31
European vision and expecta1on for the use of biopolymers in food packaging Stéphane GUILBERT 1 and Nathalie GONTARD 2 1 Prof. Montpellier SupAgro, UMR IATE, Montpellier, France 2 INRA, UMR IATE, Montpellier, France

Europeanvisionandexpectaonfor theuseof) … Local agro-wastes Thermophilic 2 steps (winery residues, manure, straw etc. ) Microbial-convers° Microbial electrolysis cells Others chemicals

  • Upload
    vuhanh

  • View
    223

  • Download
    1

Embed Size (px)

Citation preview

European  vision  and  expecta1on  for  the  use  of  biopolymers  in  food  

packaging  

Stéphane  GUILBERT1  and  Nathalie  GONTARD2    1Prof.  Montpellier  SupAgro,  UMR  IATE,  Montpellier,  France  2INRA,  UMR  IATE,  Montpellier,  France    

Summary  §  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

§  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

www.ellenmacarthurfounda0on.  

Plastic food-pakaging: Where are we now ?

Forecast of plastic volume growth, externalities and oil consumption in a business-as-usual scenario. Source: Ellen Macarthur foundation report. 2014.

Plastic waste are accumulating in soil, water and ocean. Long term impact (few hundred years) of plastic micro and nano-particles are not assessed yet.

Plastic food-pakaging: Where are we now ?

Non

Bio

d.

B

iode

grad

able

/ C

omp.

Fossil-based Bio-based / GHG-based

Biod.  plas+cs  PCL,  PBAT,  PBS  

PLA,  PHA,  PBS,  PBSA,  starch,  Cellulose  

deriva+ves,…    

Bio-­‐based  PE,  PP,  PET,  PTT,  PEF,  PA,  

PUR…  PET,  PE,  PP,  PS…  

Bio-­‐plas1c:  Bio-­‐based,  GHG-­‐based,  Bio-­‐degradable

80  over  3

20  M

T/Y  

1  over  1.30  MT/Y  

0.2  over  0.60  MT/Y  

<0.1  over  0

.2  M

T/Y  

Plastic food-pakaging: Where are we now ? Total  «  BIO  »  <  1,6  %  

§  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

European vision : Decoupling human well-being from resource consumption

The green economy as an integrating framework for EU policies relating to material use

Source:  European  Environment  Agency  

Adapted  from  the  Direc0ve  2008/98/EC  on  waste  (Waste  Framework  

Direc0ve)    

The waste management hierarchy is more than an ethical rule…

reducing  waste  produc1on  at  the  source    

Reusing  

 Feed,  Material…    

Chemicals,  materials,  energy  

(Compos1ng)  

Incinera-­‐1on      

Land  fill        

 

Circular economy at a glance

Circular economy is focused on technical materials i.e. electronics, minerals, metals..

Source  :  EU  circular  economy  package  

Transition towards a Circular Bio-economy by integrating Bio and Circular economies

Source  :  Ins+tute  for  European  Environmental  Policy  (IEEP)  

§  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

INPUTS Raw materials

WASTES Outputs

.n

Limited closed loop system: rapid enough regeneration applicable a limited number of time (e.g. paper or plastic) = delayed waste accumulation

Circular economy: Recycling limitations

Open loop system: recycling process to produce another good that is not recyclable = delayed waste accumulation

WASTES Outputs

PET fibers

Virgin PET

INPUTS Raw materials

Circular economy: Recycling limitations

INPUTS Raw materials

Theoretical Bio-Economy

is considered as circular

because all biological

resources can be

regenerated endlessly

Closed loop system: rapid enough regeneration for an unlimited number of times.

Circular economy: Bio-economy limitations

INPUTS Raw materials

Real Bio-Economy

= regeneration

time 1.5 longer

than consumption

= half linear and

half circular

Closed loop system: rapid enough regeneration for an unlimited number of times. Rapide enough = with a regeneration time compatible with human activities

Circular economy: Bio-economy limitations

§  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

MTOE: million tons oil equivalentavailable agricultural residues

86oil

Bio-waste

A huge bio-waste potential: Urban and rural residues in EU

representING about 50% of

fresh crops

40Municipal waste

55Wood residues

§  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

Biomethane

Loca

l agr

o-wa

stes

(win

ery r

esid

ues,

man

ure,

stra

w et

c. )

Microbial-convers°

Microbial electrolysis cells

Others chemicals

Bioethanol

biohythane

Bio-polymers

Biochar

Enzymatic, physical & chemical deconstruct°

Mesophilic 1 step

Thermophilic 2 steps Pre-

treat

men

ts

Bi-functionalizat° Photo-conversion &

VFA-rich liquid effluent

ANAEROBIC DIGESTION

Functionalisation Polymerisation Formulation Structuration

Building blocks

Lignocell fillers

Composites Mat.

AD digestate

Bio-oil

Syngas

Biogas

Thermal / bioconvers°

Feedstock - ressource

Full-scale benchmark

Pilot-scale emerging advances

Lab-scale novel processes Innovative end-products

Conventional end-products

Examples of current H2020 EU projects

Linking  the  urban  biowaste  biorefinery  with  exis1ng  waste/wastewater  treatment  facili1es  and    with  plas1c  industry  

Primary    SeLling  

Ac+vated  sludge  with  nutrient  removal  

Nutrients  

Bio-­‐energy    

Anaerobic  Diges+on  

Clean  water  to  discharge  

Urban  wastewater  

Anaerobic  diges+on  

Secundary    SeLling  

Urban  wastewater  treatment  plant  (WWTP)  -­‐  Water  line  

 *  The  acid  fermenta1on  step  could  be  spliced  into  separate  reactors  for  fine  tuning  of  C  and  N  balance  in  the  process  and/or  sludge  pretreatment  could  be  also    included  

Primary    sludge  

Secundary    sludge  

Pretreatment  

Bio-­‐based    plas+cs  

PHA  processing  

PHA  Extrac+on  

Bio-­‐based  solvents  

Concentra+on/  Esterifica+on  

                                                         Water  stream                                                                                                                                  Sludge  or  solid  stream                                                  Gas  stream  Internal  water  recycle  not  reported                                                        Integra+on  with  WW  treatment                                                                    Solvent  stream  

Organic  frac+on  of  urban  waste  

Urban  bio-­‐waste  with  higher  

lignocellulosic  frac+on  

Selected  food-­‐processing    bio-­‐

waste  

Fibers  processing  

Acid  *  Fermenta1on  

WWTP  -­‐  Sludge  line  

Plas1c  industry  

Bio-­‐based    plas+cs  

PHA  processing  

Fibers  processing   Plas1c  industry  

PHA  Produc1on  

Examples of current H2020 EU projects RES  URBIS  

PHBV Lignocellulosic fibers

23

Solid  wastes  (wheat  straw)    

•  MATRIX  =  PHBV  •  Biodegradable  polyester  

•  FILLER  =  Wheat  straw  fibers  •  By-­‐product  of  wheat  industry  

Straw fibers obtained by successive millings Size : 100-150µm

à Around  5€/kg   à Around  25€/ton  

Liquid  effluent  (cheese  whey)  

Examples of current H2020 EU projects

PHBV Lignocellulosic fibers

24

•  Compounding by extrusion

•  Shaping by injection at pilot scale

Food loss reduction

Lignocellulosic fibers

25

PHBV

§  Plastic food-pakaging: Where are we now ? §  New economical models? §  Circular bio-economy strategy and limitations? §  Resources : potential of the bio-wastes §  Examples of current H2020 EU projects §  Conclusion: EU expected next generation for F.P.

27  

◉  its source ◉  its design ◉  its end of life

Petro-­‐sourced  

Food  losses  

End-­‐of-­‐life  issues  

Non  food  renewable  resources   Tailored  proper1es  

Fresh  fruits    and  vegetables  Modified Atmosphere Packaging

Naturally  biodegradable  

Over-­‐  poorly-­‐  designed  

Next Generation Packaging is expected to be eco-efficient for

Conclusion: EU expected next generation

Non

Bio

d.

B

iode

grad

able

Fossil-based Bio-based / GHG-based

Biod.  plas0cs  PCL,  PBAT,  PBS  

PLA,  PHA,  PBS,  PBSA,  starch,  Cellulose  

deriva+ves,…    

PET,  PE,  PP,  PS…  

… With emphasis on Bio- or -GHG-based AND fully Bio-degradable (for short lifetime F&B packagings)

Bio-­‐based  PE,  PP,  PET,  PTT,  PEF,  PA,  

PUR…  

0 landfill 0 leakage ε incineration

Closed–loop Recycling

Composting Nutrients

Fertilizers Raw materials ε

Biogas

Production Resources Usage Waste

Up-cycling (bio-conversion, anaerobic digestion)

Persistent plastic

Organic - Food

- Biopackaging

Petro-based

Food crops

Bio-waste

Food

Packaging

Food

Packaging

Re-use

Oil (fossil)

Bio-mass

… Towards bio-waste up-cycling efforts in a context of a circular bio-economy …

Global flow of food & packaging

•  Holistic approach (societal e.g. consumer acceptance, environmental, economic e.g. sorting and reverse logistic , technic e.g. specifications ), long term reasoning, multi-criteria early guidance and multi-actors strategies

•  Investigating the crucial issue of undesirable substances in a close loop system

•  Preventing green washing = anticipate real environmental benefits including long term environmental and safety impacts of plastics food packaging

Conclusion: development of F&B Packaging according to a Circular Bio-Economy requires

Thank  you  for  your  acen1on