82
Introduction to Fracture Mechanics C.H. Wang Airframes and Engines Division Aeronautical and Maritime Research Laboratory DSTO-GD-0103 ABSTRACT This text is based on a series of lectures conducted on fracture mechanics. As an introductory course, the test is focused on the essential concepts and analytical methods of fracture mechanics, aiming at painting a broad picture of the theoretical background to fracture mechanics. While a brief review of some important issues in the theory of elasticity is provided in the first chapter, the main focus of the test is centred on stress analysis and energetic approaches to cracked components, local plastic deformation at crack tips, fracture criteria and fatigue life prediction. RELEASE LIMITATION Approved for public release D EPARTMENT OF D EFENCE ——————————!——————————— DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Fracture mechanics

Embed Size (px)

DESCRIPTION

Introduction to Fracture Mechanics

Citation preview

Page 1: Fracture mechanics

Introduction to Fracture Mechanics

C.H. Wang

Airframes and Engines DivisionAeronautical and Maritime Research Laboratory

DSTO-GD-0103

ABSTRACT

This text is based on a series of lectures conducted on fracture mechanics. As anintroductory course, the test is focused on the essential concepts and analyticalmethods of fracture mechanics, aiming at painting a broad picture of the theoreticalbackground to fracture mechanics. While a brief review of some important issues in thetheory of elasticity is provided in the first chapter, the main focus of the test is centredon stress analysis and energetic approaches to cracked components, local plasticdeformation at crack tips, fracture criteria and fatigue life prediction.

RELEASE LIMITATION

Approved for public release

D E P A R T M E N T O F D E F E N C E——————————!———————————

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Page 2: Fracture mechanics

Published by

DSTO Aeronautical and Maritime Research LaboratoryPO Box 4331Melbourne Victoria 3001

Telephone: (03) 9626 8111Fax: (03) 9626 8999

© Commonwealth of Australia 1996AR No. AR-009-786July 1996

APPROVED FOR PUBLIC RELEASE

Page 3: Fracture mechanics

Introduction to Fracture Mechanics

Executive Summary

This text is prepared for a series of lectures on fracture mechanics. The main aimof the lectures is to provide AMRL staff who are involved in aircraft fatigue andfracture research with a broad picture of the theoretical background to fracturemechanics via a stress analysis viewpoint.

As an introductory course, the lectures are focused on the essential concepts andanalytical methods of fracture mechanics. A brief review of some importantissues in the theory of elasticity is provided in Chapter 1, while the remainingchapters deal with the stress analysis approach and the energy approach tocracked components, local plastic deformation at crack tips, fracture criteria andfatigue life prediction.

Page 4: Fracture mechanics

Authors

C. H. Wang

Airframe and Engine Division

Chun-Hui Wang has a B.Eng and Ph.D (Sheffield, UK) inMechanical Engineering and is currently a member of the Instituteof Engineers, Australia. Prior to joining the Aeronautical andMaritime Research Laboratory in 1995 as a Senior ResearchScientist, Dr. Wang was a Lecturer at the Deakin University. Hehas an extensive research record in fatigue and fracture mechanics,stress analysis and constitutive modelling, and biomechanics. Overthe last six years he also held academic/research positions at theUniversity of Sydney and the University of Sheffield, UK.

____________________ ________________________________________________

Page 5: Fracture mechanics
Page 6: Fracture mechanics

Contents

1. FUNDAMENTALS............................................................................................................ 11.1 Historical Overview ...................................................................................................... 11.2 Notches and Stress Concentration.............................................................................. 21.3 Cracks and Stress Intensity Factor.............................................................................. 31.4 Plane Stress and Plane Strain ...................................................................................... 41.5 Stress Function ............................................................................................................... 7

2. STRESS ANALYSIS OF CRACKED COMPONENTS............................................. 102.1 Energy Balance During Crack Growth .................................................................... 102.2 Griffith Theory............................................................................................................. 112.3 Energy Release Rate G and Compliance ................................................................. 14

2.3.1 Constant Load Conditions .................................................................................... 152.3.2 Constant Displacement Condition....................................................................... 152.3.3 Determination Of Energy Release Rate From Compliance .............................. 16

2.4 Stress Intensity Factor K ............................................................................................. 192.5 Superposition Method................................................................................................ 282.6 Relationship Between G and K ................................................................................. 30

3. PLASTIC YIELDING AT CRACK TIP........................................................................ 353.1 Irwin’s Model ............................................................................................................... 353.2 The Strip Yield Model ................................................................................................ 373.3 Plane Stress versus Plane Strain. .............................................................................. 393.4 Shapes of Plastic Zone ................................................................................................ 403.5 Crack Tip Opening Displacement............................................................................ 43

4. FRACTURE CRITERIA .................................................................................................. 454.1 K as a Failure Criterion ............................................................................................... 454.2 Residual Strength and Critical Crack Size.............................................................. 474.3 R-curve ........................................................................................................................... 494.4 Mixed Mode Loading: Fracture and Crack Path .................................................... 52

5. FATIGUE AND LIFE PREDICTION ........................................................................... 575.1 Fatigue Crack Growth Equations.............................................................................. 575.2 Effect of Stress Ratio and Crack Closure................................................................. 605.3 Variable Amplitude Loading..................................................................................... 62

5.3.1 First Generation Model and Palmgren-Miner Linear Rule .............................. 645.3.2 Wheeler Model........................................................................................................ 65

5.4 Damage Tolerance Design Methodology................................................................ 67

6. REFERENCES................................................................................................................... 69

Page 7: Fracture mechanics
Page 8: Fracture mechanics
Page 9: Fracture mechanics
Page 10: Fracture mechanics
Page 11: Fracture mechanics
Page 12: Fracture mechanics
Page 13: Fracture mechanics
Page 14: Fracture mechanics
Page 15: Fracture mechanics
Page 16: Fracture mechanics
Page 17: Fracture mechanics
Page 18: Fracture mechanics
Page 19: Fracture mechanics
Page 20: Fracture mechanics
Page 21: Fracture mechanics
Page 22: Fracture mechanics
Page 23: Fracture mechanics
Page 24: Fracture mechanics
Page 25: Fracture mechanics
Page 26: Fracture mechanics
Page 27: Fracture mechanics
Page 28: Fracture mechanics
Page 29: Fracture mechanics
Page 30: Fracture mechanics
Page 31: Fracture mechanics
Page 32: Fracture mechanics
Page 33: Fracture mechanics
Page 34: Fracture mechanics
Page 35: Fracture mechanics
Page 36: Fracture mechanics
Page 37: Fracture mechanics
Page 38: Fracture mechanics
Page 39: Fracture mechanics
Page 40: Fracture mechanics
Page 41: Fracture mechanics
Page 42: Fracture mechanics
Page 43: Fracture mechanics
Page 44: Fracture mechanics
Page 45: Fracture mechanics
Page 46: Fracture mechanics
Page 47: Fracture mechanics
Page 48: Fracture mechanics
Page 49: Fracture mechanics
Page 50: Fracture mechanics
Page 51: Fracture mechanics
Page 52: Fracture mechanics
Page 53: Fracture mechanics
Page 54: Fracture mechanics
Page 55: Fracture mechanics
Page 56: Fracture mechanics
Page 57: Fracture mechanics
Page 58: Fracture mechanics
Page 59: Fracture mechanics
Page 60: Fracture mechanics
Page 61: Fracture mechanics
Page 62: Fracture mechanics
Page 63: Fracture mechanics
Page 64: Fracture mechanics
Page 65: Fracture mechanics
Page 66: Fracture mechanics
Page 67: Fracture mechanics
Page 68: Fracture mechanics
Page 69: Fracture mechanics
Page 70: Fracture mechanics
Page 71: Fracture mechanics
Page 72: Fracture mechanics
Page 73: Fracture mechanics
Page 74: Fracture mechanics
Page 75: Fracture mechanics
Page 76: Fracture mechanics
Page 77: Fracture mechanics
Page 78: Fracture mechanics
Page 79: Fracture mechanics
Page 80: Fracture mechanics
Page 81: Fracture mechanics
Page 82: Fracture mechanics