Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

Embed Size (px)

Citation preview

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    1/88

    Manajemen Sistem Rekayasa & Nilai - 2013

    Department of Civil EngineeringGraduate ProgramUniversity of Indonesia25 October 2 13

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    2/88

    1

    Simulation Models

    Iconic

    Physical replicas of real system, reduced scale

    Interrelationship of components not well understood or

    too complex Analog

    Real system is modeled through a completely differentphysical media

    Analytical System component and structure defined as

    mathematical model

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    3/88

    2

    Introduction to Simulation

    Real situation rarely meet assumptions of analyticalmodel. Market uncertainties vs. competitive may make predicting

    unit profit very difficult

    Rate at which resources are consume may vary Availability of resources from suppliers may not be assured

    Demand almost always uncertain

    The more elegant the mathematical formulation of aproblem is, the less it matches reality.

    Situations which problem does not meet the assumptionsrequired by standard analytical modeling approaches,simulation can be a valuable approach to modelingand solving a problem.

    Evans & Olson, 1998

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    4/88

    3

    Simulation Definition

    Is the process of building a mathematical or logical

    model of a system or a decision problem, and

    experimenting with the model to obtain insight into

    the systems behavior or to assist in solving thedecision problem.

    Key elements:

    Model Experiment

    Evans & Olson, 1998

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    5/88

    4

    Where simulation fits in . . .

    SimulationProgramming

    Analysis

    Modeling

    Probability

    &

    Statistics

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    6/88

    5

    Examples of Simulation

    Is used to forecast weather

    In business, is used to predict, to explain, to trainand to help identify optimal solution

    In manufacturing, is used to model production andassembly operations, develop realistic productionschedules, study inventory policies, analyzereliability, quality, and equipment replacement

    problems, and design material handling andlogistics system

    Finds extensive application in both profit-seekingservice firms and nonprofit service organization

    Evans & Olson, 1998

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    7/88

    6

    Models and Simulation

    Model is an abstraction or representation of a real

    system, idea, or object

    Model

    Prescriptive

    Descriptive

    Deterministicor

    Probabilistic

    Discrete or

    Continuous

    Linear

    Programming

    Queuing

    models

    Linear programming

    (deterministic)

    Queuing models

    (probabilistic)

    Determine

    optimal policy

    Describe

    relationships and

    provide information

    for evaluation

    Deterministic: all data are

    known or assumed to be

    known with certainty

    Probabilistic: some data

    are described byprobability distributions

    Refers to the types

    of the variables in

    the model

    Integer programming

    (discrete)

    Linear programming(continuous)

    Evans & Olson, 1998

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    8/88

    7

    Monte Carlo Simulation (MCS)

    Is basically a sampling experiment whose purpose is to

    estimate the distribution of an outcome variable that

    depends on several probabilistic input variables

    Example in financial problems: sales, costs, and inflationare random variables

    The term MCS was first used during the development of

    the atom bomb as a code name for computer

    simulations of nuclear fission.

    Researchers coined this term because of the similarity to

    random sampling in games of chance such as roulette in

    the famous casinos of Monte CarloEvans & Olson, 1998

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    9/88

    8

    Generating Probabilistic Outcomes

    Random Numbers

    One that is uniformly distributed between 0 and 1

    In Excel, =RAND()

    Random Numbers Seed

    A value from which a stream of a random numbers at a

    later time.

    Desirable when we wish reproduce an identicalsequence of random events in a simulation to test theeffects of different policies or decision variables under

    the same circumstances

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    10/88

    9

    Random Numbers and MCS

    A random number, Ri, is defined as an independent

    random sample drawn from a continuous uniform

    distribution whose probability density function (pdf)

    is given by

    The procedure consists of two steps:

    We develop the cumulative probability distribution(cdf) for the given random variable, and

    We use the cdf to allocate the integer random numbers

    directly to the various values of the random variables.

    otherwise0

    101)(

    xxf

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    11/88

    10

    Monte Carlo Simulation

    Similarity of statistical simulation to game of chance

    Physical System

    Probability

    Distribution

    function

    Equations:

    algebraic or

    differentialMonte Carlo

    simulation

    Result Random

    samplingSolution

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    12/88

    11

    MONTE CARLO SIMULATIONS (1)

    Similar to Playing Coins or Dice Many Times

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    13/88

    12

    MONTE CARLO SIMULATIONS (2a)

    Generating

    Random

    Numbers

    between 0and 1

    Calculating x

    Using CDF

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    14/88

    13

    MONTE CARLO SIMULATIONS (2b)

    RV = 01

    x = A + RV*(B-A) 1

    0A B

    RV

    x

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    15/88

    14

    MONTE CARLO SIMULATIONS (3)

    0.382

    0.88461

    0.863247

    0.03238

    0.285043

    0.371838

    0.42616

    0.991241

    0.705039

    0.3002110.074343

    0.487045

    0.040712

    0.100314

    0.809107

    0.756157

    0.552324

    0.970275

    0.805658

    0.1148410.986297

    0.500778

    0.037965

    0.584521

    0.200476

    0.300211

    0.90405

    0.516648

    0.789026

    0.619404

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    16/88

    15

    MONTE CARLO SIMULATIONS (4)

    0.382

    0.88461

    0.863247

    0.03238

    0.285043

    0.371838

    0.42616

    0.991241

    0.705039

    0.300211

    0.074343

    0.487045

    0.040712

    0.100314

    0.809107

    0.756157

    0.552324

    0.970275

    0.805658

    0.114841

    0.986297

    0.500778

    0.037965

    0.584521

    0.200476

    0.300211

    0.90405

    0.516648

    0.7890260.619404

    Normal Distribution

    Mean = 5, SD = 1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 2 4 6 8 10 12

    x

    CDF

    0.382 4.699768

    0.88461 6.19835

    0.863247 6.095023

    0.03238 3.153089

    0.285043 4.432075

    0.371838 4.673009

    0.42616 4.813842

    0.991241 7.375655

    0.705039 5.538948

    0.300211 4.476205

    0.074343 3.555813

    0.487045 4.967521

    0.040712 3.257517

    0.100314 3.720236

    0.809107 5.874609

    0.756157 5.693994

    0.552324 5.131536

    0.970275 6.884846

    0.805658 5.862008

    0.114841 3.798821

    0.986297 7.205688

    0.500778 5.001951

    0.037965 3.225194

    0.584521 5.213473

    0.200476 4.160078

    0.300211 4.476205

    0.90405 6.304979

    0.516648 5.041741

    0.789026 5.8030450.619404 5.303914

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    17/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    18/88

    USING MS-EXCEL 2003

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    19/88

    18

    USING MS-EXCEL (1)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    20/88

    19

    USING MS-EXCEL (2)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    21/88

    20

    USING MS-EXCEL (3)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    22/88

    21

    USING MS-EXCEL (4)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    23/88

    22

    USING MS-EXCEL (5)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    24/88

    USING MS-EXCEL 2007

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    25/88

    24

    Using MS-EXCEL (1)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    26/88

    25

    Showing Up Data Analysis

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    27/88

    26

    Showing Up Data Analysis

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    28/88

    27

    Showing Up Data Analysis

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    29/88

    28

    Showing Up Data Analysis

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    30/88

    29

    Using MS-EXCEL (2)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    31/88

    30

    Using MS-EXCEL (3)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    32/88

    31

    Using MS-EXCEL (4)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    33/88

    32

    Using MS-EXCEL (5)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    34/88

    SIMPLE PROBABILISTIC

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    35/88

    34

    SIMPLE EXAMPLE: DICE

    2 Dice: A = Die #1 + Die #2

    SIMULATIONS: 2 DICE

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    36/88

    A = (Die No. 1 + Die No.2)

    A < 7 A = 12

    SIMULATIONS No. Samples = 60 3

    Total Samples = 100 100

    p = 0.6 0.03

    THEORETICAL CALCULATION p = 7/12 1/360.5833 0.0278

    RV1 Die No. 1 RV2 Die No. 2 A A < 7 A = 12

    0.136265 1 0.306009 2 3 1 0

    0.19541 2 0.600391 4 6 1 0

    0.85876 6 0.085177 1 7 1 00.637135 4 0.079897 1 5 1 0

    0.578234 4 0.735679 5 9 0 0

    0.409223 3 0.141881 1 4 1 0

    0.611133 4 0.920103 6 10 0 0

    0.188238 2 0.262886 2 4 1 0

    0.508499 4 0.542375 4 8 0 0

    0.091098 1 0.106479 1 2 1 00.737358 5 0.328867 2 7 1 0

    0.056459 1 0.003571 1 2 1 0

    0.363964 3 0.403638 3 6 1 0

    0.243812 2 0.380444 3 5 1 0

    0.895169 6 0.389203 3 9 0 0

    0.85638 6 0.915036 6 12 0 10.934294 6 0.063875 1 7 1 0

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    37/88

    0

    5

    10

    15

    20

    25

    1 2 3 4 5 6

    Value of Die

    Freq

    uency

    Die No. 1

    Die No. 2

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    38/88

    37

    SIMPLE EXAMPLE: DICE

    RV1 = 0.136265 0 < RV1 < 1/6 Value of

    Die #1 = 1

    RV2 = 0.306009 1/6 < RV2 < 2/6 Value of

    Die #2 = 2 A = Value of Die #1 + Value of Die #2 = 1 + 2 =

    3

    A 7? True 1 A = 12? False 0

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    39/88

    38

    SIMPLE EXAMPLE: DICE

    Same process repeated for 100 times (see TotalSamples = 100)

    From 100 samples 60 samples satisfy A 7?

    p = 60 / 100 = 0.6 (theoretical p = 0.5833) From 100 samples 3 samples satisfy A = 12?

    p = 3/100 = 0.03 (theoretical p = 0.0278)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    40/88

    39

    HOW MANY SAMPLES (1)

    0.01

    0.1

    1

    1 10 100 1000 10000

    No. Samples

    ProbabilityA

    =12

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1 10 100 1000 10000

    No. Samples

    Probability

    A

    10 (1 / Probability)

    More Samples

    Better Typically

    0.01

    0.1

    1

    1 10 100 1000 10000

    No. Sample Meeting Criterion

    Probabilit

    y

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    42/88

    ENGINEERING ECONOMY

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    43/88

    42

    Benefit / Cost Ratio

    Design A Design BInitial Investment* (4,074,088) (426,209)

    Annual Maintenance (1,500,000) (150,000)

    Total (5,574,088) (576,209)

    Annual Benefits 6,500,000 650,000

    Benefit/Cost Ratio 1.17 1.13

    Both Alternatives Economically Feasible

    * Note:

    Initial Investment = (40,000,000) (4,000,000)

    i = 8% 4%

    n = 20 12

    Annual Worth = (4,074,088) (426,209)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    44/88

    Initial Rate Annual Annual Annual Annual B/C Ratio

    Investment Worth Maintenance Cost Benefit

    Min = 36000000 6.00% 1350000 5850000

    Max = 44000000 10.00% 1650000 7150000 Prob of Failure

    0.06

    Average = 39975895 8.02% 4086120 1510867 5596987 6571531 1.183707

    Min = 36113773 6.02% 3187186 1351492 4642614 5860633 0.906326

    Max = 43923582 9.90% 4978663 1647977 6504055 7148334 1.481975

    0.382 0.101 0.596 0.899 39056001 6.40% 3517241 1528945 5046186 7018838 1.390919 0

    0.014 0.407 0.863 0.139 36115970 7.63% 3577709 1608974 5186683 6030160 1.162623 0

    0.032 0.164 0.22 0.017 36259041 6.66% 3331766 1415883 4747649 5872217 1.236868 00.554 0.357 0.372 0.356 40429090 7.43% 3944536 1461551 5406087 6312282 1.167625 0

    0.426 0.304 0.976 0.807 39409284 7.22% 3782525 1642712 5425238 6898665 1.271588 0

    0.952 0.053 0.705 0.817 43613514 6.21% 3868671 1561512 5430182 6911480 1.27279 0

    0.3 0.75 0.351 0.776 38401685 9.00% 4207016 1455445 5662461 6858356 1.211197 0

    0.064 0.358 0.487 0.511 36512467 7.43% 3563465 1496113 5059579 6514580 1.287574 0

    0.041 0.231 0.005 0.926 36325694 6.92% 3408363 1351492 4759855 7053989 1.481975 0

    0.776 0.68 0.809 0.724 42205512 8.72% 4531116 1592732 6123848 6791624 1.109045 0

    0.756 0.627 0.174 0.405 42049257 8.51% 4445346 1402095 5847441 6376237 1.090432 00.555 0.181 0.97 0.687 40441298 6.72% 3736059 1641082 5377141 6743023 1.254016 0

    0.806 0.262 0.178 0.867 42445265 7.05% 4021760 1403386 5425146 6976783 1.286008 0

    0.762 0.738 0.986 0.926 42092471 8.95% 4595839 1645889 6241728 7053275 1.13002 0

    0.501 0.675 0.49 0.146 40006226 8.70% 4289219 1496947 5786166 6039523 1.043787 0

    0.672 0.732 0.585 0.152 41372478 8.93% 4508568 1525356 6033924 6047894 1.002315 0

    /

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    45/88

    44

    Benefit / Cost Ratio (line1)

    RV1 = 0.382 Initial Investment = 36M + RV1*8M =39.1M

    RV2 = 0.101 Rate = 6% + RV2*4% = 6.4%

    Annual Worth = PMT(Rate,20,-Initial Investment) = 3.52M

    RV3 = 0.596 Annual Maintenance = 1.35M +RV3*0.3M = 1.53M

    Annual Cost = 3.52M + 1.53M = 5.05M

    RV4 = 0.899 Annual Benefit = 5.85M + RV4*1.3M =

    7.02M

    B/C Ratio = 7.02M / 5.05M = 1.39

    B/C Ratio > 1.0 Not fail = 0

    /

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    46/88

    45

    Benefit / Cost Ratio

    Same process repeated for 100 times (see TotalSamples = 100)

    Simulation: B/C Ratio = 1.18

    Theoretical: B/C Ratio = 1.17 From 100 samples 6 samples do not satisfy

    B/C Ratio 1.0 probability of failure = 6 /100 = 0.06

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    47/88

    RISK ASSESSMENT

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    48/88

    47

    Series Networks

    If either one of A, B, or C fails, system failsR = 0.8521 0.9712 0.9357 = 0.7743

    Pf = 10.7743 = 0.2257Reliability Probability of Failure

    A 0.8521 0.1479

    B 0.9712 0.0288

    C 0.9357 0.0643

    A B C Probability Sum

    1 0.7743 0.7743

    2

    0.05323 0.0230

    4 0.1344

    5 0.0016 0.2257

    6 0.0092

    7 0.0040

    8 0.0003

    SIMULATIONS: SERIES SYSTEM

    A S h d l d

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    49/88

    A B C

    SIMULATIONS No. Samples = 88 99 92 79

    Total Samples = 100 100 100 100

    p = 0.88 0.99 0.92 0.79

    THEORETICAL p = 0.8521 0.9712 0.9357 0.7743

    RV1 RV2 RV3 A B C

    0.136265 0.306009 0.382 1 1 1 3 1

    0.19541 0.600391 0.100681 1 1 1 3 1

    0.85876 0.085177 0.596484 0 1 1 2 0

    0.637135 0.079897 0.899106 1 1 1 3 1

    0.578234 0.735679 0.88461 1 1 1 3 1

    0.409223 0.141881 0.958464 1 1 0 2 0

    0.611133 0.920103 0.014496 1 1 1 3 1

    0.188238 0.262886 0.407422 1 1 1 3 1

    0.508499 0.542375 0.863247 1 1 1 3 1

    0.091098 0.106479 0.138585 1 1 1 3 10.737358 0.328867 0.245033 1 1 1 3 1

    0.056459 0.003571 0.045473 1 1 1 3 1

    0.363964 0.403638 0.03238 1 1 1 3 1

    0.243812 0.380444 0.164129 1 1 1 3 1

    0.895169 0.389203 0.219611 0 1 1 2 0

    0.85638 0.915036 0.01709 0 1 1 2 0

    0.934294 0.063875 0.285043 0 1 1 2 0

    As Scheduled

    As Scheduled

    System

    System

    S N ( )

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    50/88

    49

    Series Networks (line1)

    RV1 = 0.136265 RV1 < Reliability of A =0.8521 A is reliable A = 1

    RV2 = 0.306009 RV2 < Reliability of B =0.9712 B is reliable B = 1

    RV3 = 0.382 RV3 < Reliability of C =0.9357 C is reliable C = 1

    Sum of A, B, C = 3 all subsystems reliable

    series system network works

    = 1

    S N k (l 3)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    51/88

    50

    Series Networks (line3)

    RV1 = 0.85876 RV1 > Reliability of A =0.8521 A is not reliable A = 0

    RV2 = 0.085177 RV2 < Reliability of B =0.9712 B is reliable B = 1

    RV3 = 0.596484 RV3 < Reliability of C =0.9357 C is reliable C = 1

    Sum of A, B, C = 2 NOT all subsystems

    reliable

    series system network fails

    = 0

    S N k

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    52/88

    51

    Series Networks

    Same process repeated for 100 times (see TotalSamples = 100)

    From 100 samples 79 samples satisfy series

    system network requirement

    p = 79 / 100 =0.79 (theoretical p = 0.7743)

    P ll l N k

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    53/88

    52

    Parallel Networks

    If both A and B fail, system failsRcomponent = 0.7500

    Rsystem = 0.9375

    Reliability Probability of FailureA 0.7500 0.2500

    B 0.7500 0.2500

    A B Probability Sum

    1 0.56252 0.1875 0.93753 0.18754 0.0625 0.0625

    SIMULATIONS: PARALLEL SYSTEM

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    54/88

    A B

    SIMULATIONS No. Samples = 79 72 8

    Total Samples = 100 100 100

    p = 0.79 0.72 0.080.9200

    THEORETICAL p = 0.75 0.75 0.9375

    RV1 RV2 A B

    0.306009 0.382 1 1 2 0

    0.600391 0.100681 1 1 2 00.085177 0.596484 1 1 2 0

    0.079897 0.899106 1 0 1 0

    0.735679 0.88461 1 0 1 0

    0.141881 0.958464 1 0 1 0

    0.920103 0.014496 0 1 1 0

    0.262886 0.407422 1 1 2 00.542375 0.863247 1 0 1 0

    0.106479 0.138585 1 1 2 0

    System

    System

    0.870815 0.991241 0 0 0 1

    P ll l N k (li 1)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    55/88

    54

    Parallel Networks (line1)

    RV1 = 0.306009 RV1 < Reliability of A =0.7500 A is reliable A = 1

    RV2 = 0.382 RV2 < Reliability of B = 0.7500

    B is reliable

    B = 1

    Sum of A, B = 2 NOT all subsystems

    unreliable parallel system network works =

    0

    P ll l N k (li 4)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    56/88

    55

    Parallel Networks (line4)

    RV1 = 0.079897 RV1 < Reliability of A =0.7500 A is reliable A = 1

    RV2 = 0.899106 RV2 < Reliability of B =

    0.7500

    B is not reliable

    B = 0 Sum of A, B = 1 NOT all subsystems

    unreliable parallel system network works =

    0

    P ll l N k (li ?)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    57/88

    56

    Parallel Networks (line?)

    RV1 = 0.870815 RV1 < Reliability of A =0.7500 A is not reliable A = 0

    RV2 = 0.991241 RV2 < Reliability of B =

    0.7500

    B is not reliable

    B = 0 Sum of A, B = 0 all subsystems unreliable

    parallel system network fails = 1

    P ll l N t k

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    58/88

    57

    Parallel Networks

    Same process repeated for 100 times (see TotalSamples = 100)

    From 100 samples 8 samples fails parallel

    system network requirement

    probability offailure = 8 / 100 = 0.08 reliability = 10.08 = 0.92 (theoretical reliability = 0.9375)

    P b bilit f F il

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    59/88

    Probability of Failure

    ProbabilityDe

    nsityFunction

    Capacity, Q

    Load, F

    mF mQ

    sF

    sQ

    Safety Margin, M = Q - F

    ProbabilityDensityFunction

    mM

    pf

    sM

    Reliability Index = mM/sM= (mQ-mF)/(sQ

    2+sF2)0.5

    Probabilit of Fail re (2)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    60/88

    59

    Probability of Failure (2)

    C: C = 30 C = 6D:D = 20 D = 6

    M = CDM = 10 M = 8.49

    = M / M = 10 / 8.49= 1.18 probability of failure = 0.1193

    Probability of Failure (3)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    61/88

    60

    Probability of Failure (3)C D M = C - D

    mean 30 20 10

    stdev 6 6 8.485281COV 0.2 0.3 0.848528

    mean 30.09954 19.78092 10.31861 0.115

    stdev 6.015097 6.007956 8.722103

    COV 0.19984 0.303725 0.845279 1.20036

    0.382 0.100681 28.19861 12.3339 15.86471 0

    0.88461 0.958464 37.1901 30.3988 6.791303 0

    0.863247 0.138585 36.57014 13.4798 23.09034 00.03238 0.164129 18.91853 14.13422 4.784312 0

    0.285043 0.343089 26.59245 17.57571 9.016736 0

    0.371838 0.355602 28.03806 17.77856 10.2595 0

    0.037965 0.796258 19.35116 24.96999 -5.618825 1

    P b bilit f F il (li 1)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    62/88

    61

    Probability of Failure (line1)

    RV1 = 0.382 C = NORMINV(RV1,mean-C,stdev-C) = 28.19861

    RV2 = 0.100681 D = NORMINV(RV2,mean-

    D,stdev-D) = 12.3339 M = CD = 15.86471 > 0 M NOT fails

    = 0

    P b bilit f F il (li ?)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    63/88

    62

    Probability of Failure (line?)

    RV1 = 0.038965 C = NORMINV(RV1,mean-C,stdev-C) = 19.35116

    RV2 = 0.796258 D = NORMINV(RV2,mean-

    D,stdev-D) = 24.96999 M = CD = -5.618825 < 0 M fails = 1

    P b bilit f F il (4)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    64/88

    63

    Probability of Failure (4)

    Same process repeated for 1000 times C: C = 30 C = 6 (theoretical)

    C: C = 30.1 C = 6.0 (simulation)

    D: D = 20 D = 6 (theoretical)D: D = 19.8 D = 6.0 (simulation)

    M: M = 10 M = 8.49 (theoretical)

    M: M = 10.3 M = 8.72 (simulation)

    Probabilit of Fail re (5)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    65/88

    64

    Probability of Failure (5)

    Same process repeated for 1000 times Theoretical: 0.1193 = 1.18 Simulation: From 1000 samples 115 samples

    fail probability of failure = 115 / 1000 =0.115 = 1.20036

    Probability of Failure (6)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    66/88

    65

    Probability of Failure (6)

    0

    50

    100

    150

    200

    250

    300

    350

    5 15 25 35 45 55 65

    C

    Frequency

    0

    50

    100

    150

    200

    250

    300

    350

    5 15 25 35 45 55 65

    D

    Frequency

    0

    50

    100

    150

    200

    250

    -20 -10 0 10 20 30 40 50M = D - C

    Frequency

    Risk Calculation

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    67/88

    Risk Calculation

    Risk Calculation (B)

    Pipeline: uniform distribution w. range between 22 and 34PDF Max value = 1 / (3422) = 0.0833Total area of PDF = total prob = 1

    Prob. t > 28 = p(t > 28) = 1/2

    18 20 22 24 26 28 30 32 34 36 38 t

    PDF

    Risk Calculation (B)

    t > 28penalty

    1,000,000per day

    -

    2,000,000

    4,000,000

    6,000,000

    8,000,000

    10,000,000

    12,000,000

    18 20 22 24 26 28 30 32 34 36 38

    Duration (day)

    Penalty

    Risk Calculation

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    68/88

    67

    Risk Calculation

    f(t) = 0.0833

    C(t) = 1,000,000 (t-28)

    Risk = 28

    34f(t) C(t) dt

    Risk = 2834

    (0.0833)[1,000,000 (t-28)] dt

    Risk = (41,667 t22,333,333 t) |28

    34

    Risk = -31,166,667-32,666,667

    Risk = 1,500,000

    SIMULATIONS: RISK ASSESSMENT

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    69/88

    Fail? Penalty

    SIMULATIONS No. Samples = 1482

    Total Samples = 3000

    p = 0.494

    THEORETICAL p = 0.5

    RISK Average = 1469726.9

    Min = 22.01941

    Max = 33.99854

    Mean = 27.96697

    RV1A Days Fail? Penalty

    0.148473 23.78167 0 0.0

    0.037507 22.45009 0 0.0

    0.300363 25.60436 0 0.0

    0.074923 22.89908 0 0.0

    SIMULATIONS: RISK ASSESSMENT

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    70/88

    Fail? Penalty

    SIMULATIONS No. Samples = 1559

    Total Samples = 3000

    p = 0.519667

    THEORETICAL p = 0.5

    RISK Average = 1522088.3

    Min = 22.00183

    Max = 33.99268

    Mean = 28.11062

    RV1B Days Fail? Penalty

    0.352824 26.23389 0 0.0

    0.974761 33.69713 1 5697134.3

    0.949675 33.3961 1 5396099.7

    0.908567 32.9028 1 4902798.5

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    71/88

    No. RV1A RV1B

    Samples

    50 1003427 1818366

    100 1233486 1782784

    250 1323745 1629570

    500 1448791 1545574

    1000 1440903 1508369

    1500 1444841 1545439

    2000 1468108 1555730

    2500 1478144 1523507

    3000 1469727 1522088

    0

    500000

    1000000

    1500000

    2000000

    0 1000 2000 3000

    No. Samples

    Risk

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    72/88

    71

    EFFECT OF R.V. SETS

    Small number of RVeffect of RV sets may besignificant

    Large number of RVeffect of RV sets notsignificant

    Number of RV shouldsufficient to ensure theeffect of RV setsinsignificant

    0

    500000

    1000000

    1500000

    2000000

    0 1000 2000 3000

    No. Samples

    Risk

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    73/88

    DECISION MAKING

    DECISION MAKING (1)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    74/88

    73

    DECISION MAKING (1)

    Tornado DiagramCost of CM1 = -75 -125 [-100]

    Cost of CM2 = -50 -110 [-80]

    Probability of Successful CM2 = 0.5 0.7 [0.6]Cost of Unsuccessful CM2 = -20 -50 [-35]

    Decision to Make:

    Constr. Method 1 or

    Constr. Method 2

    Method 1; -100m

    Method 2;-80m

    Successful; 0

    p= 0.6

    Unsuccessful; -35m

    p= 0.4

    -100m

    -80m[= (-80m)

    + 0]

    -115m[= (-80m)

    + (-35m)]

    A= Constr.Method 1

    = Constr.Method 2

    E= Successful;

    = UnsuccessfulL= Cost

    DECISION MAKING (2)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    75/88

    74

    DECISION MAKING (2)

    Choose Branch with Highest Value at a Decision Node:CM1: E(LA) = -100m CM2: E(L) = -94mE(LA) < E(L) Do Constr. Method 2

    Decision to Make:

    Constr. Method 1 or

    Constr. Method 2

    CM1: E(LA) = -100m

    CM2: E(L) = -94m

    A= Constr.Method 1

    = Constr.Method 2

    E= Successful; = Unsuccessful

    L= Cost

    DECISION MAKING (3)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    76/88

    75

    DECISION MAKING (3) Tornado Diagram

    Decision to Make:

    Constr. Method 1 or

    Constr. Method 2

    Method 1; -100m

    Method 2;

    -80m

    Successful; 0p= 0.6

    Unsuccessful; -35m

    p= 0.4

    -100m

    -80m[= (-80m)

    + 0]

    -115m[= (-80m)

    + (-35m)]

    A= Constr.Method 1

    = Constr.Method 2

    E= Successful;= Unsuccessful

    L= Cost

    DECISION MAKING (4)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    77/88

    76

    DECISION MAKING (4) Simulations

    UPPER BRANCH Cost of CM2 Prob of Successful MINIMUMCost of CM1 Losses When Unsucc. LOWER BRANCH

    Min = 75 50 20 0.5

    Max = 125 110 50 0.7

    Average = 100.95 81.657 35.546 0.6032 95.725 89.05 Prob of "CM2" =

    Min = 76.506 51.54 20.149 0.5006 64.038 64.038 0.62

    Max = 124.89 109.41 49.713 0.6972 127.67 123.96

    0.382 0.101 0.596 0.899 94.1 56.041 37.895 0.6798 68.174 68.174 CM2 1

    0.885 0.958 0.014 0.407 119.23 107.51 20.435 0.5815 116.06 116.06 CM2 1

    0.863 0.139 0.245 0.045 118.16 58.315 27.351 0.5091 71.742 71.742 CM2 1

    0.032 0.164 0.22 0.017 76.619 59.848 26.588 0.5034 73.051 73.051 CM2 1

    0.285 0.343 0.554 0.357 89.252 70.585 36.609 0.5715 86.273 86.273 CM2 1

    0.372 0.356 0.91 0.466 93.592 71.336 47.309 0.5932 90.581 90.581 CM2 1

    0.426 0.304 0.976 0.807 96.308 68.234 49.271 0.6613 84.921 84.921 CM2 10.991 0.256 0.952 0.053 124.56 65.376 48.551 0.5107 89.132 89.132 CM2 1

    0.705 0.817 0.973 0.466 110.25 98.991 49.175 0.5933 118.99 110.25 CM1 0

    0.3 0.75 0.351 0.776 90.011 95.012 30.544 0.6551 105.55 90.011 CM1 0

    0.074 0.198 0.064 0.358 78.717 61.906 21.922 0.5717 71.296 71.296 CM2 1

    0.487 0.511 0.373 0.986 99.352 80.673 31.204 0.6972 90.122 90.122 CM2 1

    0.041 0.231 0.005 0.926 77.036 63.843 20.149 0.6852 70.186 70.186 CM2 1

    0.1 0.257 0.776 0.68 80.016 65.401 43.271 0.6359 81.155 80.016 CM1 0

    DECISION MAKING (line1)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    78/88

    77

    DECISION MAKING (line1)

    RV1 = 0.382 Cost CM1 = 75 + 50*RV1 =94.1 A = 94.1

    RV2 = 0.101 Cost CM2 = 50 + 60*RV2 =56.0

    RV3 = 0.596 Cost Unscful.CM2 = 20 + 30*RV3= 37.9

    RV4 = 0.899 Prob.Scful.CM2 = 0.5 + 0.2*RV4= 0.68

    = Cost CM2*Prob.Scful.CM2 + (1-Prob.Scful.CM2)*(Cost CM2+ Cost Unscful.CM2) =68.2

    A greater than choose CM2

    DECISION MAKING (5)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    79/88

    DECISION MAKING (5)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    65 70 75 80 85 90 95 100

    105

    110

    115

    120

    125

    Minimum Cost

    No.

    Samples

    DECISION MAKING (6)

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    80/88

    79

    DECISION MAKING (6)

    Same process repeated for 100 times From 100 samples 62 samples result in CM2

    probability of CM2 is better option = 62 /

    100 = 0.62

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    81/88

    ETC.

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    82/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    83/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    84/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    85/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    86/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    87/88

  • 8/13/2019 Encv 800503-Lecture-9 Mcs [25 Oct 2013] Dpk

    88/88