38
48th ICFA Advanced Beam Dynamics Workshop on Future Light Sources March 1-5, 2010, SLAC, Menlo Park, California XFELO X-ray Cavity Feasibility Studies Yuri Shvyd’ko C 1 C 2 C 3 C 4 M 1 M 2 e - undulator x-rays

Feasibility Studies undulator - Stanford University · 2012. 3. 5. · Content • Technical challenges • Feasibility studies: ⇒ reflectivity of diamond crystals ⇒ heat load

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 48th ICFA Advanced Beam Dynamics Workshop on Future Light SourcesMarch 1-5, 2010, SLAC, Menlo Park, California

    XFELO X-ray Cavity

    Feasibility Studies

    Yuri Shvyd’ko

    C1

    C2 C3

    C4

    M1

    M2

    e-

    undulator x-rays

  • Content

    • Technical challenges• Feasibility studies:

    ⇒ reflectivity of diamond crystals⇒ heat load problem⇒ nanoradian angular stabilization⇒ radiation damage

    • Conclusions and Outlook

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • XFEL Oscillator

    x-rays

    e-

    Beam

    dump

    Linac

    undulator

    Permeablemirror

    R1, T1

    Mirror

    R2 L 100 m

    XFELO requires:

    • ultra-low-emittance (εn . 10−7 m rad) electron beams,• low-loss x-ray crystal cavity (losses ' 15%) R1, R2 > 95%, T1 ' 4%

    K.-J. Kim, Yu. Shvyd’ko, S. Reicher, PRL 100 (2008) 244802.

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Reflectivity of Si in backscattering

    0 5 10 15

    0.75

    0.8

    0.85

    0.9

    0.95

    1.0

    Si@120 K

    0 5 10 15

    0.75

    0.8

    0.85

    0.9

    0.95

    1.0

    Si@300 K

    E [keV]

    Refl

    ecti

    vit

    y

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Theory predicts highest reflectivity from diamond

    0 5 10 15

    0.75

    0.8

    0.85

    0.9

    0.95

    1.0

    C@300 K

    E [keV]

    Refl

    ecti

    vit

    y

    Very high reflectivity (in theory)due to:

    • High Debye Temperature, andthus high Debye-Waller factor

    • Low Z, low photo absorption

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • undulator

    L

    S

    H

    H

    2

    2

    A

    B

    M2

    M1

    e-

    x-rays

    RA × RB × RM1 × RM2 ' 0.9 TA ' 0.04

    Diamond cavity for the X-FEL Oscillator

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Diamond crystal and mirror reflectivity @ 12 keV

    0.0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    Tra

    nsm

    issi

    vit

    y

    Ab

    sorp

    tio

    n

    -60 -40 -20 0 20 40 60

    E - E0

    [meV]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Refl

    ecti

    vit

    y

    E0=12.0404 keV

    0.0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    Tra

    nsm

    issi

    vit

    y

    Ab

    sorp

    tio

    n

    -60 -40 -20 0 20 40 60

    E - E0

    [meV]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Refl

    ecti

    vit

    y

    E0=12.0404 keV

    Mirror calculations:www-cxro.lbl.gov

    Narrow band mirrors:∆E ≈ 10 meV; ∆E ≈ ~/τp

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • undulator

    L

    S

    H

    H

    2

    2

    A

    B

    M2

    M1

    e-

    x-rays

    E = EH cos Θ ⇒ Two-crystal scheme is not tunable.

    Because, it is necessary to keep small φ . 2 mrad

    and therefore small Θ . 2 mrad, for high reflectivity of the mirrors.

    Two-Crystal Cavity is not Tunable

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • A four-crystal (A,B,C, and D) x-ray optical cavity allows photon energy E tuningin a broad range by changing the incidence angle Θ.

    A

    B C

    D

    M1

    M2

    e-

    undulator

    L

    L’

    S

    G

    G

    F

    H

    H

    H

    2

    2

    x-rays

    R.M.J. Cotterill, Appl. Phys. Lett., 12 (1968) 403

    K.-J. Kim, and Yu. Shvyd’ko, Phys. Rev. STAB (2009)

    E = EH cos Θ

    Tunable Cavity

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • A

    B C

    D

    M1

    M2

    e-

    undulator

    H

    H

    H

    2

    2

    x-rays

    X-ray Optics:

    • Quality of diamond crystals:• is the theoretical reflectivity achievable?

    • Heat load problem (reflection region variations . 1 meV).• Angular stability: δθ . 10 nrad (rms)• Spatial stability: δL . 3 µm (rms) → δL/L . 3 × 10−8

    • Radiation damage

    XFELO Technical Challenges

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Quality of Diamond crystals

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 3rd International Conference on Diamonds for Modern Light Sources, Awaji Yumebutai, 20th-23th May 2008ESRF15

    Phase platePhase plate

    White beam topograph in transmission

    7.1 mm

    110-oriented plate

    Dislocation free areas of 4x4mm2

    and more!!!

    1-1-1-reflection

    Härtwig, 2008 (ESRF)

    Required diamond crystals:• high quality (dislocation free, etc.)• thickness: 20 − 2000 µm• small suffice: ' 1 mm2

    Still open question:is the theoretical reflectivity achievable?

    Quality of Diamond crystals

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • undulator

    x-rays

    bandwidth100 eV

    C(111) cooledmonochromator

    bandwidth1.7 eV

    2 Si(220)

    300 K

    2 Si(220)

    300 K

    Si(15 11 9) channel-cut

    123 K

    T. Toellner

    bandwidthE 1 meV

    high-resolutionmonochromator

    E=23.7 keV

    (111)

    (995)2

    = 2 10-4

    APD

    diamond

    L 10 mT. Toellner

    Shvyd’ko, Stoupin, Cunsolo, Said, Huang, Nature Phys. 6, 196 (2010)

    Experiment, 30-ID @ APS

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 10-3

    2

    5

    10-2

    2

    5

    10-1

    2

    5

    1

    Refl

    ecti

    vit

    y,R

    -15 -10 -5 0 5 10 15

    E - E0, [meV]

    C(995) theoryE

    0.2

    0.4

    0.6

    0.8

    R

    -10 0 10

    E - E0

    E =2.9 meV

    R =91 %

    C(995), EH

    = 23.765 keV

    Lcrystal = 415µm

    Rtheory = 91%

    Spectral Width and Reflectivity: Theory

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 10-3

    2

    5

    10-2

    2

    5

    10-1

    2

    5

    1

    Refl

    ecti

    vit

    y,R

    -15 -10 -5 0 5 10 15

    E - E0, [meV]

    experimentC(995) theory

    E

    0.2

    0.4

    0.6

    0.8

    R

    -10 0 10

    E - E0

    E =2.9 meV

    R =87 %R =91 %

    C(995), EH

    = 23.765 keV

    δE = 1.5 meV

    δE = hc/(2Lcrystal)

    dcrystal = 415 ± 5µm

    Rtheory = 91%

    Rexperiment = 87%

    Beam footprint' 1 mm2

    Shvyd’ko, Stoupin, et al, Nature Phys. 6, 196 (2010)

    Spectral Width and Reflectivity: Experiment

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 0.92

    0.94

    0.96

    0.98

    1.0

    Peak

    Refl

    ectiv

    ity

    5 10 15 20 25

    2

    5

    102

    2

    5

    103

    2

    Pene

    trat

    ion

    Dep

    th[

    m]

    5 10 15 20 25

    Bragg Energy EH

    [keV]

    1

    10

    102

    Ene

    rgy

    Wid

    th[m

    eV]

    5 10 15 20 25

    R, L, and ∆E are interconnected. ∆E ∝ 1/L

    R L ∆E

    Smallness of ∆E is a hallmark of high quality crystal

    Reflectivity vs. Penetration & Energy Width

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 0 1 2 3 4 5x [mm]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    y[m

    m]

    (a)

    0 1 2 3 4 5x [mm]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    1

    1.3

    2

    4

    20

    Spectral width, E/ Emin

    (b)

    0 1 2 3 4 5x [mm]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0

    0.2

    0.4

    0.6

    0.8

    1

    Reflectivity, R/Rmax

    (c)

    Shvyd’ko, Stoupin, et al, Nature Phys. 6, 196 (2010)

    Spectral Width and Reflectivity Map

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 0 1 2 3 4 5x [mm]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    y[m

    m]

    (a)

    0 1 2 3 4 5x [mm]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    1

    1.3

    2

    4

    20

    Spectral width, E/ Emin

    (b)

    0 1 2 3 4 5x [mm]

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0

    0.2

    0.4

    0.6

    0.8

    1

    Reflectivity, R/Rmax

    (c)

    Shvyd’ko, Stoupin, et al, Nature Phys. 6, 196 (2010)

    Synthetic diamond crystals are available with theoretically high reflectivity andsufficiently large in size for XFELO cavity applications.

    Spectral Width and Reflectivity Map

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Heat Load Problem

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Temperature gradient δT ⇒ energy spread δE/E = βδT .Requirement: δE . 1 meV, when the next pulse arrives.

    Incident power ' 50 µJ/pulse.Absorbed power: ' 1 µJ/pulse (2%).Footprint: ' 100 × 100 µm2

    Is it a problem?

    Heat Load Problem

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 300

    301

    0

    5

    10

    15

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=300 K

    T =0.5 K

    = 1 10-6

    K-1

    Dia

    mo

    nd

    Tem

    per

    aure

    T[K

    ]

    Ph

    oto

    nE

    ner

    gy

    Sp

    read

    E[m

    eV]

    100 m

    200 m

    beamfootprint

    H. Sinn simulations

    Temperature gradient δT ⇒ energy spread δE/E = βδT .Requirement: δE . 1 meV, when the next pulse arrives.

    • Big temperature jump δTafter the x-ray pulse arrival.

    • T=300K: Big temperaturespread by the arrival of

    Heat Load Problem

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 300

    301

    0

    5

    10

    15

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=300 K

    T =0.5 K

    = 1 10-6

    K-1

    100

    105

    110

    0

    2

    4

    6

    8

    10

    12

    14

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=100 K

    T =14 K

    = 1 10-7

    K-1

    Dia

    mo

    nd

    Tem

    per

    aure

    T[K

    ]

    Ph

    oto

    nE

    ner

    gy

    Sp

    read

    E[m

    eV]

    100 m

    200 m

    beamfootprint

    H. Sinn simulations

    Temperature gradient δT ⇒ energy spread δE/E = βδT .Requirement: δE . 1 meV, when the next pulse arrives.

    • Big temperature jump δTafter the x-ray pulse arrival.

    • T=300K: Big temperaturespread by the arrival of

    the next x-ray pulse.

    • T=100K: Negligible temperaturespread by the arrival of

    the next x-ray pulse.

    Heat Load Problem

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 300

    301

    0

    5

    10

    15

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=300 K

    T =0.5 K

    = 1 10-6

    K-1

    100

    105

    110

    0

    2

    4

    6

    8

    10

    12

    14

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=100 K

    T =14 K

    = 1 10-7

    K-1

    Dia

    mo

    nd

    Tem

    per

    aure

    T[K

    ]

    Ph

    oto

    nE

    ner

    gy

    Sp

    read

    E[m

    eV]

    100 m

    200 m

    beamfootprint

    H. Sinn simulations

    Temperature gradient δT ⇒ energy spread δE/E = βδT .Requirement: δE . 1 meV, when the next pulse arrives.

    Solution: Maintain diamond at T < 100 K!

    • Big temperature jump δTafter the x-ray pulse arrival.

    • T=300K: Big temperaturespread by the arrival of

    the next x-ray pulse.

    • T=100K: Negligible temperaturespread by the arrival of

    the next x-ray pulse.

    • Reasons:1. High temperature diffusivity D2. Low temperature expansion β

    Heat Load Problem

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Diamond Thermal Expansion

    10-9

    10-8

    10-7

    10-6

    Thermalexpansion,[K-1]

    0 50 100 150 200 250 300

    T, [K]

    Experiment 1 (March 09)Experiment 2 (May 09)

    4.0 10-14T3

    Polynomial fit

    Stoupin, Shvyd’ko, PRL 104, 085901 (2010)

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 100101102103104105106107108109110111112

    0

    5

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=100 K

    T =14 K

    = 3.9 10-8

    K-1

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    0

    2

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Time [ s]

    T(0)=50 K

    T =40 K

    = 3.9 10-9

    K-1

    Dia

    mo

    nd

    Tem

    per

    aure

    T[K

    ]

    Ph

    oto

    nE

    ner

    gy

    Sp

    read

    E[m

    eV]

    100 m

    200 m

    beamfootprint

    H. Sinn simulations

    Temperature gradient δT ⇒ energy spread δE/E = βδT .Requirement: δE . 1 meV, when the next pulse arrives.

    Solution: Maintain diamond at T < 100 K!

    Corrected energy scaleXXy

    Heat Load Problem

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Angular & Spatial Stability

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Required angular stability: δθ . 10 nrad (rms)Required spatial stability: δL . 3 µm (rms) ⇒ δL/L ' 3 × 10−8 (L = 100 m)

    Angular & Spatial Stability

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Intensity,R(V)

    Voltage, VVmaxV0

    Required angular stability: δθ . 10 nrad (rms)Required spatial stability: δL . 3 µm (rms) ⇒ δL/L ' 3 × 10−8 (L = 100 m)

    Solution: Null-detection harware feedback. (LIGO prototype)

    X-ray intensity: linear response tosmall angular oscillations is propor-tional to angular deviation from themaximum of the rocking curve.

    Angular & Spatial Stability

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Intensity,R(V)

    Voltage, VVmaxV0

    monitoring

    Detector

    Lock-in amplifier Integrator

    piezo driver

    piezo actuator

    x-ray beam

    IN OUT REF OUT IN REF IN OUT OUT

    CONROL IN

    R(V(t))

    V v(t)

    V + v(t)

    V0+ V +v(t)

    Required angular stability: δθ . 10 nrad (rms)Required spatial stability: δL . 3 µm (rms) ⇒ δL/L ' 3 × 10−8 (L = 100 m)

    Solution: Null-detection harware feedback. (LIGO prototype)

    X-ray intensity: linear response tosmall angular oscillations is propor-tional to angular deviation from themaximum of the rocking curve.

    Feedback: correction signal is ex-tracted using lock-in amplification.

    Angular & Spatial Stability

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • 0

    10000

    20000

    Intensity[a.u.]

    -1000 -500 0 500 1000

    3 [nrad]

    -0.2 -0.1 0.0 0.1 0.2

    Voltage [V]

    FWHM

    3=500 nrad=75mV

    Region of stability=50 nrad

    1

    HHLMHRM

    IC2

    IC1IC3

    APD

    3

    0Si6

    Si5 Si4

    Si3 Si2

    Si1D2

    D1

    T. Toellner, D. Shu

    HERIX Monochromator Stability Region

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • a b

    0

    1 104

    2 104

    3 104

    4 104

    5 104

    6 104

    7 104

    8 104

    Intensity[a.u.]

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0 10 20 30 40 50 60

    Time [minutes]

    APDIC1

    IC2IC3

    HHLMHRM

    0

    1 104

    2 104

    3 104

    4 104

    5 104

    6 104

    7 104

    8 104

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Correctio

    nsignal[V]

    0 1 2 3 4 5 6 7 8 9 10

    Time [hours]

    APDIC1

    IC2IC3

    HHLMHRM

    1

    HHLMHRM

    IC2

    IC1IC3

    APD

    3

    0Si6

    Si5 Si4

    Si3 Si2

    Si1D2

    D1

    T. Toellner, D. Shu

    HERIX Monochromator Stabilization

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • a b

    0

    1 104

    2 104

    3 104

    4 104

    5 104

    6 104

    7 104

    8 104

    Intensity[a.u.]

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0 10 20 30 40 50 60

    Time [minutes]

    APDIC1

    IC2IC3

    HHLMHRM

    0

    1 104

    2 104

    3 104

    4 104

    5 104

    6 104

    7 104

    8 104

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Correctio

    nsignal[V]

    0 1 2 3 4 5 6 7 8 9 10

    Time [hours]

    APDIC1

    IC2IC3

    HHLMHRM

    1

    HHLMHRM

    IC2

    IC1IC3

    APD

    3

    0Si6

    Si5 Si4

    Si3 Si2

    Si1D2

    D1

    T. Toellner, D. Shu

    ' 15 nrad (rms) stabilization was demonstratedStoupin, Lenkszus, Laird, Goetze, K-J Kim, Shvyd’ko, RSI (submitted)

    HERIX Monochromator Stabilization

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Radiation damage in diamond

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • XFELO generates:

    50µJ/pulse @ 12 keV with ' 1 MHz rep. rateFootprint: A = 1.6 × 10−4 cm2 (rms)Flux ' 2 × 1020 ph/s/cm2

    Time to ionize carbon atom with 100% probability: T ' 250 s Robin Santra

    Can this produce irreversible changes in the perfect crystal lattice structure?

    Radiation damage in diamond

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • XFELO generates:

    50µJ/pulse @ 12 keV with ' 1 MHz rep. rateFootprint: A = 1.6 × 10−4 cm2 (rms)Flux ' 2 × 1020 ph/s/cm2

    Time to ionize carbon atom with 100% probability: T ' 250 s Robin Santra

    before after 1 yearof operations

    APS undulators generate:

    Flux ' 5 × 1017 ph/s/cm2

    Time to ionize carbon atom with 100% probability: T ′ ' 105 s ' 1 day

    Graphitization of the surface layer

    of the diamond crystal is ob-served after several daysof operations. Though,no significant degradation in theperformance of the high-heat-load monochromator is observedafter a year of operations.

    ��9

    Radiation damage in diamond

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • ⇒ Operate diamond at cryogenic temperatures.⇒ Use isotopically pure 12C crystals.

    Laser damage threshold is more than order of magnitude higher for isotopicallypure diamond.Anthony et al, PRB, 42 1104 (1990)

    ⇒ Apply electric fields to keep the electrons in diamond (K-J. Kim)⇒ ....

    How to mitigate radiation damage in diamond?

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • A

    B C

    D

    M1

    M2

    e-

    undulator

    H

    H

    H

    2

    2

    x-rays

    X-ray Optics:

    • Quality of diamond crystals:• is the theoretical reflectivity achievable?

    • Heat load problem: reflection region variations . 1 meV.• Angular stability: δθ . 10 nrad (rms)• Spatial stability: δL . 3 µm (rms) → δL/L . 3 × 10−8

    • Radiation damage

    XFELO Technical Challenges

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

  • Acknowledgments

    Yu. Shvyd’ko FLS2010, SLAC, March 1, 2010

    XFELO collaboration:

    Kwang-Je Kim (APS)

    Stanislav Stoupin (APS)Ryan Lindberg (APS)Sven Reiche (SLS)Bill Fawley, (LBNL)Frank Lenkszus (APS)Deming Shu (APS)Harald Sinn (European XFEL)

    Thanks to:

    Robert Winarski (APS)Tim Graber (APS)Robert Laird (APS)Stan Whitcomb (LIGO)Al Macrander (APS)Tim Roberts (APS)Kurt Goetze (APS)Emil Trakhtenberg (APS)Ayman Said (APS)Alessandro Cunsolo (APS)Tom Toellner (APS)Lahsen Assoufid (APS)