23
ENERGY PRODUCTION FROM MICROALGAE ENERGY PRODUCTION FROM MICROALGAE BIOMASS: THE CARBON FOOTPRINT AND ENERGY BALANCE Authors: MSc Diego Medeiros Authors: MSc. Diego Medeiros Dr. Emerson Andrade Sales Dr. Asher Kiperstok

ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

  • Upload
    vanbao

  • View
    222

  • Download
    3

Embed Size (px)

Citation preview

Page 1: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

ENERGY PRODUCTION FROMMICROALGAEENERGY PRODUCTION FROM MICROALGAE BIOMASS: THE CARBON FOOTPRINT AND 

ENERGY BALANCE

Authors: MSc Diego MedeirosAuthors:  MSc. Diego MedeirosDr. Emerson Andrade SalesDr. Asher Kiperstok

Page 2: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

PRESENTATION STRUCTURE

• INTRODUCTION

OBJECTIVES• OBJECTIVES

• JUSTIFICATION

• METHOD

RESULTS• RESULTS

• DISCUSSION

• CONCLUSION

Page 3: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

INTRODUCTION

• Climate Change

I i l b l d d• Increasing global energy demand

• Fossil vs. Renewable fuel

• Microalgae as a potential source

• Life Cycle Assessment

Page 4: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

OBJECTIVES

• This paper intends to assess qualitatively the microalgae bioenergyproduction including an examination of some of the latestproduction including an examination of some of the latestdiscoveries.

• A case study on microalgae biomass combustion was simulated to• A case study on microalgae biomass combustion was simulated toproduce heat and compares the use of different electricity sourceswith respect to Greenhouse Gas (GHG) emissions and Net Energyp gyRatio (NER). Some fossil sources were used as reference.

Page 5: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

2 1 Cultivation data Table 1 – Microalgae cultivation inventory in

2 MICROALGAE TO BIOENERGY2.1 Cultivation data. Table 1  Microalgae cultivation inventory in 

Open‐ponds per kilogram of dry matter.

Page 6: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

Table 2 – Microalgae cultivation inventory in Photo‐bioreactors per

2 MICROALGAE TO BIOENERGYTable 2  Microalgae cultivation inventory in Photo‐bioreactors per 

kilogram of dry matter.

Page 7: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

2 2 Scaling up Table 3 Microalgae to biofuel obstacles for

2 MICROALGAE TO BIOENERGY2.2 Scaling‐up. Table 3 – Microalgae to biofuel obstacles for 

commercial scale implementation.

Cultivation Opportunities ChallengesCultivation Opportunities Challenges

CO2 From industry1 Land shortage2

Nutrients Waste Water Not well studied3

Water Recirculation Not well established4

Infrastructure More control of theHigher costs and energyInfrastructureand Operation

More control of theprocesses

Higher costs and energyintensive5

Sun/light Arid areasFar from resources andusersSun/light Arid areas users

Temperature Mild temperatures

Protected areas ortemperature control in aridareas6Temperature Mild temperatures areas6

Sources: CAMPBELL et al., 20101; PATE et al., 20112; PARK et al., 2011 & CHRISTENSON e SIMS 20113; YANG et al., 20114; NORSKER et al., 20115; NREL, 19986.

Page 8: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

2 2 Scaling up Table 3 Microalgae to biofuel obstacles for

2 MICROALGAE TO BIOENERGY2.2 Scaling‐up. Table 3 – Microalgae to biofuel obstacles for 

commercial scale implementation.

Cultivation Opportunities ChallengesCultivation Opportunities ChallengesSpecie Wild types of algae Domestication8

Oil productivity Nitrogen starvation10 Slow down growth

ContaminationLab microalgae areweak in the field Allow a native contaminant6

Specific to the specie, mediumd i d d t

Harversting Many technologiesand required downstreamprocess7

Promisingtechnologies beingDependent on microalgae

Lipid extractiontechnologies beingdeveloped

Dependent on microalgaespecie and intended products8

BiomassConvert into manyforms of biofuels In development9Biomass forms of biofuels In development9

Sources: UDUMAN et al., 2010 & MATA et al., 20107; RAWAT et al., 2011 & BENEMANN 20108; SINGH e OLSEN, 20119; LARDON et al., 200910.

Page 9: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

Table 4 Comparison of energy balance results of microalgae biofuel

2 MICROALGAE TO BIOENERGYTable 4 – Comparison of energy balance results of microalgae biofuel 

production over the life cycle.

St die Ro te Po iti e Neg ti eStudies Routes Positive Negative

Lardon et al. (2009) Biodiesel production from microalgae X

Clarens et al (2010) Biomass production from microalgae X

Liu et al. (2009) Methanol production from microalgae X

Scott et al. (2010) Biodiesel production from microalgae X

Jo q e et lJorquera et al.

(2010) Biomass production using different methods X X

Biodiesel produced from six microalgae (raceway)

Liu et al. (2011) models X X

Razon and Tan

(2011) Biodie el nd meth ne p od ed f om mi o lg e X(2011) Biodiesel and methane produced from microalgae X

Clarens et al. (2011) Biomass burned to produce electricity X

Page 10: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

METHOD

Evaluated the NER and GHG emissions from the production of Nannochloropsis sp. biomass using SimaPro 7.3 ™ software in the following scenarios:

OP1 ‐ algal biomass, open pond, residual CO2 and conventional fertilizers.

OP2 ‐ algal biomass, open pond, residual CO2 and wastewater.

FPP1 ‐ algal biomass, flat plate, residual CO2 and conventional fertilizers.

FPP2 ‐ algal biomass flat plate residual CO and wastewaterFPP2 ‐ algal biomass, flat plate, residual CO2 and wastewater.

Page 11: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

METHOD

Scope. Figure 1 – Thermal energy production chain from microalgae biomass.

Page 12: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

3 2 I t A l i T b l 5 Mi l bi f N hl i

METHOD3.2 Inventory Analysis. Tabela 5 – Microalgae biomass from Nannochloropsis sp. 

production inventory per kilogram of dry matter in Open‐ponds (OP) and Flat‐plate photobioreactor (FPP).

Inputs OP FPP Unit Source

CULTIVATIONNitrogen (N) 0,07 0,07 kg/kg CalculatedPhosphorus (P) 0,01 0,01 kg/kg CalculatedPotassium (K) 0,01 0,01 kg/kg CalculatedFertilizers transportation 0,02 0,02 t.km EstimatedCarbon dioxide (CO2) 1,83 1,83 kg/kg Chisti 2007

k /k lWater 2857,14 370,37 kg/kg Jorquera et al. 2009Electricity 1,05 1,94 kWh/kg Jorquera et al. 2009

Microalgae + Water 2858,14 371,37 kg/kg

FLOCULATIONFLOCULATIONAluminum Sulfate Al2(SO4)3 1,3 1,3 kg/kg Razon and Tan 2011Hydrochloric Acid HCL (15%) 0,3 0,3 kg/kg Razon and Tan 2011

Microalgae + moisture 8 1,04 kg/kg

CENTRIFUGATIONElectricity 0,06 0,001 kWh/kg Water Brentner et al. 2011

Page 13: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

4.2 Net Energy Ratio. Figure 2 – Energy balance of 20 Mega Joules (LHV)RESULTS

from Nannochloropsis sp. at OP1, OP2, FPP1 and FPP2 and the fossil options.

NER = E Out / Σ E In

1,20

1,40

0,750,80

0,71 0,740,80

1,00

ER

0,46

0,58

0,370,44

0,40

0,60NE

0,00

0,20

OP1 OP2 FPP1 FPP2 Hard coal Natural Gas Heavy fuel Light fuel oil oil

Production Routes

Source: Cumulative Energy Demand (CED) method from Ecoinvent v2.2 (2013).

Page 14: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

4.3 GHG emissions Figure 3 – GHG emissions from OP1, OP2, FPP1, FPP2 

RESULS

and some fossil options referred to the production of 20 MJ (LHV) of thermal energy from combustion at the power plant.

3 143,5

4

4,5

2,47

2,02

3,14

2,71 2,59

1,88 1,822

2,5

3

O2

e/

20

MJ

1,43

0 5

1

1,5

2

kg

CO

0

0,5

OP1 OP2 FPP1 FPP2 Hard coal Natural Gas Heavy fuel oil

Light fuel oil

Production routes

Page 15: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

Figure 4 – Relative GHG emissions per processes from thermal energyRESULTS

production of OP1.

Source: SimaPro 7.3 ®.

Page 16: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

RESULTS

Using the Brazilian electricity matrix.

0,590,79

0,520,67

0,50

1,00

R (

BR

)

0,00OP1 OP2 FPP1 FPP2

NE

R

Production scenarios

1,691,25

1,811,362

3

BR

)

1,25 ,

0

1

OP1 OP2 FPP1 FPP2

kg

CO

2e (

B

Production scenariosProduction scenarios

Page 17: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

DISCUSSION• The substitution of commercial fertilizers by effluent brought an

expressive gain in NER of 25‐30%.

• Around 80% of the GHG emissions using fossil sources comes fromcombustion.

• Microalgae GHG emissions were higher than for fossil using theUnited States electricity grid but lower using the Brazilian one. It

l t i ti l t it t k lmeans, a cleaner matrix stimulates it to keep clean.

• Scenarios OP1, OP2, FPP1 and FPP2 increased 28, 36, 42 and 55%on their NER and decreased 32 38 42 and 50% on their GHGon their NER and decreased 32, 38, 42 and 50% on their GHGemissions respectively.

Page 18: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

CONCLUSION

Even though the fossil options show slightly better yields compared tomicroalgae in the two categories analyzed the fossil energymicroalgae in the two categories analyzed, the fossil energytechnology is mature and has less space for improvements, whilemicroalgae is in its infancy and has many technological solutionsmicroalgae is in its infancy and has many technological solutionsbeing developed.

Microalgae favor industrial ecology practices.g gy p

Page 19: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

CLEAN TECHNOLOGY NETWORK

Thank you for your kind attention!TECLIM

Diego Medeiros

E‐mail: [email protected] page: http://www teclim ufba brHome page: http://www.teclim.ufba.br

Page 20: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

REFERENCES• ISO 14040:2009 – Environmental Management – Life Cycle Assessment – Principles and framework.

• Algae Industry Magazine (AIM). www.algaeindustrymagazine.com, Accessed in 30/01/2013.

• Benemann J 2010 AIM Interview: Dr John Benemann by David Schwartz Algae Industry Magazine available at• Benemann, J., 2010. AIM Interview: Dr. John Benemann by David Schwartz. Algae Industry Magazine available at http://www.algaeindustrymagazine.com/the‐aim‐interview‐dr‐john‐benemann/.

• Brentner, L. B., Eckelman, M. J., Zimmerman, J. B., 2011. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental science & technology, v. 45, n. 16, p. 7060‐7. doi: 10.1021/es2006995.

• Campbell, P. K., Beer, T.; Batten, D., 2010. Life cycle assessment of biodiesel production from microalgae in ponds. BioresourceCampbell, P. K., Beer, T.; Batten, D., 2010. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresourcetechnology. Elsevier Ltd. doi: 10.1016/j.biortech.2010.06.048.

• Chisti, Y., Yan, J., 2011. Energy from algae: Current status and future trends. Applied Energy, v. 88, n. 10, p. 3277‐3279. Elsevier Ltd. doi: 10.1016/j.apenergy.2011.04.038.

• Christenson, L., Sims, R., 2011. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts.Biotechnology advances, v. 29, n. 6, p. 686‐702. Elsevier Inc. doi: 10.1016/j.biotechadv.2011.05.015.

• Clarens, A. F. et al., 2011. Environmental Impacts of Algae‐Derived Biodiesel and Bioelectricity for Transportation. Env. Sci & Tech. (45) 7554‐7560.

• Clarens, A. F., Resurreccion, E. P., White, M. A, Colosi, L. M., 2010. Environmental life cycle comparison of algae to other bioenergy f d t k E i t l i & t h l 44 5 1813 9 d i 10 1021/ 902838feedstocks. Environmental science & technology, v. 44, n. 5, p. 1813‐9. doi: 10.1021/es902838.

• Davis, R., Aden, A., Pienkos, P. T., 2011. Techno‐economic analysis of autotrophic microalgae for fuel production. Applied Energy, v. 88, n. 10, p. 3524‐3531. Elsevier Ltd. doi: 10.1016/j.apenergy.2011.04.018.

Page 21: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

REFERENCES• Ecoinvent v2.2. 2013. Life Cycle Inventory Database. Disponível em www.ecoinvent.org

• Jiang, L., Luo, S., Fan, X., Yang, Z., Guo, R., 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2 Applied Energy v 88 n 10 p 3336‐3341 Elsevier Ltd doi: 10 1016/j apenergy 2011 03 043high concentration of CO2. Applied Energy, v. 88, n. 10, p. 3336 3341. Elsevier Ltd. doi: 10.1016/j.apenergy.2011.03.043.

• Jorquera, O., Kiperstok, A., Sales, E. A, Embiruçu, M., Ghirardi, M. L., 2010. Comparative energy life‐cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource technology, v. 101, n. 4, p. 1406‐13. Elsevier Ltd. doi: 10.1016/j.biortech.2009.09.038.

• Lardon, L., Hélias, A., Sialve, B., Steyer, J.‐P., Bernard, O., 2009. Life‐Cycle Assessment of Biodiesel Production from Microalgae. Environmental Science Technology, v. 43, n. 17, p. 6475‐6481. American Chemical Society. doi: 10.1021/es900705j.

• Larsdotter, K., 2006. WasteWater treatment with microalgae – a literature review. avloppsrening med mikroalger – en litteraturstudie. Solar Energy, p. 31‐38.

• Liu, J., Ma, X., 2009. The analysis on energy and environmental impacts of microalgae‐based fuel methanol in China. Energy Policy 37 ( ) 1 9 1 88(4) p. 1479‐1488.

• Liu, X., Clarens, A. F., Colosi, L. M., 2011. Algae biodiesel has potential despite inconclusive results to date. Bioresource Technology. Elsevier Ltd. doi: 10.1016/j.biortech.2011.10.077.

• Mata, T. M., Martins, A. A., Caetano, N. S., 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14 217 232Sustainable Energy Reviews 14  217‐232.

• Norsker, N.‐H., Barbosa, M. J., Vermuë, M. H., Wijffels, R. H., 2011. Microalgal production ‐ a close look at the economics. Biotechnology advances, v. 29, n. 1, p. 24‐7. Elsevier Inc. doi: 10.1016/j.biotechadv.2010.08.005.

• Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory (NREL) Report, available at g gy y ( ) p ,http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf.

• Park, J. B. K., Craggs, R. J., Shilton, A N., 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresource technology, v.102, n.1, p.35‐42. doi: 10.1016/j.biortech.2010.06.158.

Page 22: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

REFERENCES• Pate, R., Klise, G., Wu, B., 2011. Resource demand implications for US algae biofuels production scale‐up. Applied Energy, v. 88, n. 10, 

p. 3377‐3388. Elsevier Ltd. doi: 10.1016/j.apenergy.2011.04.023.

• Perelo L W Sousa L L Hora D S 2012 Crescimento da microalga Nannochloropsis sp em água salina do semi‐árido com adição dePerelo, L. W., Sousa, L. L., Hora, D. S., 2012. Crescimento da microalga Nannochloropsis sp. em água salina do semi árido com adição de esgoto domestico como fonte de nutrientes. II COBESA, Feira de Santana – BA.

• Rawat, I., Kumar, R., Mutanda, T., Bux, F., 2011. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, v. 88, n. 10, p. 3411‐3424. Elsevier Ltd. doi: 10.1016/j.apenergy.2010.11.025.

• Razon, L. F. and Tan, R. R., 2011. Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Applied Energy, v. 88, n. 10, p. 3507‐3514 2011.

• Scott, S. A, Davey, M. P., Dennis, J. S., et al., 2010. Biodiesel from algae: challenges and prospects. Current opinion in biotechnology, v. 21, n. 3, p. 277‐286. Elsevier Ltd. doi: 10.1016/j.copbio.2010.03.005.

Sf i Gi i G 2011 h bi f i l l h d il d i i h• Sforza, E., Bertucco, A.,, Morosinotto, T., Giacometti, G. M., 2011. Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: From lab‐scale experiments to large‐scale design. Chemical Engineering Research and Design, n. December, p. 1‐8. Institution of Chemical Engineers. doi: 10.1016/j.cherd.2011.12.002.

Page 23: ENERGY PRODUCTION FROM · PDF fileScott et al. (2010) Biodiesel production from microalgae X Jo q eJorquera et al. (2010) Biomass production using different methods X X ... Biodiesel

REFERENCES• Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program—

Biodiesel from Algae. National Renewable Energy Laboratory (NREL), available at http://www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf.p // gy g / /p / _ _ g p

• Singh, A., Olsen, S. I., 2011. A critical review of biochemical conversion , sustainability and life cycle assessment of algal biofuels. Applied Energy. Elsevier Ltd. doi: 10.1016/j.apenergy.2010.12.012.

• U.S. DOE, 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and RenewableEnergy, Biomass Program. Visit http://biomass.energy.gov for more information.

• Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., and Hoadley, A., 2010. Dewatering of microalgal cultures: A major bottleneck to algae‐based fuels. J. Renewable Sustainable Energy 2, 012701; doi:10.1063/1.3294480 (15 pages).

• Um, B.‐H., Kim, Y.‐S., 2009. Review: A chance for Korea to advance algal‐biodiesel technology. Journal of Industrial and Engineering Chemistry, v. 15, n. 1, p. 1‐7. doi: 10.1016/j.jiec.2008.08.002.

h l 2011 if C l l i i di l d i f i l i d i• Yang, J., Xu, M., Zhang, X., et al., 2011. Life Cycle Analysis on Biodiesel Production from Microalgae: Water Footprint and Nutrients Balance. Bioresource Technology. Elsevier Ltd. doi: 10.1016/j.biortech.2010.07.017.

• Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., Oh, H. M., 2010. Bioresource Technology Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, v. 101, n. 1, p. S71‐S74. Elsevier Ltd. doi: 10.1016/j.biortech.2009.03.030.