19
FINAL REPORT 24 May 2017 For the project entitled: A landscape-level assessment of conservation values and potential threats in the Bears Ears National Monument Submitted to: The Center for American Progress By: Brett G. Dickson, PhD – Chief Scientist Meredith McClure, PhD – Lead Scientist Christine M. Albano, MSc – Lead Scientist

FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

FINALREPORT24May2017Fortheprojectentitled:Alandscape-levelassessmentofconservationvaluesandpotentialthreatsintheBearsEarsNationalMonumentSubmittedto:TheCenterforAmericanProgressBy:BrettG.Dickson,PhD–ChiefScientistMeredithMcClure,PhD–LeadScientistChristineM.Albano,MSc–LeadScientist

Page 2: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 2|P a g e

Figure1.BearsEarsNationalMonument(BENM)andsurroundingprotectedareas.

IntroductionFundamentalprinciplesofsystematicconservationplanning(e.g.,MargulesandPressey2000)suggestthatanecologicallyfunctionalprotectedareasnetworkrequiresasufficientlandbase,shouldprotectavarietyofhabitats,and—perhapsmostcritically—needstoberesilienttoongoingclimatechange(Dawsonetal.2011),andinterconnected(DeFriesetal.2007,Cummingetal.2015).Yet,intheUnitedStates,asisthecaseinotherplacesintheworld,protectedareashaverarelybeenselectedtomeetthesecriteria(Scottetal.1993,Jenkinsetal.2015).ExistingprotectedareasintheU.S.arelikelyinsufficienttoguardagainstthelong-termlossofspeciesandthehabitatstheyrequire(Scottetal.2001).Thus,thereisasignificantneedtosecureandconnectprotectedareastopreventfurtherlossofbiodiversityandpreserveecologicalfunctionsinthefaceofclimatechange.InthewesternU.S.,vastareasofunprotectedandundevelopedpubliclandcurrentlyservetoenhancetheecologicaleffectivenessoftheU.S.protectedareasnetwork(Dicksonetal.2016).However,theexpansionofenergydevelopment,mining,timberharvesting,andotherextractivelandusesthreatentofragmenttheseareas,reducingtheirecologicalfunction(HansenandDefries2007).Theseactivitiescanalsoreducetheeffectivenessofexistingprotectedareas(e.g.,Bergeretal.2014).Thus,carefulselectionofareasforconservationandprotectionthatarebasedonthearea’secologicalsignificanceandcontextisanimportantstepforbothmaintainingandenhancingtheexistingprotectedareasnetwork(Dicksonetal.2014,Watsonetal.2016).Moreover,thereisacriticalneedtoaddresstheimpactsandconservationimplicationsofongoingclimatechangeonvulnerablepubliclands(Steinetal.2014).Federalagenciesareattemptingtoaddressthisneedthroughrecentenvironmentalinitiatives,suchasthestrategyforimprovingthemitigationpoliciesandpracticesoftheDepartmentoftheInterior(Clementetal.2014)andtheNationalFish,Wildlife,andPlantsClimateAdaptationStrategy(NationalFish,Wildlife,andPlantsClimateAdaptationPartnership2012).Federallandmanagersareparticularlywellpositionedtoworkacrossjurisdictionalboundariesandcoordinatetheirclimateadaptationplanningstrategiesandactivitiesamongagenciesandstakeholders(OlliffandHansen2016).Concomitantly,nongovernmentalorganizationsandotherpartnersmustcontinueworkingwithagenciestodevelopcollaborativeapproachesforaddressingclimatechangeandadaptingtheirownconservationandstewardshipstrategies.Inthiscontext,the1.35-millionacreBearsEarsNationalMonument(BENM;Fig.1)insoutheasternUtahpresentsasignificantopportunitytoconservekeyelementsofecologicalfunctionwithinthisregionandacrossthewesternU.S.ArecentstudybyDicksonetal.(2014)wasdesignedtoprovideasoundscientificbasisforconservation-basedspecialdesignationsinthewesternU.S.,withanemphasisonunprotected,roadlessBureauofLandManagementlands.ResultsfromthisstudysuggestedthatareasintheregionthatincludesBENMwereamongthemostimportantintheWest,intermsoftheirconservationvalue.Here,weleverageinputdataandresults

Page 3: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 3|P a g e

producedbythisstudy,aswellasothersourcesofreadilyavailablespatialdata,toconductanassessmentofecologicalfeaturesandvaluesacrossBENM.Wefocusedourassessmentoninformationthathighlightedtheecologicalimportance,climateresilience,andecologicalrepresentativenessofBENMinaWest-widecomparativeanalysis.

MethodsAssessingtheconservationvaluesandpotentialthreatsoftheBearsEarsNationalMonumentForourassessment,wemappedandsummarizedtwelvelandscape-levelindicatorsofecologicalconnectivityandintactness,biodiversity,resiliencetoclimatechange,remotenessandthreats(detailedinTable1andAppendixA).Specifically,weusedreadilyavailablespatialdatalayersandpublishedmethodstomodeltwoindicatorsoflandscapeconnectivityandintactness:ecologicalconnectivity(Dickson2016)andecologicalintactness(afterTheobald2013);sixindicatorsofbiodiversity:ecosystemtyperarity(USGS2011),lithologicaldiversity(SollerandReheis,2004),rarity-weightedspeciesrichness(Chaplinetal.2000;updatedin2013),vegetationdiversity(Scottetal.1993),mammaldiversityandreptilediversity(Jenkins2013);oneindicatorofremoteness:nightskydarkness(NOAA2012);oneindicatorofresiliencetoclimatechange:climateresilience(Hamannetal.2015);andtwoindicatorsofthreatsandvulnerabilitiestoadversechange:mineralresourcepotential(USGS2005)andoilandgasresourcepotential(Copelandetal.2009,USDOIetal.2008).Dataforeachindicatorwasgeneratedata270-mpixelresolution.AlthoughwefocusedourassessmentonBENM,ourindicatormapsextendedacrossall11westernstates,permittingcomparisonsbetweenBENMandequivalentlysizedareaswithinthesestates,regardlessofjurisdiction.Wedeterminedthevaluesofeachoftheindicatorsrelativetothelargerlandscapeusingasimplescoringsystembasedonpercentileranks.Specifically,themeanvalueofeachindicatorwithinBENMwascomparedtothedistributionofmeansofalarge(n=1000)randomsampleofareasacrossthe11westernstates,includingalljurisdictions.ThesizeoftherandomsampleswasequivalenttothesizeoffederallandswithintheBENM.Scoresrangedfrom0to100.Forexample,ascoreof98foragivenindicatorwouldindicatethatthemeanvalueofthatindicatorinBENMwasgreaterthanorequalto98%oftheequivalently-sizedrandomsamples.Scoresof50orhighersuggestarelativelyimportantindicator.Werepeatedthisanalysisusing10ofthe12indicators(oilandgasandmineralresourcepotentialswereomittedduetolackofdatawithinnationalparkboundaries)foreachofsevenwell-knownnationalparks,includingArches,Canyonlands,Glacier,GrandCanyon,RockyMountain,Yellowstone,andYosemite.Ineachcase,agivenparkwascomparedtoalarge(n=1000)randomsampleofareasequivalentinsizetotheparkusingthescoringsystemdescribedabove.

ResultsandDiscussionOuranalysisindicatesthatBENMcontainsmultipleimportantconservationfeaturesandfurtherhighlightstheneedforspecialmanagementofthesevaluesandresources.

TheBENMhasexceptionallyhighpotentialtofacilitateecologicalconnectivityandmaintainecologicalintactness.

Page 4: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 4|P a g e

Table1.TwelveindicatorsusedtoassessecologicalandconservationvalueswithinBENM.SeeAppendixAfordetailsonthesourcedataand/orderivationofthesedatasets.

Indicator DataSource DescriptionEcologicalConnectivity

Dicksonetal.(2016) Modelofecologicalflowamongexistingprotectedareaswithinthe11westernstatesinordertoquantifytheabilityofcurrentlyunprotectedareastoenhancepotentialconnectivityacrosstheexistingprotectedareasnetwork.

EcologicalIntactness Theobaldetal.(2016),Theobald(2013)

CharacterizestheintensityandfootprintofhumanmodificationacrosstheWest,basedon12typesofhumanactivities.

EcosystemTypeRarity

EcologicalSystemType,USGS(2011)

ArealextentofUSGSGAPecologicalsystemtypes.

Rarity-weightedSpeciesRichness

NatureServe(2013) Speciesrarityandirreplaceabilitythatidentifiessitesthatcontaincritically-imperiledorimperiledspecieswithrestricteddistributions.

LithologicalDiversity SollerandReheis(2004)

Publishedmapoflithologicalunits.Lithologicaldiversityisafundamentaldriverofbothecologicalandevolutionaryprocessesthatgeneratespeciesdiversity.

VegetationDiversity EcologicalSystemType,USGS(2011)

EstimateofecologicalsystemsdiversityatmultiplespatialscalesusingUSGSGapEcologicalSystems.

MammalDiversity BiodiversityMapping.org;Jenkins(2013)

DataofmammalspeciesrichnessbasedontherangemapsinthecontinentalU.S.

ReptileDiversity BiodiversityMapping.org;Jenkins(2013)

DataofreptilespeciesrichnessbasedontherangemapsinthecontinentalU.S.

NightSkyDarkness NOAA(2012) Artificialnighttimelightsobservedviasatellite.

ClimateResilience Hamannetal.(2015) Modelofmultivariateclimatevelocitytoquantifythevelocity(speedanddirection)aspeciesmustmigratetopersistinanareawiththesameclimaticconditions,givenprojectedchangesinclimate.

MineralResourcePotential

USGS(2005) MineralandmineoccurrencedatafromtheUSGSMineralsResourceDataSystem.

Oil&GasResourcePotential

Copelandetal.(2009);USDOIetal.(2008)

Combinationoftwoexistingdatasetstodevelopawest-widerepresentationofrelativeoilandgasresourcepotential.

Themaintenanceofconnectivityprocessesisoneofthemostimportantaspectsofbiodiversityandlandscape-levelconservation(Tayloretal.1993,Noonetal.2009).Consideringallotherwesternlandsandjurisdictions,weobservedexceptionallyhighvaluesforecologicalintactnessandconnectivitywithinBENM,scoringinthe92ndand90thpercentiles,respectively(Fig.2,Maps1and2).TheBENMservestofacilitatetheflowofmultipleecologicalprocesses,suchasdispersal,migration,andgeneflow(Dicksonetal.2016).RelativelyunmodifiedlandscapesinthisregionmaybekeytothemovementoffundamentalecologicalprocessesbetweenotherprotectedareasandBENM(Dicksonetal.2016).BENMhelpstobuildatruenetworkofprotectedareasthatenhancelandscapeconnectivity(Krosbyetal.2010)andintegrity(Theobald2013),aswellastheassociatedcapacityforadaptationtofutureclimatechange(HellerandZavaleta2009;Dawsonetal.2011).

Page 5: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 5|P a g e

Figure2.ScoresreceivedbyBENM(bars)andsevennationalparks(dots)foreachofthe12ecologicalindicatorsbycomparingthemtoarandomsetofequivalently-sizedareaslocatedacrossthe11westernstates.Potentialscoresrangefrom0-100(100beinghighest).Ascoreof93foragivenindicatorindicatesthatthemeanvalueofthatindicatorinBENMoragivenparkwasgreaterthanorequaltothemeanvaluein93%ofequivalently-sizedrandomsamples.AtabularsummaryofthesescoresislocatedinAppendixB.

TheBENMhassomeofthelowestlevelsoflightpollutioninthewesternUS,scoringinthe95thpercentilefornightskydarkness.Asaresult,BENMisoneofthedarkestnightskiesofanyequivalentlysizedareasinthewesternU.S.(Fig.2,Map1),suggestingitisoneofthemostremotelandscapesinthewesternU.S.InNorthAmerica,lightemissionshavehistoricallyincreasedatanestimatedrateof6%annually,resultinginarapidincreaseinlightpollution(CinzanoandElvidge2003).Consideringourresults,BENMmaybeoneofthebestlandscapesintheU.S.topreserveremoteenvironmentalassetsofbothhumanandecologicalsignificance(Wattsetal.2007).

TheBENMhasexemplaryscenicvaluesintermsofnightskydarknessandisoneofthemostremotelandscapesinthewesternU.S.,rivalingmostlargenationalparks.

TheecologicaluniquenessanddiversityofBENMcontributestoitshighvalueforbiodiversityconservation.

Page 6: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 6|P a g e

OurresultsindicatetheWest-wideimportanceofBENMtosustaininganimperiledbutwidediversityofspeciescomparabletomostofthenationalparksweanalyzed,givenitshighvalueswithrespecttomammalandreptilediversity,rarity-weightedspeciesrichness,andvegetationcommunitydiversity.Theareascoredinthe77thand69thpercentileformammalandreptilediversity,respectively(Fig.2,Maps2and3).Atthesametime,BENMscoredinthe69thpercentileforrarity-weightedspeciesrichness,arelativemeasureoftheconcentrationofrareandirreplaceablespeciesfortheconterminousU.S.(Chaplinetal.2000)(Fig.2,Map4).UptothirteenfederallylistedspeciespotentiallyoccurwithinBENM,anditsboundariesincludedesignatedorproposedcriticalhabitatforfivelistedspecies,includingtheMexicanspottedowl(Strixoccidentalislucida)andSouthwesternWillowFlycatcher(Empidonaxtrailiiextimus)(USFWS2017).Inaddition,BENMscoredinthe63rdpercentileforvegetationcommunitydiversity,whichincludesamixofsignificantColoradoPlateau,RockyMountainandIntermountainBasinvegetationtypes,andthe62ndpercentileforecosystemtyperarity(Fig.1,Maps3and4).Ourresultspointtothehighlydistinctivenatureandirreplaceablevalueofthisareawithrespecttorareandendemicspecies,aswellasthediversehabitatstheydependon.

TheBENMisvulnerabletomineralresource,andoilandgasresourcedevelopmentgivenhighdevelopmentpotential,scoringinthe68thand52ndpercentile,respectively(Fig.2,Map6).Depositsofuranium,andtoalesserextent,vanadiumandcopper,occurwithintheBENM(USGS2005).HistoricalminingoftheseresourcesinthelandssurroundingtheBENMhaveresultedinlong-lastinglegaciesofsoils,water,andaircontamination,withseriousimpactstohumanhealth(USEPA2008).Thepotentialimpactsofenergydevelopmentssuchaswind,solar,andoilandgasonwildlifespeciesarewelldocumented(NorthrupandWittemyer2013).Inlightofthesepotentialimpacts,specialmanagementattentionwillbeneededtoavoidnegativeeffectsonsensitivewildlifespeciesandhabitats,whichmayincludehabitatlossorfragmentation,directmortalityfromvehicleorinfrastructurecollisions,changesinthefitnessofindividualsduetoanthropogenicdisturbancessuchasnoiseorlight,orincreasesinpredationmortality(NorthrupandWittemyer2013).ConclusionsOurlandscape-levelassessmentofBENMinaWest-widecontexthighlightedtheintrinsicvalueoftheareawithrespecttomultipleindicatorsofconservationvalue,namelyecologicalconnectivityandintactness,remotenessandbiodiversity.Ouranalysisfurtherindicatesthatthesevaluesrivalthosefoundinmanyofthemostwell-knownandlargernationalparksinthewesternU.S.ConsideringalsotheresultsofDicksonetal.(2014,2016),BENMsubstantiallyenhancestheexistingnetworkofprotectedareasinthefaceofclimatechange,whilesupportingfundamentalecologicalprocesses,suchashabitatconnectivity.Thevalueofthisareainsustainingtheecologicalfunctionandlarge,contiguouslandscapesthatalsosupporthighlevelsofbiodiversityshouldnotbeunderestimated.

TheBENMisvulnerabletoadversechangeassociatedwithdevelopmentofmineral,oilandgasresources.

Page 7: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 7|P a g e

Map1.Landscape-level,ecologicalindicatorsofnightskydarkness(top)andecologicalintactness(bottom).

Page 8: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 8|P a g e

Map2.Landscape-level,ecologicalindicatorsofecologicalconnectivity(top)andmammaldiversity(bottom).

Page 9: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 9|P a g e

Map3.Landscape-level,ecologicalindicatorsofreptilediversity(top)andecosystemtyperarity(bottom).

Page 10: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 10|P a g e

Map4.Landscape-level,ecologicalindicatorsofvegetationdiversity(top)andrarity-weightedspeciesrichness(bottom).

Page 11: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 11|P a g e

Map5.Landscape-level,ecologicalindicatorsoflithologicaldiversity(top)andclimateresilience(bottom).

Page 12: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 12|P a g e

Map6.Landscape-level,ecologicalthreatindicatorsofmineralresourcepotential(top)andoilandgasresourcepotential(bottom).

Page 13: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 13|P a g e

LiteratureCitedBerger,J.,S.L.Cain,E.Cheng,P.Dratch,K.Ellison,J.Francis,H.C.Frost,S.Gende,C.Groves,W.A.

Karesh,andE.Leslie.2014.Optimismandchallengeforscience-basedconservationofmigratoryspeciesinandoutofUSNationalParks.ConservBiol28:4-12.

Chaplin,S.J.,R.A.Gerrard,H.M.,Watson,L.L.,Master,andS.R.,Flack.2000.Thegeographyofimperilment:targetingconservationtowardcriticalbiodiversityareas.In:Stein,B.A.,L.S.Kutner,J.S.,Adams(Eds.).PreciousHeritage:theStatusofBiodiversityintheUnitedStates:theStatusofBiodiversityintheUnitedStates.OxfordUniversityPress,USA,pp.159–199.

Cinzano,P.andC.D.Elvidge.2003.Nightskybrightnessatsitesfromsatellitedata.MemSocAstronIt74:456-457.

Clement,J.P.,A.Belin,M.J.Bean,T.A.Boling,andJ.R.Lyons.2014.AstrategyforimprovingthemitigationpoliciesandpracticesofTheDepartmentoftheInterior.WashingtonD.C.

Copeland,H.E.,K.E.Doherty.D.E.Naugle,A.Pocewicz,andJ.M.Kiesecker.2009.MappingOilandGasDevelopmentPotentialintheUSIntermountainWestandEstimatingImpactstoSpecies.PLoSONE4:e7400.

Cumming,S.G.,C.R.Drever,M.Houle,J.Cosco,J.Racine.P.,E.BayneandF.K.Schmiegelow.2015.AgapanalysisoftreespeciesrepresentationintheprotectedareasoftheCanadianborealforest:applyinganewassemblageofdigitalForestResourceInventorydata.CanJForRes45:163–173.

Dawson,T.,S.TJackson,J.I.House,I.C.PrenticeandG.M.Mace.2011.Beyondpredictions :biodiversityconservationinachangingclimate.Science332:53–58.

DeFries,R.,A.Hansen,B.L.Turner,R.ReidandJ.Liu.2007.Landusechangearoundprotectedareas:managementtobalancehumanneedsandecologicalfunction.EcolAppl17:1031–1038.

Dickson,B.G.L.J.Zachmann,andC.M.Albano.2014.SystematicidentificationofpotentialconservationpriorityareasonroadlessBureauofLandManagementlandsinthewesternUnitedStates.BiolConserv178:117–127.

Dickson,B.G.,C.M.Albano,B.H.McRae,D.M.Theobald,J.J.Anderson,L.J.Zachmann,T.D.Sisk,andM.P.Dombeck.2016.InformingstrategiceffortstoexpandandconnectprotectedareasofthewesternUSusingamodelofecologicalflow.ConservLettDOI:10.1111/conl.12322.

Hamann,A.,D.R.Roberts,Q.E.Barber,C.Carroll,andS.E.Nielsen.2014.Velocityofclimatechangealgorithmsforguidingconservationandmanagement.GlobalChangeBiology21:997–1004.

Hansen,A.andR.DeFries.2007.Ecologicalmechanismslinkingprotectedareastosurroundinglands.EcolAppl17:974–988.

Heller,N.andE.Zavaleta.2009.Biodiversitymanagementinthefaceofclimatechange:areviewof22yearsofrecommendations.BiolConserv142:14–32.

InternationalUnionfortheConservationofNature(IUCN).2008.Guidelinesforapplyingprotectedareamanagementcategories.IUCN,Gland,SwitzerlandandCambridge.

Jenkins,C.N.,S.L.Pimm,andL.N.Joppa.2013.Globalpatternsofterrestrialvertebratediversityandconservation.ProcNatlAcadSci110:E2602-E2610.

Jenkins,C.N.,K.S.VanHoutan,S.L.Pimm,andJ.O.Sexton.2015.USprotectedlandsmismatchbiodiversitypriorities.ProcNatlAcadSci112:5081–5086.

Krosby,M.,J.Tewksbury,N.M.Haddad,andJ.Hoekstra.2010.Ecologicalconnectivityforachangingclimate:ecologicalconnectivity.ConservBiol24:1686–1689.

Krosby,M.,I.Breckheimer,D.J.Pierce,P.H.Singleton,S.A.Hall,K.C.Halupka,W.L.Gaines,R.A.Long,B.H.McRae,B.L.Cosentino,andJ.P.Schuett-Hames.2015.Focalspeciesandlandscape“naturalness”corridormodelsoffercomplementaryapproachesforconnectivityconservationplanning.LandscEcol30:2121–2132.

Page 14: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 14|P a g e

Margules,C.R.andR.L.Pressey.2000.Systematicconservationplanning.Nature405:243–253.McRae,B.H.,B.G.Dickson,T.Keitt,andV.Shah.2008.Usingcircuittheorytomodelconnectivityin

ecology,evolution,andconservation.Ecology89:2712–2724.NationalOceanicandAtmosphericAdministration(NOAA).2012.Version1NighttimeVIIRSDay/Night

BandComposite.NOAA/NGDCEarthObservationsGroup.NatureServe.2013.NatureServeCentralDatabase.NatureServe,Arlington,Virginia.Noon,B.R.,K.S.McKelvey,andB.G.Dickson.2009.MultispeciesconservationplanningonUSfederal

lands.In:MillspaughJ,ThompsonF(eds)Modelsforplanningwildlifeconservationinlargelandscapes.Elsevier,London,UK,pp51–83.

Northrup,J.M.,andG.Wittemyer.2013.Characterizingtheimpactsofemergingenergydevelopmentonwildlife,withaneyetowardsmitigation.EcolLett16:112–125.

Olliff,S.T.andA.J.Hansen.2016.Integratingclimatescienceintofederallandmanagement.In:HansenA,MonahanW,TheobaldD,OlliffS(eds)Climatechangeinwildlands:PioneeringApproachestoScienceandManagement.IslandPress,WashingtonD.C.,pp33–52.

Scott,J.M.,F.Davis,B.Csuti,R.Noss,B.Butterfield,C.Groves,H.Anderson,S.Caicco,F.D’Erchis,T.C.Edwards,andJ.Ulliman.1993.Gapanalysis:ageographicapproachtoprotectionofbiologicaldiversity.WildlMonogr123:3–41.

Scott,J.M.,F.WDavis,R.G.McGhie,C.Groves,andJ.Estes.2001.Naturereserves:DotheycapturethefullrangeofAmerica’sbiologicaldiversity?EcolAppl11:999–1007.

Soller,D.R.andM.C.Reheis.2004.SurficialMaterialsintheConterminousUnitedStates.U.S.GeologicalSurveyOpen-fileReport03-275,scale1:5,000,000.

Stein,B.A.,P.Glick,N.Edelson,andA.Staudt(eds).2014.Climate-smartconservation:puttingadaptationprinciplesintopractice.NationalWildlifeFederation,WashingtonD.C.

Taylor,P.D.,L.Fahrig,K.Henein,andG.Merriam.1993.Connectivityisavitalelementoflandscapestructure.Oikos68:571–573.

Theobald,D.M.2013.AgeneralmodeltoquantifyecologicalintegrityforlandscapeassessmentsandUSapplication.LandscapeEcology28:1859–1874.

Theobald,D.M.,D.Harrison-Atlas,W.B.Monahan,andC.M.Albano.2015.Ecologically-RelevantMapsofLandformsandPhysiographicDiversityforClimateAdaptationPlanning:PLoSONE10:e0143619.

Theobald,D.M.,L.J.Zachmann,B.G.Dickson,M.E.Gray,C.M.Albano,V.Landau,andD.Harrison-Atlas.2016.Descriptionoftheapproach,data,andanalyticalmethodsusedtoestimatenaturallandlossinthewesternU.S.UnpublishedReport,Availablefromhttps://disappearingwest.org/methodology.pdf(accessedJune20,2016).

USDOI,USDA,andUSDOE.2008.Inventoryofonshorefederaloilandnaturalgasresourcesandrestrictionstotheirdevelopment,phaseIIIinventory–onshoreUnitedStates.BLM/WO/GI-03/002+3100/REV08.

USEPA.2008.HealthandenvironmentalimpactsofuraniumcontaminationintheNavajoNation:five-yearplan.Report.USEnvironmentalProtectionAgency,WashingtonDC.Availablefromhttp://www.epa.gov/region9/superfund/navajo-nation/pdf/NN-5-Year-Plan-June-12.pdf.

USFWS.2017.Information,Planning,andConservationSystem(IPaC)ResourceListfortheBearsEarsNationalMonument.https://ecos.fws.gov/ipac/.Accessed11Mar2017.

USGS.2005.MineralsResourceDataSystem.Availablefromhttp://mrdata.usgs.gov/mrds/(accessedJune15,2015).

USGS.2011.NationalGapAnalysisProgramLandCoverData-Version2.Availablefromhttp://gapanalysis.usgs.gov/gaplandcover/(accessedMay31,2012).

USGS.2012.ProtectedAreasDatabaseoftheUnitedStates(PADUS)version1.3Availablefromhttp://gapanalysis.usgs.gov/PADUS/(accessedJune12,2015).

Page 15: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 15|P a g e

Watson,J.E.,E.S.Darling,O.Venter,M.Maron,J.Walston,H.P.Possingham,N.Dudley,M.Hockings,M.Barnes,andT.M.Brooks.2016.Bolderscienceneedednowforprotectedareas.ConservBiol30:243–248.

Watts,R.D.,R.W.Compton,J.HMcCammon,C.L.Rich,S.M.Wright,T.Owens,andD.S.Ouren.2007.RoadlessspaceoftheconterminousUnitedStates.Science316:736–738.

Page 16: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 16|P a g e

AppendixA.DerivationofIndicatorsDescriptionsofsourcedata(andoriginalpixelresolution)andderivationmethodsfortwelveindicatorsusedtoassessecologicalcharacteristicswithinBENM.Rarity-weightedSpeciesRichnessRarity-weightedspeciesrichnessprovidesarelativemeasureoftheconcentrationofrareandirreplaceablespeciesacrosstheUS(Chaplinetal.2000).Highrarity-weightedspeciesrichnessisoftenindicativeofthepresenceofnumerousendemicspeciesand/orsitesthatcontaincritically-imperiledorimperiledspecieswithrestricteddistributions(i.e.,G1-G2–rankedspecies).Thesesitesareessentialformaintainingspeciesdiversity,particularlyrare,sensitive,andirreplaceablespecies.WeusedNatureServe’srarity-weightedrichnessindex(refreshed2013)1-kmresolutiondatalayerasanindicatorofspeciesrarityandirreplaceability(seeChaplinetal.,2000forreferencesanddescriptionofmethods).Additionalinformationonthismetricisavailablehere.EcosystemTypeRarityAreaswithhighecologicalsystemrarityarethosethatsupportrare,unique,orirreplaceablenaturalsystems.Thesesystemsarelikelytoconsistofspeciesthatarerare,unique,orirreplaceable.Ecologicalsystemsaredefinedas“groupsofplantcommunitytypesthattendtoco-occurwithinlandscapeswithsimilarecologicalprocesses,substratesand/orenvironmentalgradients”(Comeretal.2003),thustheyincorporatephysicalcomponentssuchaslandformposition,substrates,hydrology,andclimateinadditiontovegetation.Tocharacterizeecologicalsystemtyperarity,wecalculatedthearealextentofUSGSGAPecologicalsystemtypesat30-mresolution(USGS2011),thennormalizedthevaluesbasedonthemaximumvaluesothattheyrangedfrom0(leastrare)to1(mostrare).EcologicalSystems(Vegetation)DiversityDiverseecologicalsystems,definedas“groupsofplantcommunitytypesthattendtoco-occurwithinlandscapeswithsimilarecologicalprocesses,substratesand/orenvironmentalgradients”(Comeretal.2003),provideavarietyofhabitatsessentialformaintainingspeciesdiversity(Noss1990).Ecologicalsystemdiversitymaystemfromthepresenceofdiversevegetationtypes,strongelevationgradients,ecotonaltransitionsamongbiometypes,and/orinterspersionofuniquewater-associatedcommunities,suchaswetlands,marshlands,meadows,andriparianzones.WefollowedmethodsinTheobaldetal.(2015)toderiveanestimateofecologicalsystemsdiversityatmultiplespatialscales,equivalenttoaveragesizes(1.2–115.8kmradii)ofHUC4-16watershedsandusingtheShannon-WeaverEquitabilityIndex.Weusedthe30-mresolutionUSGSGapEcologicalSystemsUnits(2011)asthebasisforcalculatingecosystemdiversityandassignednullvaluestoalldevelopedandinvasivespecieslandcovertypespriortorunningtheanalysis,sothattheselandswouldnotcontributetowardthediversitycalculation.NightSkyDarknessPlaceswithhighnightskydarknesshavelowlevelsoflightpollution,whichconfershighscenicvalue.Theabsenceofnightlightpollutionisalsolikelytoindicatelowlevelsofhumanactivityanddisturbanceintheseareas.Weusedanexistingdatasetrepresentingthepresenceofartificialnighttimelightsat740-mresolutionobservedviasatellite(NOAA2012).EcologicalIntactnessEcologicallyintactlandscapesarethosewithminimaltonoinfluencefromhumanactivitiesthataretherebyabletosupportnaturalevolutionaryandecologicalprocesses(Angermeier&Karr1994;Parrish

Page 17: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 17|P a g e

etal.2003).Theselandscapesareabletosupportandmaintaincommunitiesoforganismsthathavespeciescomposition,diversity,andfunctionalorganizationcomparabletothoseofnaturalhabitatswithinaregion(Parrishetal.2003).Degreeofhumanmodificationofalandscapethusrepresentstheinverseofecologicalintactness.Weusedanupdatedversion(Theobaldetal.2016)ofahumanmodificationmodelderivedat30-mresolution(Theobald2013),whichcharacterizestheintensityandfootprintofhumanmodificationacrosstheWest,basedon12parsimonioustypesofhumanactivities.LithologicalDiversityLithologicaldiversity,ordiversityofsoilparentmaterials,isafundamentaldriverofbothecologicalandevolutionaryprocessesthatgeneratespeciesdiversity(Lawleretal.2015).Areaswithhighlithologicaldiversityofferheterogeneousconditionstosupportdiversevegetationtypesthatthriveondifferentsubstrates.Lithologicaldiversityiscloselyrelatedtogeologicaldiversity(above),butthetwoindicatorsarederivedfromdifferentdatasets.Tocharacterizelithologicaldiversityweconvertedapublishedmapoflithologicalunits(1:5,000,000)(Soller&Reheis2004)toa270-mgridandcalculatedthenumberofunittypeswithina65,000-acremovingwindow.EcologicalConnectivityAreaswithhighecologicalconnectivityhavehighcapacitytofacilitatenaturalprocessessuchasdispersal,migration,andgeneflow(Dicksonetal.2016).Fundamentalprinciplesofsystematicconservationplanning(e.g.,Margules&Pressey2000)suggestthatanecologicallyfunctionalsystemofprotectedareas(PAs)needstobeinterconnected(DeFriesetal.2007;Cummingetal.2015),andmaintainingecologicalconnectivityisthemostfrequentlyrecommendedstrategyformaintainingbiodiversityinachangingclimate(Heller&Zavaleta2009).Wederivedamodeland270-mresolutionmapofecologicalflowamongexistingprotectedareaswithinthe11westernstatesinordertoquantifytheabilityofcurrentlyunprotectedareastoenhancepotentialconnectivityacrosstheexistingprotectedareasnetwork.Thisconnectivitymodelwasdesignedtoinformlanduseplanningandpolicyeffortsconcernedwiththemaintenanceofconnectivityprocesses(e.g.,migrationanddispersal,geneflow)formultipleterrestrialspeciessimultaneously.Specifically,weusedamodelofhumanmodification(Theobald2013)toestimatelandscaperesistance(seeKrosbyetal.2015)andconceptsfromelectroniccircuittheory(McRaeetal.2008)toestimatetheflow(asmeasuredbycurrentdensity)ofecologicalprocessesacrosstheregion.MammalandReptileSpeciesDiversityWeusedpublisheddataonmammalandreptilespeciesrichnesstoquantifyvertebratespeciesdiversity.ThesedataarebasedonoverlapamongspeciesrangemapsinthecontinentalU.S.representedat10-kmresolution,astabulatedbyJenkinsetal.(2013).ClimateResilienceAreaswithhighclimateresiliencearethosethatcontributetotheabilityofspeciestoadapttoclimatechangethroughbothlocalandlong-distancemovements.Climatevelocityrepresentsthespeedanddirectionaspeciesmustmigratetokeeppacewithshiftsinclimateconditionstowhichtheyaresuited,givenprojectedchangesinclimate(Loarieetal.2009).Lowvelocitiesindicatethattheclimateconditionscurrentlyoccupiedbyagivenspeciesareprojectedtooccurnearbyinthefuture,whereashighvelocitiesindicatethatthespecieswillhavetomigratelongerdistancesmorequicklytokeepupwithchangingclimate.Placeswithlowclimatevelocity,ifleftintact,mayfunctionasimportantstrongholdsofspeciesdiversityunderchangingclimate,andthushavehighclimateresilience.Weusedapublishedmodelofmultivariateclimatevelocity(Hamannetal.2015)derivedat1-kmresolutiontoquantifypotentialresiliencetoclimatechange.Theestimatewasbasedontheaveragesofmodel

Page 18: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 18|P a g e

projectionsfromanensembleof15CMIP5modelsandtheRepresentationConcentrationPathway(RCP)8.5scenario(IPCC:Pachaurietal.2014),andincluded11biologically-relevantclimatemetricsrelatedtochangesinbothtemperatureandprecipitationbetween1996and2055.PotentialforOil&GasDevelopmentThepotentialimpactsofoilandgasdevelopmentsonwildlifespeciesarewelldocumented(Northrup&Wittemyer2013).Inlightofthesepotentialimpacts,specialmanagementattentionwillbeneededtoavoidnegativeeffectsonsensitivewildlifespeciesandhabitats,whichmayincludehabitatlossorfragmentation,directmortalityfromvehicleorinfrastructurecollisions,changesinthefitnessofindividualsduetoanthropogenicdisturbancessuchasnoiseorlight,orincreasesinpredationmortality(Northrup&Wittemyer2013).Wecombinedtwoexistingdatasetstodevelopawest-widerepresentationofrelativeoilandgasresourcepotentialat1-kmresolutionbecausenocomprehensivedatasetexistedfortheentirestudyextent.Theseincluded1)apublishedpredictivemodelofrelativeoilandgasresourcepotentialthatwasconditionedonasuiteofgeophysicalvariablesandoilandgaswellproductiondata(Copelandetal.2009),and2)spatialdatafromtheEnergyPolicyandConservationAct(EPCA)PhaseI-IIIinventoriesofoilandgasresources(USDOIetal.2008),whichprovidescoarse-scaleestimatesoftotaloilandgasdensitieswithinspecificfocalbasinsandextrapolatesestimatestounstudiedbasins.Becausetheformerdatasetprovidedcontinuousandfiner-scaleddata,andbecausethismodelincludedavalidation,weusedthisdatasetpreferentially;however,itexcludedCaliforniaandWashington,aswellaspartsofNewMexico,Idaho,Montana,andOregon.Wesupplementedthesegaps,which,withtheexceptionofsomeareasinCaliforniaandNewMexico,hadlowoilandgasresourcepotential,usingtheEPCAdata.BecausetheEPCAdatacharacterizesoilandgaspotentialseparately,wegeneratedrastersurfacesforeachoftheseresourcesindividually,andaswiththesolardatasets,tookthemaximumvalueofthetwoateachpixeltorepresenttheresourcevalue(oilvsgas)thatwasgreatest,thenmax-normalizedtheresult.WevisuallycomparedtheCopelandetal.(2009)andcompositeEPCAdatasetsandverifiedthatareasofmaximumresourcepotentialwereconsistentbetweenthem.WethenreplacednullvaluesintheCopelandetal.(2009)datasetwiththecompositeEPCAdata(bothmax-normalizedonascaleof0to1)togenerateawall-to-wallestimatefortheentirestudyextent.Finally,weassignedavalueof0toopenwaters,developed(urban)landcovertypes(USGS2011),andthoseclassifiedasprotectedareas(IUCNI-IV,USGS2012),becausedevelopmentisunlikelytooccurintheseareas.MineralResourcePotentialExtractionofmineralresourceshasbothdirectandindirectimpactsonorganismsandtheirenvironments,includingphysicalalterationoflandform,drainage,andsoilconditions,aswellasalterationofchemicalconditionsthroughwasterunoff(Ratcliffe1974).WeusedmineralandmineoccurrencedatafromtheUSGSMineralsResourceDataSystem(USGS2005)tocharacterizemineralsresourcepotential.Wegeneratedabinaryrastersurfacebasedonthepresence/absenceofmineralsoccurrenceswithineach270mcellandsmoothedthedatabycalculatingafocalmeanbasedona2-cell(540m)circularradiusaroundeachoccurrence.Weassignedavalueof0toopenwaters,developed(urban)landcovertypes(USGS2011),andthoseclassifiedasprotectedareas(IUCNI-IV,USGS2012),becausedevelopmentisunlikelytooccurintheseareas.

Page 19: FINAL REPORT A landscape-level assessment of …...(Dawson et al. 2011), and interconnected (DeFries et al. 2007, Cumming et al. 2015). Yet, in the United States, as is the case in

ConservationSciencePartners 19|P a g e

AppendixB.IndicatorScoresforBearsEarsandOtherLargeNationalParksTableB1.ScoresreceivedbyBENMandsevennationalparksforeachof12ecologicalindicatorsbycomparingthemtoarandomsetofequivalently-sizedareaslocatedacrossthe11westernstates.Potentialscoresrangefrom0-100(100beinghighest).Ascoreof93foragivenindicatorindicatesthatthemeanvalueofthatindicatorinBENMoragivenparkwasgreaterthanorequaltothemeanvaluein93%ofequivalently-sizedrandomsamples.Notethatsufficientmineralandoilandgasresourcepotentialdatawerenotavailablefornationalparkssoscoresareomittedforthesevalues.Indicator BearsEars Arches Canyonlands Glacier GrandCanyon RockyMountain Yellowstone Yosemite

Size(millionacres) 1.35 0.08 0.33 1.01 1.20 0.27 2.20 0.75

EcologicalConnectivity 90.4 91.3 91.8 37.5 86.2 62.9 67.6 69.5

EcologicalIntactness 92.7 59.3 94.7 98.4 97.9 77.9 98.6 96.9

EcosystemTypeRarity 62.6 81.7 73.0 95.1 38.1 83.1 53.3 99.2

Rarity-weightedSpeciesRichness 69.6 90.5 63.0 52.3 81.8 65.1 31.7 88.1

LithologicalDiversity 45.2 69.2 58.4 93.0 50.5 24.7 86.8 14.0

VegetationDiversity 63.4 80.6 65.9 98.6 63.9 93.3 86.7 89.9

MammalDiversity 77.3 67.2 78.5 31.4 56.6 94.9 62.1 89.5

ReptileDiversity 69.9 68.7 68.3 3.3 78.6 1.5 3.7 36.8

NightSkyDarkness 95.3 33.0 81.6 85.0 73.2 46.0 93.2 90.2

ClimateResilience 44.7 61.3 54.7 46.0 92.2 70.0 59.6 99.4

MineralResourcePotential 68.0

Oil&GasResourcePotential 52.4