21
Page introductive à lire attentivement par le candidat CONCOURS EXTERNES IT 2017 EPREUVE TECHNIQUE D’ADMISSION Durée : 2h00 Coefficient : 2 Concours externes 2017 n° 148 AI BAP C Corps : Assistant ingénieur BAP : C Emploi-type : Assistant-e- ingénieur-e- électronicien-e- Délégation organisatrice : Ile de France Ouest et Nord, Meudon REMARQUES IMPORTANTES La calculatrice non programmable est autorisée.

EPREUVE TECHNIQUE D’ADMISSION€¦ · rejection (115dB at G = 1000). It operates with power supplies as low as ±2.25V, allowing use in battery operated and single 5V supply systems

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Page introductive à lire attentivement par le candidat

    CONCOURS EXTERNES IT 2017 EPREUVE TECHNIQUE D’ADMISSION

    Durée : 2h00

    Coefficient : 2

    Concours externes 2017 n° 148 AI BAP C

    Corps : Assistant ingénieur

    BAP : C

    Emploi-type : Assistant-e- ingénieur-e- électronicien-e-

    Délégation organisatrice : Ile de France Ouest et Nord, Meudon

    REMARQUES IMPORTANTES

    La calculatrice non programmable est autorisée.

  • Connaissance de l’organisme

    1 - Que signifient les sigles suivants ?

    CNRS :

    EPST : IN2P3: UMR :

    2 - Quelles sont les missions du CNRS (5 lignes max.) ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    3 - Quelles sont les missions du laboratoire pour lequel vous postulez (5 lignes

    max.)?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • Electronique

    1 - Combien de couplages électromagnétiques existe-t-il ? Citez en au moins deux,

    décrivez-les et dites comment les éviter ou les réduire.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    2 - Quels sont les 2 modes par lesquels les signaux électriques peuvent se

    propager? Expliquez brièvement. Quel est le mode le plus perturbateur ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    3 - Comment peut-on se préserver des perturbations de mode commun ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • 4 - Pour chacun des montages suivants M1 et M2, on suppose l’amplificateur idéal:

    - Donnez le nom des montages M1 et M2.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    - Exprimez Vs en fonction de Ve dans le montage M1.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    - Exprimez Vs en fonction de V1 et V2 dans le montage M2, toutes les

    résistances sont égales

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    5 - On propose d’utiliser l’amplificateur THS4215 (datasheet en annexe). Quelle est

    sa bande passante et son temps de monté pour un signal de 1V en sortie?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    6 - Quel autre modèle que le THS4215 documente la datasheet ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • 7 - Quelles sont les différences entre les modèles d’amplificateurs ? Justifier.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    8 - Soit le schéma suivant (datasheet de l’ampli INA114 en annexe).

    - Quelle est la valeur de RG pour obtenir un gain de 10 ? Donner la valeur

    normalisée à 1%.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    - Quelle est la fréquence de coupure pour ce gain ?

    ………………………………………………………………………………………………......

    - Quel est le taux de rejection en mode commun à ce gain pour une fréquence

    de 1KHz?

    ………………………………………………………………………………………………......

    - Les entrées de l’amplificateur sont-elles protégées? Justifiez.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • CAO / PCB / Câblage

    Soit le schéma ci-dessous

    Figure 2

    1 - Quel sont les règles à respecter lors du routage de ce circuit ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    2 - Définir la fonction des résistances R18, R19, R37 et R38. Comment doivent-elles

    être placées sur le circuit imprimé?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    3 - Définir la fonction des résistances R40, R41, R43 et R47. Comment doivent-elles

    être placées sur le circuit imprimé?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • 4 - Comment adapter l’impédance d’une piste lors du routage du circuit imprimé ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    5 - Sur un schéma vous avez de l'électronique analogique bas-niveau, et des

    signaux numériques aux alentours du GHz. Comment faites-vous cohabiter les 2

    pour limiter les perturbations sur un PCB: répartition, alimentation etc. ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    6 - Quelle sont les phases de la création d’un composant dans une bibliothèque de

    CAO ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    7 - Pouvez-vous préciser le principe d’une bibliothèque de CAO ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    8 - Qu’est-ce qu’un via borgne ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • 9 - Qu’est-ce que la «classe de fabrication» d’un circuit imprimé et quel sont les

    éléments qui contribuent à la définition de la classe ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    10 - Qu’est-ce qu’un frein thermique ?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    11 - Sur un circuit imprimé on place 2 mires. Qu’est-ce qu’une mire et quelle est son

    utilité?

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    12 – Donner le processus de fabrication d’un circuit imprimé 4 couches chez le sous-

    traitant à partir de la CAO.

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    13 - Que signifient les inscriptions indiquées sur ces composants? Précisez.

    ………………………………………………………………………………………………......

  • 14 - Identifier le type de connecteur ?

    ………………………………………………………………………………………………......

    14 - Qu’est-ce que le « RoHS » ? ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    15 – Qu’est-ce qu’un fil de bonding ? ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

    ………………………………………………………………………………………………......

  • ®

    INA1141

    FEATURES● LOW OFFSET VOLTAGE: 50 µV max● LOW DRIFT: 0.25µV/°C max● LOW INPUT BIAS CURRENT: 2nA max

    ● HIGH COMMON-MODE REJECTION:115dB min

    ● INPUT OVER-VOLTAGE PROTECTION:±40V

    ● WIDE SUPPLY RANGE: ±2.25 to ±18V● LOW QUIESCENT CURRENT: 3mA max

    ● 8-PIN PLASTIC AND SOL-16

    INA114

    DESCRIPTIONThe INA114 is a low cost, general purpose instrumen-tation amplifier offering excellent accuracy. Its versa-tile 3-op amp design and small size make it ideal for awide range of applications.

    A single external resistor sets any gain from 1 to 10,000.Internal input protection can withstand up to ±40Vwithout damage.

    The INA114 is laser trimmed for very low offset voltage(50µV), drift (0.25µV/°C) and high common-moderejection (115dB at G = 1000). It operates with powersupplies as low as ±2.25V, allowing use in batteryoperated and single 5V supply systems. Quiescent cur-rent is 3mA maximum.

    The INA114 is available in 8-pin plastic and SOL-16surface-mount packages. Both are specified for the–40°C to +85°C temperature range.

    APPLICATIONS● BRIDGE AMPLIFIER

    ● THERMOCOUPLE AMPLIFIER

    ● RTD SENSOR AMPLIFIER

    ● MEDICAL INSTRUMENTATION

    ● DATA ACQUISITION

    A1

    A2

    A3

    (12)

    (11)

    6

    (10)25kΩ25kΩ

    25kΩ25kΩ

    (13)7

    (7)4

    (5)

    3

    (15)

    8

    (2)

    1

    (4)

    2VIN

    VIN

    RG

    V+

    V–

    INA114

    DIP (SOIC)

    Ref

    DIP ConnectedInternally

    VO

    G = 1 + 50kΩRG

    +5

    Over-VoltageProtection

    25kΩ

    25kΩ

    Over-VoltageProtection

    Feedback

    PrecisionINSTRUMENTATION AMPLIFIER

    ®

    International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bl vd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FA X: (520) 889-1510 • Immediate Product Info: (800) 548-6132

    INA114

    INA114

    ©1992 Burr-Brown Corporation PDS-1142D Printed in U.S.A. March, 1998

    SBOS014

  • ®

    INA114 2

    SPECIFICATIONSELECTRICALAt TA = +25°C, VS = ±15V, RL = 2kΩ, unless otherwise noted.

    ✻ Specification same as INA114BP/BU.

    NOTE: (1) Temperature coefficient of the “50kΩ” term in the gain equation.

    INA114BP, BU INA114AP, AU

    PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS

    The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumesno responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to changewithout notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrantany BURR-BROWN product for use in life support devices and/or systems.

    INPUTOffset Voltage, RTI

    Initial TA = +25°C ±10 + 20/G ±50 + 100/G ±25 + 30/G ±125 + 500/G µVvs Temperature TA = TMIN to TMAX ±0.1 + 0.5/G ±0.25 + 5/G ±0.25 + 5/G ±1 + 10/G µV/°Cvs Power Supply VS = ±2.25V to ±18V 0.5 + 2/G 3 + 10/G ✻ ✻ µV/V

    Long-Term Stability ±0.2 + 0.5/G ✻ µV/moImpedance, Differential 1010 || 6 ✻ Ω || pF

    Common-Mode 1010 || 6 ✻ Ω || pFInput Common-Mode Range ±11 ±13.5 ✻ ✻ VSafe Input Voltage ±40 ✻ VCommon-Mode Rejection VCM = ±10V, ∆RS = 1kΩ

    G = 1 80 96 75 90 dBG = 10 96 115 90 106 dB

    G = 100 110 120 106 110 dBG = 1000 115 120 106 110 dB

    BIAS CURRENT ±0.5 ±2 ✻ ±5 nAvs Temperature ±8 ✻ pA/°C

    OFFSET CURRENT ±0.5 ±2 ✻ ±5 nAvs Temperature ±8 ✻ pA/°C

    NOISE VOLTAGE, RTI G = 1000, RS = 0Ωf = 10Hz 15 ✻ nV/√Hzf = 100Hz 11 ✻ nV/√Hzf = 1kHz 11 ✻ nV/√HzfB = 0.1Hz to 10Hz 0.4 ✻ µVp-p

    Noise Currentf=10Hz 0.4 ✻ pA/√Hzf=1kHz 0.2 ✻ pA/√HzfB = 0.1Hz to 10Hz 18 ✻ pAp-p

    GAINGain Equation 1 + (50kΩ/RG) ✻ V/VRange of Gain 1 10000 ✻ ✻ V/VGain Error G = 1 ±0.01 ±0.05 ✻ ✻ %

    G = 10 ±0.02 ±0.4 ✻ ±0.5 %G = 100 ±0.05 ±0.5 ✻ ±0.7 %G = 1000 ±0.5 ±1 ✻ ±2 %

    Gain vs Temperature G = 1 ±2 ±10 ✻ ±10 ppm/°C50kΩ Resistance(1) ±25 ±100 ✻ ✻ ppm/°C

    Nonlinearity G = 1 ±0.0001 ±0.001 ✻ ±0.002 % of FSRG = 10 ±0.0005 ±0.002 ✻ ±0.004 % of FSR

    G = 100 ±0.0005 ±0.002 ✻ ±0.004 % of FSRG = 1000 ±0.002 ±0.01 ✻ ±0.02 % of FSR

    OUTPUTVoltage IO = 5mA, TMIN to TMAX ±13.5 ±13.7 ✻ ✻ V

    VS = ±11.4V, RL = 2kΩ ±10 ±10.5 ✻ ✻ VVS = ±2.25V, RL = 2kΩ ±1 ±1.5 ✻ ✻ V

    Load Capacitance Stability 1000 ✻ pFShort Circuit Current +20/–15 ✻ mA

    FREQUENCY RESPONSEBandwidth, –3dB G = 1 1 ✻ MHz

    G = 10 100 ✻ kHzG = 100 10 ✻ kHzG = 1000 1 ✻ kHz

    Slew Rate VO = ±10V, G = 10 0.3 0.6 ✻ ✻ V/µsSettling Time, 0.01% G = 1 18 ✻ µs

    G = 10 20 ✻ µsG = 100 120 ✻ µsG = 1000 1100 ✻ µs

    Overload Recovery 50% Overdrive 20 ✻ µsPOWER SUPPLYVoltage Range ±2.25 ±15 ±18 ✻ ✻ ✻ VCurrent VIN = 0V ±2.2 ±3 ✻ ✻ mATEMPERATURE RANGESpecification –40 85 ✻ ✻ °COperating –40 125 ✻ ✻ °CθJA 80 ✻ °C/W

  • ®

    INA1143

    RG

    V–IN

    V+IN

    V–

    RG

    V+

    VO

    Ref

    1

    2

    3

    4

    8

    7

    6

    5

    P Package 8-Pin DIPTop View

    PIN CONFIGURATIONS ELECTROSTATICDISCHARGE SENSITIVITY

    This integrated circuit can be damaged by ESD. Burr-Brownrecommends that all integrated circuits be handled with ap-propriate precautions. Failure to observe proper handling andinstallation procedures can cause damage.

    ESD damage can range from subtle performance degradationto complete device failure. Precision integrated circuits maybe more susceptible to damage because very small parametricchanges could cause the device not to meet its publishedspecifications.

    NC

    RG

    NC

    V–IN

    V+IN

    NC

    V–

    NC

    NC

    RG

    NC

    V+

    Feedback

    VO

    Ref

    NC

    1

    2

    3

    4

    5

    6

    7

    8

    16

    15

    14

    13

    12

    11

    10

    9

    U Package SOL-16 Surface-MountTop View

    PACKAGEDRAWING TEMPERATURE

    PRODUCT PACKAGE NUMBER (1) RANGE

    INA114AP 8-Pin Plastic DIP 006 –40°C to +85°CINA114BP 8-Pin Plastic DIP 006 –40°C to +85°CINA114AU SOL-16 Surface-Mount 211 –40°C to +85°CINA114BU SOL-16 Surface-Mount 211 –40°C to +85°C

    NOTE: (1) For detailed drawing and dimension table, please see end of datasheet, or Appendix C of Burr-Brown IC Data Book.

    PACKAGE/ORDERING INFORMATION

    Supply Voltage .................................................................................. ±18VInput Voltage Range .......................................................................... ±40VOutput Short-Circuit (to ground) .............................................. ContinuousOperating Temperature ................................................. –40°C to +125°CStorage Temperature ..................................................... –40°C to +125°CJunction Temperature .................................................................... +150°CLead Temperature (soldering, 10s) ............................................... +300°C

    NOTE: (1) Stresses above these ratings may cause permanent damage.

    ABSOLUTE MAXIMUM RATINGS (1)

  • ®

    INA114 4

    INPUT-REFERRED NOISE VOLTAGEvs FREQUENCY

    Frequency (Hz)

    Inpu

    t-R

    efer

    red

    Noi

    se V

    olta

    ge (

    nV/√

    Hz)

    1 10 1k100

    1k

    100

    10

    110k

    G = 1

    G = 10

    G = 100, 1000

    G = 1000BW Limit

    NEGATIVE POWER SUPPLY REJECTIONvs FREQUENCY

    Frequency (Hz)

    Pow

    er S

    uppl

    y R

    ejec

    tion

    (dB

    )

    10 100 10k 1M1k

    140

    120

    100

    80

    60

    40

    20

    0100k

    G = 1G = 10

    G = 100G = 1000

    POSITIVE POWER SUPPLY REJECTIONvs FREQUENCY

    Frequency (Hz)

    Pow

    er S

    uppl

    y R

    ejec

    tion

    (dB

    )

    10 100 10k 1M1k

    140

    120

    100

    80

    60

    40

    20

    0100k

    G = 1

    G = 10

    G = 100

    G = 1000

    INPUT COMMON-MODE VOLTAGE RANGEvs OUTPUT VOLTAGE

    Output Voltage (V)

    Com

    mon

    -Mod

    e V

    olta

    ge (

    V)

    –15 –10 0 5 15–5

    15

    10

    5

    0

    –5

    –10

    –1510

    Limited by

    A1

    + Output S

    wing

    A3 – OutputSwing Limit

    A3 + OutputSwing Limit

    Limited by A2

    – Output SwingLim

    ited by

    A1

    – Outpu

    t Swing

    Limited by A2

    + Output Swing

    VD/2–

    +–

    +

    VCM

    VO

    (Any Gain)

    VD/2

    COMMON-MODE REJECTION vs FREQUENCY

    Frequency (Hz)

    Com

    mon

    -Mod

    e R

    ejec

    tion

    (dB

    )

    10 100 10k 100k 1M1k

    140

    120

    100

    80

    60

    40

    20

    0

    G = 1k

    G = 100

    G = 10

    G = 1

    G = 100, 1k

    G = 10

    GAIN vs FREQUENCY

    Frequency (Hz)

    Gai

    n (V

    /V)

    10 100 10k 100k 1M1k

    1k

    100

    10

    1

    TYPICAL PERFORMANCE CURVESAt TA = +25°C, VS = ±15V, unless otherwise noted.

  • ®

    INA1145

    MAXIMUM OUTPUT SWING vs FREQUENCY

    Pea

    k-to

    -Pea

    k A

    mpl

    itude

    (V

    )

    10

    32

    28

    24

    20

    16

    12

    8

    4

    0100 10k 1M

    Frequency (Hz)

    100k1k

    G = 100

    G = 1, 10

    G = 1000

    INPUT BIAS CURRENTvs COMMON-MODE INPUT VOLTAGE

    Inpu

    t Bia

    s C

    urre

    nt (

    mA

    )

    –45

    3

    2

    1

    0

    –1

    –2

    –3–30 –15 0 15 30 45

    |Ib1| + |Ib2|

    Common-Mode Voltage (V)

    NormalOperation

    Over-VoltageProtection

    Over-VoltageProtection

    One Input

    Both Inputs

    Both Inputs

    One Input

    INPUT BIAS CURRENTvs DIFFERENTIAL INPUT VOLTAGE

    Differential Overload Voltage (V)

    Inpu

    t Bia

    s C

    urre

    nt (

    mA

    )

    –45

    3

    2

    1

    0

    –1

    –2

    –3–30 –15 0 15 30 45

    G = 1

    G = 10

    G = 1000G = 100

    INPUT BIAS AND INPUT OFFSET CURRENTvs TEMPERATURE

    Temperature (°C)

    Inpu

    t Bia

    s an

    d In

    put O

    ffset

    Cur

    rent

    (nA

    )

    –40

    2

    1

    0

    –1

    –2–15 10 35 60 85

    ±IB

    IOS

    OFFSET VOLTAGE WARM-UP vs TIME

    Time from Power Supply Turn-on (s)

    Offs

    et V

    olta

    ge C

    hang

    e (µ

    V)

    0

    6

    4

    2

    0

    –2

    –4

    –615 30 45 60 75 90 105 120

    G ≥ 100

    SETTLING TIME vs GAIN

    Gain (V/V)

    Set

    tling

    Tim

    e (µ

    s)

    1 100 100010

    1200

    1000

    800

    600

    400

    200

    0

    0.01%

    0.1%

    TYPICAL PERFORMANCE CURVES (CONT)At TA = +25°C, VS = ±15V, unless otherwise noted.

  • ®

    INA114 6

    NEGATIVE SIGNAL SWING vs TEMPERATUE (RL = 2kΩ)

    Out

    put V

    olta

    ge (

    V)

    –75

    –16

    –14

    –12

    –10

    –8

    –6

    –4

    –2

    0125

    Temperature (°C)

    –50 –25 0 25 50 75 100

    VS = ±15V

    VS = ±11.4V

    VS = ±2.25V

    POSITIVE SIGNAL SWING vs TEMPERATUE (RL = 2kΩ)

    Out

    put V

    olta

    ge (

    V)

    –75

    16

    14

    12

    10

    8

    6

    4

    2

    0125

    Temperature (°C)

    –50 –25 0 25 50 75 100

    VS = ±15V

    VS = ±11.4V

    VS = ±2.25V

    QUIESCENT CURRENT AND POWER DISSIPATIONvs POWER SUPPLY VOLTAGE

    Qui

    esce

    nt C

    urre

    nt (

    mA

    )

    0

    2.6

    2.5

    2.4

    2.3

    2.2

    2.1

    2.0

    Power Supply Voltage (V)

    ±3 ±6 ±9 ±12 ±15 ±18

    120

    100

    80

    60

    40

    20

    0

    Pow

    er D

    issi

    patio

    n (m

    W)

    Power Dissipation

    Quiescent Current

    QUIESCENT CURRENT vs TEMPERATURE

    Qui

    esce

    nt C

    urre

    nt (

    mA

    )

    –75

    2.8

    2.6

    2.4

    2.2

    2.0

    1.8125

    Temperature (°C)

    –50 –25 0 25 50 75 100

    OUTPUT CURRENT LIMIT vs TEMPERATURE

    Sho

    rt C

    ircui

    t Cur

    rent

    (m

    A)

    –40

    30

    25

    20

    15

    1085

    Temperature (°C)

    –15 10 35 60

    +|ICL|

    –|ICL|

    SLEW RATE vs TEMPERATURE

    Sle

    w R

    ate

    (V/µ

    s)

    –75

    1.0

    0.8

    0.6

    0.4

    0.2

    0125

    Temperature (°C)

    –50 –25 0 25 50 75 100

    TYPICAL PERFORMANCE CURVES (CONT)At TA = +25°C, VS = ±15V, unless otherwise noted.

  • ®

    INA1147

    TYPICAL PERFORMANCE CURVES (CONT)At TA = +25°C, VS = ±15V, unless otherwise noted.

    LARGE SIGNAL RESPONSE, G = 1 SMALL SIGNAL RESPONSE, G = 1

    LARGE SIGNAL RESPONSE, G = 1000 SMALL SIGNAL RESPONSE, G = 1000

    +10V

    0

    –10V

    +10V

    0

    –10V

    +200mV

    0

    –200mV

    +100mV

    0

    –200mV

    INPUT-REFERRED NOISE, 0.1 to 10Hz

    0.1µV/div

    1 s/div

  • ®

    INA114 8

    APPLICATION INFORMATIONFigure 1 shows the basic connections required for operationof the INA114. Applications with noisy or high impedancepower supplies may require decoupling capacitors close tothe device pins as shown.

    The output is referred to the output reference (Ref) terminalwhich is normally grounded. This must be a low-impedanceconnection to assure good common-mode rejection. A resis-tance of 5Ω in series with the Ref pin will cause a typicaldevice to degrade to approximately 80dB CMR (G = 1).

    SETTING THE GAIN

    Gain of the INA114 is set by connecting a single externalresistor, RG:

    Commonly used gains and resistor values are shown inFigure 1.

    The 50kΩ term in equation (1) comes from the sum of thetwo internal feedback resistors. These are on-chip metal filmresistors which are laser trimmed to accurate absolute val-

    FIGURE 1. Basic Connections.

    G = 1 + 50 kΩR

    G

    (1)

    DESIRED RG NEAREST 1% RGGAIN (Ω) (Ω)

    1 No Connection No Connection2 50.00k 49.9k5 12.50k 12.4k10 5.556k 5.62k20 2.632k 2.61k50 1.02k 1.02k100 505.1 511200 251.3 249500 100.2 1001000 50.05 49.92000 25.01 24.95000 10.00 1010000 5.001 4.99

    ues. The accuracy and temperature coefficient of theseresistors are included in the gain accuracy and drift specifi-cations of the INA114.

    The stability and temperature drift of the external gainsetting resistor, RG, also affects gain. RG’s contribution togain accuracy and drift can be directly inferred from the gainequation (1). Low resistor values required for high gain canmake wiring resistance important. Sockets add to the wiringresistance which will contribute additional gain error (possi-bly an unstable gain error) in gains of approximately 100 orgreater.

    NOISE PERFORMANCE

    The INA114 provides very low noise in most applications.For differential source impedances less than 1kΩ, the INA103may provide lower noise. For source impedances greaterthan 50kΩ, the INA111 FET-input instrumentation ampli-fier may provide lower noise.

    Low frequency noise of the INA114 is approximately0.4µVp-p measured from 0.1 to 10Hz. This is approximatelyone-tenth the noise of “low noise” chopper-stabilized ampli-fiers.

    A1

    A2

    A36

    25kΩ25kΩ

    25kΩ25kΩ

    7

    4

    3

    8

    1

    2VIN

    VIN

    RG

    V+

    V–

    INA114

    G = 1 + 50kΩRG

    +5

    Over-VoltageProtection

    25kΩ

    25kΩ

    Over-VoltageProtection

    Load

    VO = G • (VIN – VIN)+ –

    0.1µF

    0.1µF

    Pin numbers arefor DIP packages.

    +

    VO

    INA114RG

    Also drawn in simplified form:

    VO

    Ref

    VIN–

    VIN+

  • ®

    INA1149

    OFFSET TRIMMING

    The INA114 is laser trimmed for very low offset voltage anddrift. Most applications require no external offset adjust-ment. Figure 2 shows an optional circuit for trimming theoutput offset voltage. The voltage applied to Ref terminal issummed at the output. Low impedance must be maintainedat this node to assure good common-mode rejection. This isachieved by buffering trim voltage with an op amp asshown.

    FIGURE 2. Optional Trimming of Output Offset Voltage.

    INPUT BIAS CURRENT RETURN PATH

    The input impedance of the INA114 is extremely high—approximately 1010Ω. However, a path must be provided forthe input bias current of both inputs. This input bias currentis typically less than ±1nA (it can be either polarity due tocancellation circuitry). High input impedance means thatthis input bias current changes very little with varying inputvoltage.

    Input circuitry must provide a path for this input bias currentif the INA114 is to operate properly. Figure 3 shows variousprovisions for an input bias current path. Without a biascurrent return path, the inputs will float to a potential whichexceeds the common-mode range of the INA114 and theinput amplifiers will saturate. If the differential source resis-tance is low, bias current return path can be connected to oneinput (see thermocouple example in Figure 3). With highersource impedance, using two resistors provides a balancedinput with possible advantages of lower input offset voltagedue to bias current and better common-mode rejection.

    INPUT COMMON-MODE RANGE

    The linear common-mode range of the input op amps of theINA114 is approximately ±13.75V (or 1.25V from thepower supplies). As the output voltage increases, however,the linear input range will be limited by the output voltageswing of the input amplifiers, A1 and A2. The common-mode range is related to the output voltage of the completeamplifier—see performance curve “Input Common-ModeRange vs Output Voltage.”

    A combination of common-mode and differential inputsignals can cause the output of A1 or A2 to saturate. Figure4 shows the output voltage swing of A1 and A2 expressed interms of a common-mode and differential input voltages.Output swing capability of these internal amplifiers is thesame as the output amplifier, A3. For applications whereinput common-mode range must be maximized, limit theoutput voltage swing by connecting the INA114 in a lowergain (see performance curve “Input Common-Mode VoltageRange vs Output Voltage”). If necessary, add gain after theINA114 to increase the voltage swing.

    Input-overload often produces an output voltage that appearsnormal. For example, an input voltage of +20V on one inputand +40V on the other input will obviously exceed the linearcommon-mode range of both input amplifiers. Since bothinput amplifiers are saturated to nearly the same outputvoltage limit, the difference voltage measured by the outputamplifier will be near zero. The output of the INA114 willbe near 0V even though both inputs are overloaded.

    INPUT PROTECTION

    The inputs of the INA114 are individually protected forvoltages up to ±40V. For example, a condition of –40V onone input and +40V on the other input will not causedamage. Internal circuitry on each input provides low seriesimpedance under normal signal conditions. To provideequivalent protection, series input resistors would contributeexcessive noise. If the input is overloaded, the protectioncircuitry limits the input current to a safe value (approxi-mately 1.5mA). The typical performance curve “Input BiasCurrent vs Common-Mode Input Voltage” shows this input

    FIGURE 3. Providing an Input Common-Mode Current Path.

    INA114

    VIN

    VIN

    RG

    +

    10kΩ

    VO

    OPA177

    Ref

    ±10mVAdjustment Range

    100Ω

    100Ω

    100µA1/2 REF200

    100µA1/2 REF200

    V+

    V–

    INA114

    47kΩ47kΩ

    INA114

    10kΩ

    Microphone,Hydrophone

    etc.

    Thermocouple

    INA114

    Center-tap providesbias current return.

  • ®

    INA114 10

    INA114VIN

    VIN+

    OPA602

    511Ω22.1kΩ22.1kΩ

    Ref

    VO

    For G = 100RG = 511Ω // 2(22.1kΩ)effective RG = 505Ω

    100ΩShield is driven at thecommon-mode potential.

    current limit behavior. The inputs are protected even if nopower supply voltage is present.

    OUTPUT VOLTAGE SENSE (SOL-16 package only)

    The surface-mount version of the INA114 has a separateoutput sense feedback connection (pin 12). Pin 12 must beconnected to the output terminal (pin 11) for proper opera-tion. (This connection is made internally on the DIP versionof the INA114.)

    The output sense connection can be used to sense the outputvoltage directly at the load for best accuracy. Figure 5 showshow to drive a load through series interconnection resis-tance. Remotely located feedback paths may cause instabil-ity. This can be generally be eliminated with a highfrequency feedback path through C1. Heavy loads or longlines can be driven by connecting a buffer inside the feed-back path (Figure 6).

    FIGURE 4. Voltage Swing of A1 and A2.

    FIGURE 5. Remote Load and Ground Sensing. FIGURE 6. Buffered Output for Heavy Loads.

    FIGURE 7. Shield Driver Circuit.

    A1

    A2

    A3

    25kΩ25kΩ

    25kΩ25kΩ

    RG

    V+

    V–

    INA114

    VO = G • VD

    G = 1 + 50kΩRG25kΩ

    25kΩ

    VCM –G • VD

    2

    VD 2

    VD 2

    VCM

    VCM + G • VD

    2

    Over-VoltageProtection

    Over-VoltageProtection

    INA114RG

    VIN–

    VIN+ Load

    Equal resistance here preservesgood common-mode rejection.

    C11000pF

    OutputSense

    Ref

    Surface-mount packageversion only.

    INA114RG

    VIN–

    VIN+

    IL: ±100mA

    OutputSense

    Ref

    Surface-mount packageversion only.

    OPA633

    RL180Ω