Equipment Protection.pdf

Embed Size (px)

Citation preview

  • 8/16/2019 Equipment Protection.pdf

    1/56

     

    Equipment Protection 

  • 8/16/2019 Equipment Protection.pdf

    2/56

    Types of Transformers   Generator Transformer  

      Power Transformer

     

    Distribution Transformer  Pole-mounted lighting Transformer

      Grounding Transformer

      Regulating Transformer

      Welding Transformer  Converter Transformer

      Instrument Transformer (CT & PT)

  • 8/16/2019 Equipment Protection.pdf

    3/56

    Types of connection   Types of connection: Y-Y, Y- Δ,  Δ-Y,  Δ-  Δ 

      Y- Δ and  Δ-Y introduce phase shift b/w

    primary & secondary side.  Since the ends of the transformer are

    physically closed together, we use differential

    protection

     

  • 8/16/2019 Equipment Protection.pdf

    4/56

    Phasor Diagram for a 3-phase transformer  

  • 8/16/2019 Equipment Protection.pdf

    5/56

     

      In star side, line currents, I A, IB & IC 

      In delta side, the phase currents are 

  • 8/16/2019 Equipment Protection.pdf

    6/56

     

      Each line current on delta side is the phasor  

    sumof two of the phase currents.

      There is a phase shift of 30° b/w line currentof two sides of Y- Δ transformer

  • 8/16/2019 Equipment Protection.pdf

    7/56

     

    Schematic representation of Y- Δ

    transformer  

  • 8/16/2019 Equipment Protection.pdf

    8/56

    Phasor diagram showing 30° phase 

    shift b/w line currents on two sides of  

    transformer  

  • 8/16/2019 Equipment Protection.pdf

    9/56

     

    Schematic diagram- 1 phase transformer  

     

  • 8/16/2019 Equipment Protection.pdf

    10/56

    Equivalent circuit 

     

  • 8/16/2019 Equipment Protection.pdf

    11/56

    Equivalent ckt of transformer    Z shunt branch > Z series branch 

      In SC, series branch decides the SC current.

      If Zse= 0.08 pu, then SC current = 1/0.08 = 12.5 pu 

     

  • 8/16/2019 Equipment Protection.pdf

    12/56

    Model for finding SC current 

     

  • 8/16/2019 Equipment Protection.pdf

    13/56

    Types of Faults in transformer  

      Winding core fault  – weakening of insulation 

      Phase fault inside transformer  – rare

      Phase fault in transformer terminals (outside) – fall within transformer protection zone

      Variation in fault current  – depends  – type of

    connection, method of grounding and current

    being refereed to primary or secondary

  • 8/16/2019 Equipment Protection.pdf

    14/56

    Variation in fault current wrt location in 

    Δ-Y transformer  

  • 8/16/2019 Equipment Protection.pdf

    15/56

     

      For resistance earthed star connected 

    winding- winding to earth fault - fault current

    depends on earthing resistance value and

    distance of the fault from neutral

      Minimum value of If occurs at 30  – 40% of the

    distance end of winding from the neutral end

     

  • 8/16/2019 Equipment Protection.pdf

    16/56

    ••••••••••• 

    Q) 

    0.4 u 4 

    oe  :::J 

    ••••••• 

    •••••• 

    •••••• 

    1.0  Jo 10 e;,"  

    .......  0.8 

    c ::::> "-

     

    R e = 1 p.u.  C:>'f'tj  

    .......  8 

    c :::J  RE = 0 I  "- Q) 

    a. 0.6

      a. 6 

    ....... c 

    Q) "- "- ::::> 

    .(

    ....)

    Q) "- "- :::J 

    ....... 

    ::::> ro 

  • 8/16/2019 Equipment Protection.pdf

    17/56

    Variation of If wrt location for Y-Δ transformer  

  • 8/16/2019 Equipment Protection.pdf

    18/56

     

      For delta, minimum voltage on delta winding 

    is at the centre of one phase and 50% of

    normal phase to earth voltage.

      The range of If values are less than star

    connected wndg.

      The minimum value of If occurs at the centre

    of one phase winding.

  • 8/16/2019 Equipment Protection.pdf

    19/56

    Over current Protection of  

    transformer  

  • 8/16/2019 Equipment Protection.pdf

    20/56

     

      In fig two number of phase-fault over current relaysand one number ground fault over current relay isprovided for either primary protection for small

    transformers and back up protection for biggertransformers.

      The pickup value is set not to pickup maximumpermissible overload but sensitive to smallest phasefault.

      The neutral current is because of load unbalance.  The third harmonic currents ends up as zero

    sequence current & flows through neutral.

     

  • 8/16/2019 Equipment Protection.pdf

    21/56

    ••

    ••••

     

    ••••• Percentage differential protection of

    transformers 

    Delta-star transformer

    with neutral grounded 

    • 

    ••••••••• 

    ••••••• 

     

  • 8/16/2019 Equipment Protection.pdf

    22/56

      Star point is grounded  – turns ratio 1:1 

     

  • 8/16/2019 Equipment Protection.pdf

    23/56

    ••

     •••

     

     

    ••••• Determination of IL on two sides of

    transformers Delta-star transformer  with neutral grounded 

    l c-  I a 

    l c  

    • ••••••••• 

    ••• ••• 

    ••• • 

     

  • 8/16/2019 Equipment Protection.pdf

    24/56

      Determine instantaneous direction of Ia, Ib, Ic throughsecondary winding

      Primary winding currents are then determined I A=Ia,

    IB=Ib, IC=Ic ( turns ratio is 1:1)  Line currents on star side is determined (same as

    phase currents Ia, Ib, Ic )

      Line currents on delta side is determined (IC-I A),(I A-IB), (IC-I A) [phasor difference]

      If Secondary wndg of CTs are connected in star,spill current is produced (currents will not matchup)

      If secondary wndg of CTs on the star side isconnected in delta  – currents are same  – providedCTs on delta side is connected in star.

  • 8/16/2019 Equipment Protection.pdf

    25/56

    •••••• 

    lA- lc    /A  Ia 

    /A!  Ia Ia 

    •••••• 

    l'b 0

     

    -o 

    i 3 ro 

    I a  -o  •••••••••

     Q) 

    ••••• lA- lc   lc  

    (_) 

    c: ro

      •••• Is- lA 

    Is-lA  lo- Ialo  (ij 

    .0 

    (ij c...:. 2 X

     

    Is- lA 

    w  lo 

    .. 0 

    3::

    Is! =

    lo ro 

    l c  lc- Ia ro 

    lc- Ia 

    lcl   ilc  

    lc - lo 0 

    lc  

    r-- 1 

    lc- Is  : lc - /0 I I I

    I

    I

    I

    I

    I

    I I 

    :Zero 

  • 8/16/2019 Equipment Protection.pdf

    26/56

    •••••• 

    lA- lc    /A  Ia 

    - I

    •------------- -- 

    : Ia - lc  I I

    I

    I

  • 8/16/2019 Equipment Protection.pdf

    27/56

     /A 

    ••••• l(f  

    • • 

    .,lc  •••••

      /Al   Ia

    •••••••• 

    lt:J- Ia lo 

    •••••••••

     Ia-

    lA llJ  

    lo

    lsl    /lJ  lo 

    lc 

    lc - lo 

    r  

    c-g external fault 

    •---------------4I

     

    Percentage differential relay 

    External fault (c-g)   

  • 8/16/2019 Equipment Protection.pdf

    28/56

      Due to fault in C, over current in Phase C. 

      The If is supplied through two lines on delta

    side.  Due to delta connection, the CTs in star carry

    the current.

      Hence no spill path.

      The scheme is stable in c-g fault.

     

    L

  • 8/16/2019 Equipment Protection.pdf

    29/56

    L l  A-  l c  /  A  I a

    ••••• 

    +--  ••••• 

    l  A - l c l c  

     /Al  j I a  I a •••••••• 

    Ia-  /  A  l b-  I a  l b 

    •••••••••

     

    +-- Ia - lA 

    I a-  l  A 

    l al   i /b 

    l b  • • +-- 

    l b 

    l c-  I a 

    l b, l c  

    c -g internal fault l c - lb 

    l c  

    l c-  I a I 

    Spill : Unitcurrent : operates = l e- l a• 

    l b - I a 

    Unitrestrains 

    Unitoperates 

    I

    •---------------I

     

    Percentage differential relay 

    Internal fault (c-g) 

     

  • 8/16/2019 Equipment Protection.pdf

    30/56

      Since the fault is internal, no If through the

    primaries of CTs on star side.

      The fault current flows through spill path,causing the differential units to operate and

    tripping the transformer.

     

  • 8/16/2019 Equipment Protection.pdf

    31/56

    •••••••••

     

    Inrush Phenomenon  •••••• •••••••• 

    ••• • 

    Switch-on  Flux 

    = 1/lR + 1/lm COS 9 - 1/Jm COS (OJ t + 9) 

     AC supply 

    ""'Flux 

    Inrush 

    Open circuit 

    \ /Full load 

     

  • 8/16/2019 Equipment Protection.pdf

    32/56

    •• ••• 

    • • •••• 

    •••••••• ••• ••• 

    ••• • 

    Let the flux in the transformer  be written as 

    qy  = ¢rn sin w t  

    The induced voltage can then be written  as 

    -   N d¢ v-  dt  

    =  N

  • 8/16/2019 Equipment Protection.pdf

    33/56

     

  • 8/16/2019 Equipment Protection.pdf

    34/56

    Inrush Phenomenon 

  • 8/16/2019 Equipment Protection.pdf

    35/56

    •••••• 

    •••• ••• •••• 

    281--------------------- -----=.-:..:-..-::.-::.:-:...-::..;;;...;::..:-:----;---- -- :: 

     Bm -------- 

    ('\J 

    E ..0 

    co

    Excitation characteristics of core 

    Steady-statemagnetizing current 

    l o 8/o 

    Inrush  current 

    H(AT/m) 

  • 8/16/2019 Equipment Protection.pdf

    36/56

    •••••• 

    ••••••••• 

    ••••••••• 

    •••••• 

    '+' Operating

    torque Restraining

    torque 

    CT secondary 

    (/1 - /2) currents /1, /2 (/1 + /2)/ 2 

     _., .... 

    1 I 

    Spi!l  current 

    I  I Circulating current I 

    I  Filter l  Unfiltered 

    l Fundamental   All harmonics 

    Fundamental + 

    component  all harmonics 

    Reiay 

  • 8/16/2019 Equipment Protection.pdf

    37/56

    •••••• 

    ••••••••• 

    ••••••••• 

    •••••• CT 

    Transformer  

    Fundamental + Harmonics 

    [I]  [TI 

    Passes only thefundamental  

    Fundamental + Harmonicscirculating current 

     All harmonicsspill current 

    Fundamentalspill current 

  • 8/16/2019 Equipment Protection.pdf

    38/56

  • 8/16/2019 Equipment Protection.pdf

    39/56

    •••••• 

    ••

     •••

     

    • 

    Transformer  

    ••••••••• 

    ••• ••• 

    ••• • 

    L 0

    ad 

    Reach of restrictedearth fault relay 

    OC relay 

     

    •••

  • 8/16/2019 Equipment Protection.pdf

    40/56

    •••••••••• 

    ••••• 

    ••••••••••

     •••••• 

    Zero 

    400 kV 

     J3 

    It= 5000  A 

    Inter-tum fault 11 kV 

    t J3

     

    5V  Rt = 1 mn 

     

    •••

  • 8/16/2019 Equipment Protection.pdf

    41/56

    •••••••• 

    ••••• ••

    •••••• 

    ••••• 

    Conservator  Alarm 

    Breather  

    Buchholzrelay 

    Trip 

    Transformer  

    Oil 

    Tank 

     

    ••••

  • 8/16/2019 Equipment Protection.pdf

    42/56

    • 

    ••

     •••

     

    • •••• •••••••• ••• ••• •••

     • 

     Alarm 

    - - - - - - - - -  Oil level 

    To conservator   Vane 

    To tank 

    Buchholz trip 

  • 8/16/2019 Equipment Protection.pdf

    43/56

    ••••••

  • 8/16/2019 Equipment Protection.pdf

    44/56

    ••••• 

    ••••

    -•••••••

    -

     Steam 

    Wret 

    governor  

    ••••••••• •

     Steam control   Actual speed

    valve 

    Induceddraft 

    mill 

    Steam 

    Condenser  

    ,------ •,'151515'.:.. 

    Exciterfieldcontrol 

    Error  

     Air  

    Pulverized 

    Forced draft  Water  

    Water  

    Water  

     Actualvol tage 

    Water  Waterspray 

    -------------- Pond 

    ••••••

  • 8/16/2019 Equipment Protection.pdf

    45/56

    ••••• ••••••••• 

    ••••••••• 

    •••••• 

    Generatortransformer   Main CB

    EHV bus 

    t------ "----+----To grid 

    ..... C'O 

    Q) 

    c Q) 

  • 8/16/2019 Equipment Protection.pdf

    46/56

    ••••• ••••••••• 

    ••••••••• 

    •••••• 

     Alternator Phase a 

    Main CB  To generatortransformer  

    Phase b 

    Groundingtransformer(Step-downtransformer ) 

    Phase c 

    Groundingresistance 

    t Trip 

     

    •••••

  • 8/16/2019 Equipment Protection.pdf

    47/56

    ••

     •••

     

    • • •••• 

    •••••••• ••• ••• •••

     • 

    Field interrupter  

    Field current 

     J  

    Excitation controlsystem 

    I  

    \  I  

    '- _;;. 

    Exciter coupled toalternator shaft 

    Fieldsupressor  

    Field windingof generator  

    DC system is isolated "7'"rl7r from ac ground 

    ••••••

  • 8/16/2019 Equipment Protection.pdf

    48/56

     

    •• ••• • 

    Stator  

    .,....  Phase f ault 

    ••••••••• 

    ••• ••• 

    ••• •

     

    Electr icalfaults 

    ,... Thr ee-phase stator

    winding 

    "' 

    Rotor  

    ,.,  Field winding 

    ,  Inter -turn f ault on thesame phase 

    Gr ound f aults 

    ,  Short cir cuit to ground 

    Sta tor  

    ,  Electrical ....  Three-phase stator  _,  Unbalanced loadingwinding 

     Abnormaloperating

    conditions 

    Rotor  

    ....  Field winding ....  Loss of excitation 

    ....  Mechanical Loss of  

    pnme mover  

    Over -speedmg 

    ••••••

  • 8/16/2019 Equipment Protection.pdf

    49/56

     ••••••••• 

    ••••••••• 

    ••••••

     

    Field windingof generator  

    Slip ring 

    Exciter  

    Generator shaft 

    B Alarm 

    / I  

    I  I  

    I

    I  

    : T1me setting 

    :  Plug setting I 

    -----+.-- Trip circuit of main CB of generator  

    \ \ \ 

    ' ' ''' ... ' 

    ••••••••

  • 8/16/2019 Equipment Protection.pdf

    50/56

     ••••••••• 

    ••••••••• 

    ••••••

     

    Negative sequence component in statorcurrent 

    Stator armature MMF due to negativesequence currents rotates at -Ns (rpm) 

    No 

    Field  winding rotating at Ns (rpm) 

    Relative speed between rotor and the field due

    to negative sequence currents = 2N s 

    Double frequency currents of frequency 2Nspl 120 induced in rotor core and winding 

     Additional heat generated 

     

    ••••••••

  • 8/16/2019 Equipment Protection.pdf

    51/56

    •••••• 

    •• • 

    Stator currents  I a l b l c 

    Negative sequence f ilter  /2 = f (l a,  l b. l c) 

    •••• ••••••• 

    • •

     

    /2 Negative sequence current (rms) ' 

    Over-current relay with inverse 

    characteristic To p  = K/1 Set K for the machine 

    'If  

    Trip main CB of generator  

    ••••• •

  • 8/16/2019 Equipment Protection.pdf

    52/56

     

    ••••••••• ••• 

    Tachogenerator

    output 

    Over -frequency

    relay 

    •••••••••• 

    •••••

     

    Yes 

    Stop steam supply 

    to turbine 

    t Start shutdown of

    generator  

    ••••••

  • 8/16/2019 Equipment Protection.pdf

    53/56

     ••• •••••••••• 

    •••••• 

    Voltage = V  rated  Oe 

    ••••••

     

    Mechanical -+-...;..... 

    input 

    Generator  

    Speed = N s 

    Field current lr  

    '---------P e 

    Generator  

    Voltage = VLoE 

    Mechanical -.lor-- 

    input 

    Speed > N s 

    Generator  

    Field current 1, = zero (Loss of excitation) 

    r--------------- Pe 

    Generator  

     

    ••••• • •••

  • 8/16/2019 Equipment Protection.pdf

    54/56

    •• ••• • 

    ••••••••• 

    ••• ••• 

    ••• •

     

    T  II  X  

    Medium initial 

    Rated initial

    output 

    output 

    2 Low initial output 

    Offset mho relay functioning

    as loss of excitation relay 

    Ill 

    Time increasing 

    IV 

    Locus of apparent

    impedance 

     

    •••••••

  • 8/16/2019 Equipment Protection.pdf

    55/56

    ••••••••••• 

    •• 

    ••••••••••• 

     •

     Mechanical

    input 

    Generator  

    Ns 

    Oe 

    Field current 11 excitation 

    Loss of prime +---T----i Running as motor ..,_...  ; 

    mover  

    iQ· Field current 11 excitation 

     

    ••

    ••••• 

  • 8/16/2019 Equipment Protection.pdf

    56/56

    ••••••• 

     Active power Generator  

    Loss of primemover  

    Reactive power -- )o 

    •• ••••••

    • t  • 

    Trip 

    '-----4------J Directional +