37
Field Validation and Parametric Study of a Thermal Crack Spacing Model David H. Timm - Auburn University Vaughan R. Voller - University of Minnesota Presented at the Annual Meeting of the Association of Asphalt Paving Technologists Lexington, Kentucky March 10 – 12, 2003

Field Validation and Parametric Study of a Thermal Crack Spacing Model

  • Upload
    sharis

  • View
    32

  • Download
    0

Embed Size (px)

DESCRIPTION

Field Validation and Parametric Study of a Thermal Crack Spacing Model. David H. Timm - Auburn University Vaughan R. Voller - University of Minnesota. Presented at the Annual Meeting of the Association of Asphalt Paving Technologists Lexington, Kentucky March 10 – 12, 2003. - PowerPoint PPT Presentation

Citation preview

Page 1: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Field Validation and Parametric Study of a Thermal Crack Spacing

Model

David H. Timm - Auburn UniversityVaughan R. Voller - University of Minnesota

Presented at the Annual Meeting of the Association of Asphalt Paving Technologists

Lexington, KentuckyMarch 10 – 12, 2003

Page 2: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Cracking Characteristics• Thermal cracking common in cold

climates• Features

– Transverse cracks– Regular spacing

0

0.25

0.5

0.75

1

0 50 100 150 200 250 300 350 400 450 500

Location, ft

Dis

tanc

e A

cros

s La

nes

Page 3: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Crack Spacing

Focus of thisStudy is the question

What features control the spaces betweenCracks?

Page 4: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Model Stress Profile in Thermally Cooled Asphalt Layer on Granular

Base

E, , , H,

E, , , c,

Modeled in Two ways

Page 5: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Finite Difference Code--FLAC

x

50x250 mm

Grid Element Sizes

63x315 mm

313x1563 mm

Asphalt Concrete (Elastic Model)

z

Granular Base (Mohr Coulomb Model)

Page 6: Field Validation and Parametric Study of a Thermal Crack Spacing Model

1-D Semi-Analytical ModelElastic Layer with Elastic-Plastic

Restraint

catan q=kux

Timm, Guzina and VollerInt J Solids and Structures, 2002

xt

2/xxwHku

xxtanHc

dxd

tx

tx

Page 7: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Form of Stress Profile

Curling Stress

Rate of StreesIncrease T

1E

Distance fromfree end

Page 8: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Comparison of Models

Page 9: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Crack Spacing from Stress Curve

St

xc

1

xCracking

may occurCrackingwill notoccur

SlidingOn Rigid Base

xtanHc

Hx

Page 10: Field Validation and Parametric Study of a Thermal Crack Spacing Model

1

St

x

Crack Spacing from Stress Curve

xcxc

Average Spacing = 1.5·Xc

Page 11: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Validate thermal crack spacing model with field data

• Perform sensitivity analysis on length scale– Help guide future laboratory work– Develop more complete understanding– Identify how material selection will

affect spacing

Objectives

Page 12: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Field Validation– 4 similar sections at Mn/ROAD

• Parametric Study– 10 input variables

• Layer 1– Stiffness, Poisson, Density, Thickness, Thermal

Coef.• Layer 2

– Stiffness, Poisson, Density, Cohesion, Friction Angle

Scope

E, , , H,

E, , , c,

Page 13: Field Validation and Parametric Study of a Thermal Crack Spacing Model

1. Select MnROAD sections2. Analyze thermal crack spacing by

section3. Analyze in situ thermal conditions4. Gather material property data for

model5. Simulate pavement, determine

spacing6. Compare predictions to measured7. Assess validity

Field Validation Methodology

Page 14: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Similar thickness designs• Identical binders• Common subgrade• Different base layers

MnROAD Sections

150 155 160231

838

102 102

711838

0

200

400

600

800

1000

1200

Cell 1 Cell 2 Cell 3 Cell 4

Dep

th B

elow

Pav

emen

t Sur

face

, mm

HMAC

Class 4 G.B.

Class 6 G.B.

Class 5 G.B.

Class 3 G.B.

LEGEND

Page 15: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Average Crack Spacing

0

0.25

0.5

0.75

1

0 100 200 300 400 500

Location, ft

0

0.25

0.5

0.75

1

0 100 200 300 400 500

Location, ft

0

0.25

0.5

0.75

1

0 100 200 300 400 500

Location, ft

Avg Spacing

Cell 1: 12 m

Cell 2: 8 m

Cell 3: 13 m

Cell 4: 9 m0

0.25

0.5

0.75

1

0 100 200 300 400 500

Location, ft

Page 16: Field Validation and Parametric Study of a Thermal Crack Spacing Model

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Time, hr

Tem

pera

ture

, C

D = 0.03048D = 0.054864D = 0.158496D = 0.192024D = 0.292608D = 0.445008D = 0.597408D = 0.902208D = 1.207008D = 1.511808D = 2.426208

Depth, m

Top of pavement

Bottom of pavement

Feb 1 Feb 2 Feb 3

Temperature Cycling

Page 17: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Backcalculation• Laboratory testing as part of

Mn/ROAD project• Derived values

– Thermal coefficient = fn (Volumetrics)• Model ‘tuned’ with friction and

cohesion

Material Property Data

E, , , H,

E, , , c,

Page 18: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Resulting Friction and Cohesion

Cell Friction Angle, o Cohesion, kPa1 30 102 50 153 35 104 25 10

Mohr-Coulomb Properties of Material DirectlyBeneath HMA

Page 19: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Model Comparison

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Measured Average Spacing, m

Pred

icte

d Sp

acin

g, m

Line of Equality

Cell 1

Cell 2

Cell 3

Cell 4

Page 20: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Crack spacings pass reasonableness check

• Recently, model has been used to predict other crack spacing phenomenon

Model Assessment

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140Location, m

Dis

tanc

e Acr

oss

Pave

men

t, m

Average Spacing = 12 mStandard Deviation = 4.88 m

TiN Coating

Page 21: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Curling Stress

Rate of StressIncrease

Max stress

Factors that Influence Stress Profile

Page 22: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Uniform temperature change• 2-layer structure• 10 input parameters varied from low,

medium, and high• Maximum tensile stress curves

plotted and evaluated– Maximum Stress– Rate of Stress Increase– Curling Stress

Parametric Investigation Methodology

Page 23: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Input ParametersLayer Input Units Low Medium

(Baseline)High

1 E1 Pa 5*109 1.4*1010 3*1010

unitless

0.15 0.20 0.25

kg/m3 2,200 2,300 2,400H1 cm 7.6 15 30 /C 1.33*10-5 2.15*10-5 2.97*10-5

2 E2 Pa 5.5*107 5.5*108 5.5*109

unitless

0.35 0.4 0.45

kg/m3 1,800 2,000 2,200c2 kPa 0, 0.1, 1, 10, 70, 140 2 20 40 60

Page 24: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

E1 = 3*1010 Pa

E1 = 1.4*1010 Pa

E1 = 5.0*109 Pa

Distance From Free End, m

Maximum Tensile Stress, PaFLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

E1 = 3*1010 Pa

E1 = 1.4*1010 Pa

E1 = 5.0*109 Pa

Distance From Free End, m

Maximum Tensile Stress, Pa

HMAC Stiffness (E1)

1

TEx

Page 25: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

Maximum Tensile Stress, Pa

1=0.15

1 =0.20

1 =0.25

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

Maximum Tensile Stress, Pa

1=0.15

1 =0.20

1 =0.25

HMAC Poisson Ratio (1)

Page 26: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

Maximum Tensile Stress, Pa

H1 = 0.076 mH1 = 0.152 m

H1 = 0.305 m

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

Maximum Tensile Stress, Pa

H1 = 0.076 mH1 = 0.152 m

H1 = 0.305 m

HMAC Thickness (H1)

Page 27: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

Maximum Tensile Stress, Pa

1=2.97*10-5

1=2.15*10-5

1=1.33*10-5

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

Distance From Free End, m

Maximum Tensile Stress, Pa

1=2.97*10-5

1=2.15*10-5

1=1.33*10-5

HMAC Thermal Coeff. (1)

Page 28: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

E2=5.5*107 Pa

E2=5.5*109 Pa

E2=5.5*108 Pa

Distance From Free End, m

Maximum Tensile Stress, PaFLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

E2=5.5*107 Pa

E2=5.5*109 Pa

E2=5.5*108 Pa

Distance From Free End, m

Maximum Tensile Stress, Pa

Base Stiffness (E2)

Page 29: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

c2=140 kPac2=70 kPa

c2=10 kPa

c2=1 kPac2=.1 kPac2=0 kPa

Distance From Free End, m

Maximum Tensile Stress, PaFLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

c2=140 kPac2=70 kPa

c2=10 kPa

c2=1 kPac2=.1 kPac2=0 kPa

Distance From Free End, m

Maximum Tensile Stress, Pa

Base Cohesion (c2)

As c getsLargeOnly elasticresistance

Page 30: Field Validation and Parametric Study of a Thermal Crack Spacing Model

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

2 = 60o

2 = 40o

2 = 20o

Distance From Free End, m

Maximum Tensile Stress, PaFLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

2 = 60o

2 = 40o

2 = 20o

FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06FLAC (Version 3.30)

10 20 30 40 50 60 70

.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

(10 )+06

2 = 60o

2 = 40o

2 = 20o

Distance From Free End, m

Maximum Tensile Stress, Pa

Base Friction Angle (2)

Note: c = 10 kPa

Page 31: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Curling Stress

Rate of StressIncrease

Max stress

Factors that Influence Stress Profile

Page 32: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Relative Influence on Each CriteriaInput

ParameterMaximum

StressRate of Stress

IncreaseCurlingStress

E1 3 1 --

2 -- --

1 -- -- --

H1 -- -- 3

1 3 1 --

E2 -- 3 --

-- -- --

2 -- -- --

c2 -- 3 3

2 -- 2 --

Page 33: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Model compared favorably to field data• Model is sensitive to base material

properties• Model is simple, yet provides length

scale to thermal cracking problem• Key input parameters are…

– Stiffnesses of HMAC and Base– Thermal coefficient– Frictional properties of Base material

Conclusions

Page 34: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Further validation with field sections– Model has compared favorable to other

types of cracking• Incorporate a fracture mechanics

model to simulate crack propagation• Examine viscoelastic constitutive

models

Recommendations

Page 35: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Plan mitigation strategies– Saw and seal– Material selection

• Assess probability and expectation of cracking

Potential Uses of Model

Page 36: Field Validation and Parametric Study of a Thermal Crack Spacing Model

• Dr. Bojan Guzina

• Minnesota Department of Transportation– Minnesota Road

Research Project

Acknowledgements

Page 37: Field Validation and Parametric Study of a Thermal Crack Spacing Model

Thank You!

Questions?