33
Mesoscale Weather Prediction Ensemble Post-Processing Prediction and Verification Results Extreme weather and probabilistic forecast approaches Petra Friederichs Sabrina Bentzien, Andreas Hense Meteorological Institute, University of Bonn Statistical Methods for Meteorology and Climate Change Montreal, 12 – 14 January 2011 P.Friederichs Extreme weather 1 / 33

Extreme weather and probabilistic forecast approaches

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Extreme weather and probabilistic forecast

approaches

Petra Friederichs

Sabrina Bentzien, Andreas Hense

Meteorological Institute, University of Bonn

Statistical Methods for Meteorology and Climate Change

Montreal, 12 – 14 January 2011

P.Friederichs Extreme weather 1 / 33

Page 2: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Outline

Extreme weather and probabilistic prediction

I Atmospheric scales and mesoscale atmospheric dynamics

I High-impact weather

I Ensemble prediction systems

Ensemble post-processing

I Post-processing: Extract and calibrate information

I Verification

Results

P.Friederichs Extreme weather 2 / 33

Page 3: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

What are extemes?

I Mathematically:

Defined as block maxima or excedances of large thresholds.

Events that lie in the tails of a distribution

I Perseption:

Rare, exceptional, ”large” and high impact

I Problems:

I 95% quantile of daily precipitation: ≈ 10− 15mm/d

I ≈ 2 years of data – only few extremes events for verification

P.Friederichs Extreme weather 3 / 33

Page 4: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Mesoscale ExtremesPredictabilityCOSMO-DE Ensemble Prediction System

Mesoscale Weather Prediction

I Strong and disastrous impact of many weather extremes calls

for reliable forecasts

I ”Although forecasters have traditionally viewed weather

prediction as deterministic, a cultural change towards

probabilistic forecasting is in progress.” (T N Palmer, 2002)

I Weather extremes do not come ”Out of the Blue”

I Numerical weather forecast models provide reliable forecasts

of the atmospheric circulation prone to generate extremes

I Combination of dynamical and statistical analysis methods

P.Friederichs Extreme weather 4 / 33

Page 5: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Mesoscale ExtremesPredictabilityCOSMO-DE Ensemble Prediction System

Atmospheric scales and mesoscale dynamics

I Different scales exhibit different

dominant force balances,

different wave dynamics

I Mesoscale on horizontal scales

2km – 2000km

I Complex force balances

Steinhorst, Promet 35, 2010

P.Friederichs Extreme weather 5 / 33

Page 6: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Mesoscale ExtremesPredictabilityCOSMO-DE Ensemble Prediction System

Mesoscale weather extremes

I Heavy thunderstorms on July 14, 2010

I Strong horizontal gradients

I Strong vertical mixing

I Embedded in larger scale squall line –

embedded in synoptic situation

P.Friederichs Extreme weather 6 / 33

Page 7: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Mesoscale ExtremesPredictabilityCOSMO-DE Ensemble Prediction System

Connection of Extremes on Different Scales

I Large vertical gradients of

entropy

I Convective instability

I Deep convection lead to

extremal vertical velocities

I Heavy precipitation and

hailstones grow within this

vertical circulation

Koeln 04.07.1994 RR=11,723mm

Zeit in min

Hoe

he in

km

0.2

0.2

0.4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40mm/h

g/kg

0

1

2

3

4

S. Bentzien (2009)

P.Friederichs Extreme weather 7 / 33

Page 8: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Mesoscale ExtremesPredictabilityCOSMO-DE Ensemble Prediction System

Predictability

I Inherent limit of predictability

I Fastes error growth at smallest

scales

I Predictability strongly depends

on flow regime

I Moist convection is primary

source of forecast-error growth

I Mesoscale forecasts are issued

for ≤18h-24h

E N Lorenz, Tellus 21, 19 (1969)

P.Friederichs Extreme weather 8 / 33

Page 9: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Mesoscale ExtremesPredictabilityCOSMO-DE Ensemble Prediction System

COSMO-DE Ensemble Prediction System (EPS)

I COSMO-DE: 2.8 km grid spacing,

convection resolving NWP model

I Operational forecasts 0-21 hours –

high-impact weather by DWD

I EPS with 20 (40) members

I Uncertainty due to initial conditions,

boundary conditions, and model

parameterisation errors

I First EPS with convection resolving

limited area NWP model

COSMO-EU

COSMO-DE

GME

Initial State Boundary Model

S. Theis, DWD (2010)

P.Friederichs Extreme weather 9 / 33

Page 10: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Probabilistic forecasting: Maximize sharpness of

the predictive distribution subject to calibration

from Hamill (2006)

Calibration:

Raw ensemble data need adjustmend: biased and underdispersive

Gneiting et al. (2005)

Sharpness: Information of forecasts

P.Friederichs Extreme weather 10 / 33

Page 11: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Conditional quantile function

Semi-parametric

I A-priori probability τ , estimate

conditional quantile F−1Y |X(τ |x) = βT

τ x

via (linear) quantile regression

Parametric

I A-priori assumption about parametric

distribtion FY |X(y |x) = G (y ; Θ(x))

Estimate parameter function Θ(x)

Generalized linear model (GLM)

P.Friederichs Extreme weather 11 / 33

Page 12: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Quantile regression

QZQR(τ |X) = βT

τ X, βTτ = (β0, . . . , βK )

βτ = arg minβτ

n∑i=1

ρτ

(yi − βT

τ xi

)Censored quantile regression

QZQR(τ |X) = max(0,βT

τ X), βTτ = (β0, . . . , βK )

βτ = arg minβτ

n∑i=1

ρτ

(yi −max(0,βT

τ xi ))

with ρτ (u) = τu for u ≥ 0 and ρτ (u) = (τ − 1)u for u < 0

P.Friederichs Extreme weather 12 / 33

Page 13: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Censoring

Equivariance with respect to non-decreasing function h(·)Qh(Y )(τ) = h(QY (τ))

Hidden process Y ∗ observed through censored variable Y

Y = h(Y ∗) = max[0,Y ∗]

QY ∗QR

(τ |X) = βTτ X

0.1 0.2 0.3 0.4 0.5

−20

020

4060

meanmedian

QYQR(τ |X) = max(0,βT

τ X)

0.1 0.2 0.3 0.4 0.5

−20

020

4060

80 median

P.Friederichs Extreme weather 13 / 33

Page 14: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Generalized linear model – Mixture model

I Probability of precipitation (Y ≥ 0.1mm) – Logistic regression

Pr(Y ≥ 0.1 | x) = π(x)

I Distribution of precipitation – Gamma GLM

F (Y | x,Y ≥ 0.1) = GΓ(Y ; Θ(x))

Conditional mixture model for precipitation

FYmix(y | x) = (1− π) + π GΓ(y ; Θ(x)) Iy≥0.1

P.Friederichs Extreme weather 14 / 33

Page 15: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Conditional mixture model

Parametric – ’normal’

I A-priori assumption about parametric

distribtion for ’normal’ part

FY |X(y |x) = G (y ; Θ(x))

Estimate parameter function Θ(x)

Generalized linear model (GLM)

Parametric: ’extreme’

I Above threshold/quantile: parametric

distribtion FY |X(y |x) = G (y ; Θ(x)) is

of the familily of max-stable

distributions.

P.Friederichs Extreme weather 15 / 33

Page 16: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Extreme value theory ”Going beyond the range of the data”

I Limit theorem for sample maxima

→ asymptotic distribution for extremes

I Condition of max-stability (de Haan, 1984)

→ maxima follow a generalized extreme value

distribution

I Garantees universal behavior of extremes

→ enables extrapolation!

In praxis: often not enough data to reach asymptotic limit

P.Friederichs Extreme weather 16 / 33

Page 17: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Extreme value distribution

Generalized extreme value distribution (GEV)

Gξ(y) =

exp(−(1 + ξ y−µσ )−1/ξ)+, ξ 6= 0

exp(− exp(− y−µσ )), ξ = 0

,

Gumbel (..., shape=0.0)

PD

F

−2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

Frechet (..., shape=0.6)

PD

F

−2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

Weibull (..., shape=−0.3)

PD

F−2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

P.Friederichs Extreme weather 17 / 33

Page 18: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Generalized Pareto distribution

Threshold excesses Z = Y − u follow a GPD

Prob(Z ≤ y − u) =

1−

(1 + ξ y−u

σu

)−1/ξ, ξ 6= 0

1− exp(− y−u

σu

), ξ = 0

,

for y − u > 0 and (1 + ξ y−uσu

) > 0

P.Friederichs Extreme weather 18 / 33

Page 19: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Censored Quantile RegressionMixture GLMExtrem Value TheoryMixture GLM including Extremes

Mixture GLM including Extremes

I Conditional mixture model for precipitation

FYmix(y | x) = (1− π) + π GΓ(y ; Θ(x)) Iy≥0.1

I GPD for ’extreme’ precipitation – above uτ = F−1Y (τ | x)

F (Y | x,Y > uτ ) = GGPD(Y − uτ ;σ(x))

Conditional mixture model for precipitation with extremes

FYGPD(y | x) = (1− π) + π GΓ(y ; Θ(x)) IY≥0.1,Y≤uτ

+ (1− τ)GGPD(Y − uτ ;σ(x) IY>uτ

P.Friederichs Extreme weather 19 / 33

Page 20: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Proper Scoring RulesForecasts in terms of quanitles

Prediction and Verification

I Model parameter training

I Verification on independent data

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Jul.08 Okt.08 Jan.09 Apr.09 Jul.09 Okt.09 Jan.10 Apr.10

n.train20,30,..,90 Tage

30T.

P.Friederichs Extreme weather 20 / 33

Page 21: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Proper Scoring RulesForecasts in terms of quanitles

Forecast verification by means of scores

I Cost functions or distance between forecast and data

I Utility measure in a Bayesian context

A score is proper iff

Ey∼Q [S(P, y)] ≥ Ey∼Q [S(Q, y)] ∀ P 6= Q

S(P, y): score function

Q forecasters best guess

Ey∼Q [S(., y)] expectation of S(., y) over y ∼ Q

P.Friederichs Extreme weather 21 / 33

Page 22: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Proper Scoring RulesForecasts in terms of quanitles

Verification: Goodness-of-fit criterion

QVS(τ) = min{β∈Rq}

∑i

ρτ (yi−βT xi ) QVSref (τ) = min{β0∈R}

∑i

ρτ (yi−β0)

Quantile verification skill score QVSS(τ) = 1− QVS(τ)

QVSref (τ)

Log-likelihood ratio test: asymmetric Laplacian regression

fτ (u) =τ(1− τ)

σLexp(−ρτ (u)/σL).

proportional to log(QVS(τ)/QVSref (τ))

P.Friederichs Extreme weather 22 / 33

Page 23: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

SKeleton EPS Interim Solution – Neighborhood method

I ’Time-lagged’ ensemble of

COSMO-DE

I Initialized every 3 h,

forecasts for 21 h

I 1 July 2008 – 30 April 2010

0 3 6 9 12 15 18 21 Vorhersagestunde

I First guess probability (fgp)

I First guess 0.9-quantile

(fgq9)

I 4 COSMO-DE forecasts and

5× 5 neighborhoodlagged average ensemble

forecast (LAF)

• Umgebung

• 4x9 member

• 4x25 member

• ...

6

P.Friederichs Extreme weather 23 / 33

Page 24: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

12h accumulated precipitation between 12 and 00 UTC

I 83 Station in NRW

I Rain radar composite

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latitude

0

200

400

600

800

1000

1200

1400

P.Friederichs Extreme weather 24 / 33

Page 25: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Reliability

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Forecast probability, yi

Obs

erve

d re

lativ

e fr

eque

ncy,

o1

●●

LR:fgpLR:fgp+q9

020000040000060000080000010000001200000

020000040000060000080000010000001200000

● ●

0 20 40 60 80

0

20

40

60

80

0.9 quantile

quantile forecast

empi

rical

qua

ntile

● ●

Ensemble QRmix.mod transf.fgq9

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

0.9 quantile

bins

freq

uenc

y

P.Friederichs Extreme weather 25 / 33

Page 26: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Quantile forecasts - Skill Score

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

0.0

0.1

0.2

0.3

0.4

0.5

0.6

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

0.0

0.2

0.4

0.6

0.8

P.Friederichs Extreme weather 26 / 33

Page 27: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Quantile forecasts - Skill Score

●●●●

●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●

●●

0.99 quantile

QV

SS

0 10 20 30 40 50 60 70 80QR MIX MIX.t GPD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

● QRMIXMIX.tGPD+

+

+++++

+

+

++

+

+

+

++++

+

+

++

+

+++

++++++++

+

+

+

++

+

++

+++

+

+

+++

+++

+

+++

++++

+

+

++

+

+

+

+

+

+++

++++

+

+++

+

+

+

+

+++

++

+

+

+

+

++

+

++

++

+

+

+++++++

+

++

++++

+

+

+

++

+++

+

+

+

+

+

++

+

+++

+

++

+

+++++

+

++

+

+

+

+

+

+++

+

+++

+

++

+

+

+

++

+++++

+

+

++

+

+

+

++++

+

+

++

+

+++

++++++++

+

+

+

++

+

++

+++

+

+

+++

+++

+

+++

++++

+

+

++

+

+

+

+

+

+++

++++

+

+++

++

P.Friederichs Extreme weather 27 / 33

Page 28: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Quantile forecasts - Skill Score

●●●

●●●

●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●

0.99 quantile

QV

SS

0 10 20 30 40 50 60 70 80QR MIX MIX.t GPD

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

● QRMIXMIX.tGPD

++++

+

++

+++

++

+

+

+

++

++

+

+

+

+

+

+

+

+

+

+

+++

++++

+

+

+

+

+

++

++

+

+

++

++

++

++

++

+

+

++

+

+

++

+

+

+

+++++

+

++++++

++

+

++++

+

+

+

+++

++

+

+

+

++

+

+

++

+

+

++

+

+

+

+

+++

++++

+

+

+

++

++

++

+

+

++

++

++

++

++

+

+

++

+

+

++

+

+

+

+++++

+

++++++

++

+

++++

+

++

+++

+

+

+

++

++

+

+

++

+

+

++

+

+

+

+

+++

++++

+

+

+

+

+

++

+++

+

++

++

++

++

++

+

+

++

+

+

++

+

+

+

+++++

+

++++++

++

+

P.Friederichs Extreme weather 28 / 33

Page 29: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

● ● ●

● ●●

● ●●

● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●0

10

20

30

40

50

Kleve

mm

/12h

Jul 05 Jul 15 Jul 25 Aug 04

q0.75

q0.90

q0.95

q0.99● station

radarQRMIXMIX.tGPD

● ● ●

●●

● ●●

●●

●●

●● ● ● ●

● ●●

●● ● ●

● ● ●●

● ● ● ● ● ●0

10

20

30

40

50

60

70Breckerfeld−Weng (Ennepe−Ruhr−Kreis)

mm

/12h

Jul 05 Jul 15 Jul 25 Aug 04

q0.75

q0.90

q0.95

q0.99● station

radarQRMIXMIX.tGPD

P.Friederichs Extreme weather 29 / 33

Page 30: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Lagged ensemble forecasts and radar measurements

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

20

40

60

80

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

20

40

60

80

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

50

100

150

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

20

40

60

80

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

20

40

60

80

6 7 8 9

50.5

51.0

51.5

52.0

52.5

longitude

latit

ude

20

40

60

80

P.Friederichs Extreme weather 30 / 33

Page 31: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Conclusions

I Weather forcasts provide information that conditions occurence of

extremes

I Linear (non-linear) statistical modeling extracts information

I Extreme value theory provides distributions tailored for extremes

I Parametric method less uncertain than non-parametric method and

non-linear dependecy (shape parameter) is not parsimony

I High-impact weather: insufficient data available for training and for

validation

P.Friederichs Extreme weather 31 / 33

Page 32: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Challenges

I Improve physical understanding of generation processes of extremes

I Application to multi-variable and spatio-temporal predictions

I Combine spatial statistics with model post-processing

(Berrocal et al., 2007)

I Develop methods for multivariate post-processing

I Develop novel ensemble methods tailored to extremes

(Bayesian model averaging)

I Verification tailored to extremes

I Verification for probabilistic multivariate and spatial forecasts

P.Friederichs Extreme weather 32 / 33

Page 33: Extreme weather and probabilistic forecast approaches

Mesoscale Weather PredictionEnsemble Post-Processing

Prediction and VerificationResults

Ensemble Post-ProcessingVerificationExampleConclusions and Challenges

Reference

I Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated

probabilistic forecasting using ensemble model output statistics and minimum

CRPS estimation. Monthly Weather Review, 133, 1098-1118.

I C. Gebhardt, S.E. Theis, M. Paulat, and Z. Ben Bouallegue, 2010: Uncertainties

in COSMO-DE precipitation forecasts introduced by model perturbations and

variation of lateral boundaries. Atmos. Res. (in press).

I Friederichs, P., 2010: Statistical downscaling of extreme precipitation using

extreme value theory. Extremes 13, 109-132.

Special thanks to:

Susanne Theis, Martin Gober, Deutscher Wetterdienst, Offenbach

Thank You for Your Attention!

P.Friederichs Extreme weather 33 / 33