31
Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options Zhong Zhong National Synchrotron Light Source, Brookhaven National Laboratory Collaborators: Peter Siddons, NSLS, BNL Jerome Hastings, SSRL, SLAC

Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Embed Size (px)

DESCRIPTION

Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options. Zhong Zhong National Synchrotron Light Source, Brookhaven National Laboratory Collaborators: Peter Siddons, NSLS, BNL Jerome Hastings, SSRL, SLAC. Agenda. The problem we assume - PowerPoint PPT Presentation

Citation preview

Page 1: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Zhong Zhong National Synchrotron Light Source, Brookhaven National

Laboratory

Collaborators: Peter Siddons, NSLS, BNL

Jerome Hastings, SSRL, SLAC

Page 2: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Agenda• The problem we assume• X-ray diffraction by bent crystals

– Meridional– Sagittal

• Sagittally bent Laue crystal– Focusing mechanism, focal length– Condition for no focusing

• Three Laue approaches– Meridionally bent, whole beam – Meridionally bent, pencil beam– Sagittally bent, whole beam

• Some experimental verification • Conclusions

Page 3: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

The problem we “assume”• Would like to measure, in one single pulse, the

spectrum of spontaneous x-ray radiation of LCLS

• Energy bandwidth: 24 eV at 8 keV, or 3X10-3 E/E

• Resolution of dE/E of 10-5, dE= 100 meV

• 5 micro-radians divergence, or 1/2 mm @ 100 m

• Source size: 82 microns

• N (1010 assumed) ph/pulse

Page 4: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

The general idea

• Use bent Laue crystals to disperse x-rays of different E to different angle.

• Go far away enough to allow spatial separation.

• Use a linear or 2-D intensity detector to record the spectrum.

• Un-diffracted x-rays travel through and can be used for “real” experiments.

y

E1

E2

R

O

d2

T

Page 5: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Laue vs. Bragg, perfect vs. bent

Bragg

Laue

Symmetric Asymmetric

B B

BB

Angular acceptance Energy bandwidth (micro-radians) (E/E)Perfect Crystal a few-10’s 10-4- 10-5

Meri. Bent Laue xtal 100’s-1000’s 10-3 - 10-2

Sag. Bent Laue xtal 100’s 10-3

Order-of-Magnitude

Page 6: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Diffraction of 8-keV X-rays by Si CrystalReflection

Bragg

Angle (deg)

Darwin

Width (micro-radians)

Extinction length (microns)

dE/E

111 14.3 34 3.0 1310-5

220 23.8 25 2.6 5.7 10-5

311 28.3 14 4.1 2.710-5

400 34.8 17 3.2 2.410-5

511 47.9 9.1 5.4 0.8310-5

440 53.8 13 4.1 0.9110-5

533 69.4 10.7 6.7 0.4010-5

• 511 or 440 can be used to provide 10-5 energy resolution

• Absorption length ~ 68 microns

Page 7: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

• What bending does? – A controlled change in angle of lattice planes and d-spacing of

lamellae through the crystal• Lattice-angle change- determines dispersion• D-spacing change – Does not affect the energy resolution,

as it is coupled to lattice-angle change …diffraction by lamellae of different d-spacing ends up at different spot on the detector.

• Both combine to increase rocking-curve width - energy bandwidth

• Each lamella behave like perfect crystal –resolution• Reflectivity: a few to tens of percent depends on diffraction

dynamics and absorption– Small bending radius: kinematic – low reflectivity– Large bending radius: dynamic – high reflectivity

• A lamellar model for sagittally bent Laue crystals, taking into account elastic anisotropy of silicon crystal has recently been developed. (Z. Zhong, et. al., Acta. Cryst. A 59 (2003) 1-6)D

Diffraction of X-rays by Bent Laue Crystal

Page 8: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Sagittally-bent Laue crystal

• : asymmetry angle • Rs: sagittal bending radius • B: Bragg angle• Small footprint for high-E x-rays• Rectangular rocking curve• Wide Choice of , and crystal thickness, to control the energy-resolution•Anticlastic-bending can be used to enable inverse-Cauchois geometry

Side View

Top view

Page 9: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Anisotropic elastic bending of silicon crystal

}2{

}2{

}{

3343532

4323632

332

43232

132

xzSxySSxEu

xzSxySSxEu

SzzySSySxEu

z

y

x

'23

33

23

232

2

332

2

ratioPoisson

2

curvature bending cAnticlasti

2

curvature bending Sagittal

SS

S

ESy

u

ESz

u

s

m

ym

xs

Displacement due to bending

Page 10: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

For Sagittally-bent crystals

Lattice-angle change

]cos)tan(cossin)[(

/)cossin(

2'63

'23

'13

'23

//////

ssssR

T

luu

Bs

yxangle

)]coscossinsin([tan

/)cossin(tan

2'23

'63

2'13

sssR

T

luul

l

Bs

yxBspaced

d-spacing change

Rocking-curve width

)]coscossinsin(tan

cos)tan(cossin)([

2'23

'63

2'13

2'63

'23

'13

'230

sss

ssssR

T

B

Bs

Page 11: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

For Meridionally-bent Crystals

Lattice-angle change ])tan(cossin)1[( '

53'13 ss

R

TB

sangle

)]coscossinsin([tan 2'53

2'13 ss

R

TB

sspaced

d-spacing change

Rocking-curve width

]sintancossin)tan1(

costan)tan([

2'13

'53

'13

'53

20

sss

sR

T

BB

BBs

Page 12: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Three Laue Options

0.5 mm

E1

E2

Meridionally bent, “whole” beam

Meridionally bent, pencil beam

Sagittally bent, whole beam

E1

E2

0.5 mm

E1

E2

Page 13: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Meridionally bent, “whole” beam• How it works

– Using very thin (a few microns) perfect Silicon crystal wafer.

– Use symmetric Laue diffraction, with S53

’=0, to achieve perfect crystal resolution

• Bandwidth:

– Easily adjustable by bending radius R, R~ 100 mm to achieve E/E~3x10-3.

• Resolution

dE/E~10-5 for thin crystals, T~ extinction length, or a few microns

BB R

yEE

sintan/

22

22

)tan/()/(

tan/

BD

B

D

RT

dEdE

y

E1

E2

R

O

d2

T

Page 14: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Meridionally bent, “whole” beam• Advantages

– Wide range of bandwidth, 10 –4 - 10-2 achievable.

– High reflectivity ~ 1.– Very thin crystal (on the

order of extinction length, a few microns) is used, resulting in small loss in transmitted beam intensity.

y

E1

E2

R

O

d2

T

•Disadvantages–Different beam locations contribute to different energies in the spectrum

Page 15: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Meridionally bent, “whole” beam• Our choice

– Assuming y=0.5 mm– Si (001) wafer– 440 symmetric Laue

reflection– T=5 microns– R=200 mm

y

E1

E2

R

O

d2

T

• Yields (theoretically) – 310-3 bandwidth– 2.6 10-5 dE/E, dominated by xtal thickness

contribution– Dispersion at 10 m is 80 mm– 107 ph/pulse on detector, or 104 ph/pulse/pixel

Page 16: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Meridionally bent, Pencil BeamE1

E2

• How it works– Bending of asymmetric crystal

causes a progressive tilting of asymmetric lattice planes through beam path.

• Bandwidth: – Adjustable by bending radius

R, thickness, and asymmetry angle , possible to achieve E/E~3x10-3 with large .

• Resolution• dE/E is dominated by

beam size y, dE/E ~ y/(RtanB)

• Y must be microns to allow 10-5 resolution

])tan(cossin)1[( '53

'13 ss

R

TB

sangle

y

Page 17: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Meridionally bent, Pencil BeamE1

E2

• Advantages– Can perform spectroscopy

using a small part of the beam

• Disadvantages: – Less intensity due to cut in

beam size, and typically 10% reflectivity due to absorption by thick xtal.

• Our pick (out of many winners)

– Si (001) wafer

– 333 reflection, =35.3

– T=50 microns

– R=125 mm

• Yields– 310-3 bandwidth– 0.8 10-5 dE/E, – Dispersion at 10 m is 71 mm– 10% reflectivity– 106 ph/pulse on detector, or

103 ph/pulse/pixel

Page 18: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Sagittally bent, whole beam

0.5 mm

E1

E2

• How it works– Sagittal bending causes a

tilting of lattice planes– The crystal is constrained

in the diffraction plane, resulting in symmetry across the beam.

– Symmetric reflection used to avoid Sagittal focusing, which extends the beam out-of-plane.

• Bandwidth: – Adjustable by bending

radius R, thickness, and crystal orientation.

– E/E~1x10-3.

• Resolution• dE/E probably will be

dominated by the variation in lattice angle across the beam, must be less than Darwin width over a distance of .5 mm.

Page 19: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Sagittally bent, whole beam

0.5 mm

E1

E2

• Advantages– Uses most of the photons

• Disadvantages: – Limited bandwidth due to the

crystal breaking limit.

• Our choice – Si (111) wafer– 4-2-2 symmetric

Laue reflection– T=20 microns– R=10 mm

• Yields– 0.610-3 bandwidth– 1 10-5 dE/E– Dispersion at 10 m is 21

mm– 70% reflectivity– 109 ph/pulse on detector

Page 20: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Testing with White Beam

• Four-bar bender • Collimated fan of white incident beam • Observe quickly sagittal focusing and dispersion • Evaluate bending methods: Distortion of the diffracted beam variation in the angle of lattice planes

Page 21: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Observation of previous data

1 cmh=15 mm

h=0

h=–12

h=–12

h=15 mm

On the wall at 2.8 meters from crystal

Behind the crystal

• 0.67 mm thick, 001 crystal (surface perpendicular to [001]), Rs=760 mm•111 reflection, 18 keV• Focusing effects: Fs=5.7 m agrees with theory of 6 m• “Uniform” region, a few mm high, across middle of crystal• Dispersion is obvious at 2.8 meters from crystal.

Page 22: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Experimental test: sagittally bent, whole beam

• 4-2-2 reflection, (111) crystal, 0.35 mm thick, bent to 500 mm radius, 9 keV• Exposures with different film-to-crystal distance.• No sagittal focusing due to zero asymmetry.• The height at 0.75 m is larger than just behind the crystal, demonstrating dispersion. • Distortion is noticeable at 1 m, could be a real problem at 10 meters.

4-2-2

0.11 m 0.37 m 0.75 m

0.11 m

Page 23: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Measuring the Rocking-curves

•NSLS’s X15A. 111 or 333 perfect-crystal Si monochromator provides 0.1(v) X 100 mm (h) beam, 12-55 keV• (001) crystal, 0.67 mm thick, 100 mm X 40 mm, bent to Rs=760 mm, active width=50 mm• Rm=18.8 m (from rocking-curve position at different heights)• Rocking curves measured with 1 mm wide slit at different locations on crystal (h and x)

Page 24: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Rocking-curve Measurement

• 111 reflection on the (001) crystal, =35.3 degrees• FWHM~ 0.0057 degrees (100 micro-radians)• Reflectivities, after correction by absorption, are close to unity (80-90%) dynamical limit• Model yields good agreement.

-200 -100 0 100 200Rocking Angle (microradians)

0.0

0.2

0.4

0.6

0.8

Re

flect

ivity

20 keV

25 keV

30 keV

40 keV

Page 25: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Depth-resolved Rocking-curve Measurement

)]coscossinsin(tan

cos)tan(cossin)([

2'23

'63

2'13

2'63

'23

'13

'230

sss

ssssR

T

B

Bs

Rocking-curve width

Page 26: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Two crystals, many reflections tested

18 keV incident beam, 20 micron slit size0.67 mm thick crystal, bent to Rs=760 mm

Rocking-curve width

)]coscossinsin(tan

cos)tan(cossin)([

2'23

'63

2'13

2'63

'23

'13

'230

sss

ssssR

T

B

Bs

Page 27: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Comparison: 001 crystal and 111 crystal

100 xtal, 111 reflection =35 degS31

'=-0.36, S32'=-0.06, S36

'=0Upper-case:0=92-16=76 radLower-case: 0=-73-16=-89 rad

111 xtal, 131 reflection =32 degS31

'=-0.16, S32'=-0.26, S36

'=0Upper-case:0=-73-35=-108 radLower-case: 0=177-35= 141 rad

Upper-case

Lower-case

Page 28: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Future Directions

• Other crystals?– Diamond? for less absorption– Harder-to-break xtals? To increase energy

bandwidth of sagittally-bent Laue

• Experimental testing– 10 m crystal-to-detector distance is hard to come by– 3-5 m may allow us to convince you

Page 29: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Summary• 3 possible solutions for the “assumed” problem.

• Option 3, sagittally-bent Laue crystal, is our brain child.

• Option 1 has better chance.

• They all require – distance of ~ 10 m

– 2theta of ~ 90 degrees -> horizontal diffraction and square building

– linear or 2-D integrating detector

• With infrastructure in place, it is easy to pursue all options to see which, if any, works.

• Typical of bent Laue, unlimited knobs to turn for the true experimentalists … asymmetry angle, thickness, bending radius, reflection, crystal orientation …

• We have more questions than answers …

Page 30: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Focal Length

Real Space

Reciprocal Space

• Diffraction vector, H, precesses around the bending axis change in direction of the diffracted beam

sinsin2

sin

)2/sin(sin2

B

ss

s

RF

Rx

HH

• Fs is positive (focusing) if H is on the concave side• No focusing for symmetric Laue: At =0 Fs is infinity - H points along the bending axis

Page 31: Flash Spectroscopy using Meridionally- or Sagittally-bent Laue Crystals: Three Options

Inverse-Cauchois in the meridional plane

• At =0, E/E is the smallest inverse-Cauchois geometry• E/E determined by diffraction angular-width 0~ a few 100’s micro-radians• Source and virtual image are on the Rowland circle. • No energy variation across the beam height

])cos(

1[

tan

)/(/

1

21

20

2

Bmv

B

s

R

F

FEE

Meridional plane

)cos()cos(1 Bs

Bm C

RRF

Condition for Inverse-Cauchois