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

End Effects of Wing Tips• Tip vortex created by

leakage of flow from high-pressure side to low-pressure side of wing.

• Tip vortices from heavy aircraft persist far downstream and pose danger to light aircraft. Also sets takeoff and landing separation at busy airports.

Page 78: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

End Effects of Wing Tips• Tip effects can be

reduced by attaching endplates or winglets.

• Trade-off between reducing induced drag and increasing friction drag.

• Wing-tip feathers on some birds serve the same function.

Page 79: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift Generated by Spinning

Superposition of Uniform stream + Doublet + Vortex

Page 80: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Lift Generated by Spinning

• CL strongly depends on rate of rotation.

• The effect of rate of rotation on CD is small.

• Baseball, golf, soccer, tennis players utilize spin.

• Lift generated by rotation is called The Magnus Effect.

Page 81: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Free Powerpoint TemplatesPage 81

The EndThe End

Terima kasihTerima kasih

81

Page 82: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Derivation of the boundary layer equations II

82

02

1

1

1

*

*

*

*

x

U

x

U

22

122

12

12

1

11

1*

*

L**

**

*

**

x

UL

Rex

*p

x

UU

x

UU

*x

*p

2

0

Page 83: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blassius exact solution I Boundary layer over a flat plate

83

Variable transformation: ,

Stream function definition:

,

21 x

U

12 x

U

11 xX 1

22 x

UxX

21

2,1 XGx

UXX

Wall boundary condition:

= Ue1

p

Page 84: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blassius exact solution II Boundary layer over a flat plate

84

Ordinary differential equation

Boundary conditions

The analytical solution of the ordinary differential equation was obtained by Blasius using series expansions

0232

3

22

2

dX

Gd

dX

GdG

002 XG

0022

XdX

dG

1122

XdX

dG

Page 85: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blassius exact solution IIIBoundary layer over a flat plate

85

Solution

Velocity along x1-direction:

Velocity along x2-direction:

Boundary layer thickness:

Displacement thickness:

Wall shear stress:

21 dX

dGU

G

dX

dGXU

x 222 2

11

1Re

1

1860402

x

URe

.

11Re

15

x

x

1Re

17208.1 1

xd x

1Re

1332.0 2

xw U

Page 86: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Blassius exact solution IVBoundary layer over a flat plate

86

Solution

Page 87: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Von Karman integral momentum equation I

pF AD 1

87

Momentum conservation along x1-direction

ddxdx

dpdx

dx

dppdp

ddxxpF CD

11

11

111

ddxdx

dppd

ddxxpF BC

11

111

2

1

2

1

11 dxF wAD

CDBCAB MMMF 1111

p

p d)dxx

pp(

11

Page 88: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

88

Solution

Considerations: p(x1) = pe(x1)

Von Karman integral momentum equation II

20

21

12

01

11

1

dxUx

dxUx

Udx

dPew

01

11

dx

dp

dx

dUU ee

e

1ee UU

02

11

1

2 1 dxU

U

U

U

xUw

Page 89: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Approximate solutions I Linear, quadratic, cubic and sinusoidal velocity profiles

89

1. Assumption of a self-similar velocity profile U1

*= f (x2*)

2. Specifications of the boundary conditions

3. Resolution of the Von Karman integral momentum equation

1

0211

1

2 1 dxUUx

Uw

Page 90: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Approximate solutions II Example: quadratic velocity profiles

90

Velocity profile

General form + boundary conditions = velocity profile along x1-dir

Von Karman integral momentum equation solution

2*23

*221

*1 xCxCCU 0)0( *

2*1 xU

1)1( *2

*1 xU

0)1( *2*

2

*1

x

x

U

2*2

*2

*1 2 xxU

**

*******

*)()(

U

LxUdxxxxx

xUw

2

15

2212

1

21

0 222222

1

2

Re*

** 1

151x

*1

*

1Re

1477.5 x

x

boundary layer thickness

Page 91: Free Powerpoint Templates Page 1 KULIAH X EXTERNAL INCOMPRESSIBLE VISCOUS FLOW Nazaruddin Sinaga

Approximate solutions III Example: quadratic velocity profiles

*

U

Lw

2

91

Displacement thickness:

from the definition =>

Velocity along x2-direction

from continuity equation

Wall shear stress

from =>

201

11 dxU

U

ed

1Re

1826.1 *

1*

xd x

1Re

1913.02

x

UU

1

2

3650x

w

U

Re,