41
Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion Embedding Supernova Cosmology into a Bayesian Hierarchical Model Xiyun Jiao Statistic Section Department of Mathematics Imperial College London Joint work with David van Dyk, Roberto Trotta & Hikmatali Shariff ICHASC Talk Jan 27, 2015 1 / 41

Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Embedding Supernova Cosmology into aBayesian Hierarchical Model

Xiyun Jiao

Statistic SectionDepartment of Mathematics

Imperial College London

Joint work with David van Dyk, Roberto Trotta & Hikmatali Shariff

ICHASC TalkJan 27, 2015

1 / 41

Page 2: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Outline

1 Algorithm Review

2 Combining Strategies

3 Surrogate Distribution

4 Extensions on Cosmological Model

5 Conclusion

2 / 41

Page 3: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Problem Setting

Goal: Sample from posterior distribution p(ψ|Y ) usingGibbs-type samplers.

Special case: Data Augmentation (DA) Algorithm1

ψ = (θ,Ymis). DA algorithm proceeds as:

[Ymis|θ′] −→ [θ|Ymis].

Stationary distribution: p(Ymis, θ|Y ).

DA algorithm and Gibbs samplers are easy to implement, but. . .

Converge slowly!

1Tanner, M. A. and Wong, W. H. (1987)3 / 41

Page 4: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Problem Setting

Goal: Sample from posterior distribution p(ψ|Y ) usingGibbs-type samplers.

Special case: Data Augmentation (DA) Algorithm1

ψ = (θ,Ymis). DA algorithm proceeds as:

[Ymis|θ′] −→ [θ|Ymis].

Stationary distribution: p(Ymis, θ|Y ).

DA algorithm and Gibbs samplers are easy to implement, but. . .

Converge slowly!

1Tanner, M. A. and Wong, W. H. (1987)4 / 41

Page 5: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Algorithm Review

DA Algorithm(1987)

MCMC Methods

MDA(1999)

ASIS(2011)

Gibbs Sampler(1993)

PCG(2008)

Blue Rectangle—Expand Paramter Space;Yellow Ellipse—Change Conditioning Strategy

5 / 41

Page 6: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Marginal Data Augmentation

Marginal Data Augmentation (MDA)2

MDA introduces a working parameter α into p(Y ,Ymis|θ)via Ymis [e.g., Ymis = Fα(Ymis)], s.t.,∫

p(Ymis,Y |θ, α)dYmis = p(Y |θ).

If the prior distribution of α is proper, MDA proceeds as:

[α?, Ymis|θ′] −→ [α, θ|Ymis].

MDA improves convergence by increasing variability inaugmented data and reducing augmented information.

2Meng, X.-L. and van Dyk, D. A. (1999); Liu, J. S. and Wu, Y. N. (1999)6 / 41

Page 7: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Ancillarity-Sufficiency Interweaving Strategy

Ancillarity-Sufficiency Interweaving Strategy (ASIS)3

ASIS considers a pair of special DA schemes:Sufficient augmentation Ymis,S: p(Y |Ymis,S, θ) is free of θ.Ancillary augmentation Ymis,A: p(Ymis,A|θ) is free of θ.

Given θ, Ymis,A = Fθ(Ymis,S). ASIS proceeds as

Interweave [θ|Ymis,S] into DA algorithm w.r.t. Ymis,A⇓

[Ymis,S|θ′]→ [θ?|Ymis,S]→ [Ymis,A|Ymis,S, θ?] → [θ|Ymis,A]

m[Ymis,S|θ′]→ [Ymis,A|Ymis,S] → [θ|Ymis,A]

ASIS obtains more efficiency by taking advantage of the"beauty-and-beast" feature of two parent DA algorithms.

3Yu, Y. and Meng, X.-L. (2011)7 / 41

Page 8: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Understanding ASIS

Model:Y |(Ymis, θ) ∼ N(Ymis,1), Ymis|θ ∼ N(θ,V ), p(θ) ∝ 1.

ASIS: Ymis,S = Ymis, Ymis,A = Ymis − θ.

[Ymis,S|θ′]→ [θ?|Ymis,S]→ [Ymis,A|Ymis,S, θ?]→ [θ|Ymis,A]

−2 −1 0 1 2 3 4

−1

01

23

θ = constant

θ

Ym

is

−2 −1 0 1 2 3 4

−1

01

23

Ymis = constant

θ

Ym

is

−2 −1 0 1 2 3 4

−1

01

23

Ymis − θ = constant

θ

Ym

is

More directions: efficient and easy to implement.8 / 41

Page 9: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Partially Collapsed Gibbs Sampling

Partially Collapsed Gibbs (PCG)4

Model Reduction: PCG reduces conditioning of Gibbs. Itreplaces some conditional distributions of a Gibbs samplerwith conditionals of marginal distributions of the target.

PCG improves convergence by increasing variance andjump size of conditional distributions.

Three stages: Marginalization, permutation, trimming.Tools to transform a Gibbs sampler into a PCG one.Maintain the target stationary distribution.

4van Dyk, D. A. and Park, T. (2008)9 / 41

Page 10: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Examples of PCG Sampling

Example. ψ = (ψ1, ψ2, ψ3, ψ4); Sample from p(ψ|Y ).

Gibbsp(ψ1|ψ′2, ψ′3, ψ′4)p(ψ2|ψ1, ψ

′3, ψ

′4)

p(ψ3|ψ1, ψ2, ψ′4)

p(ψ4|ψ1, ψ2, ψ3)

PCG Ip(ψ1|ψ′2, ψ′3, ψ′4)p(ψ2, ψ3|ψ1, ψ

′4)

p(ψ4|ψ1, ψ2, ψ3)

PCG IIp(ψ1|ψ′2, ψ′4)p(ψ2, ψ3|ψ1, ψ

′4)

p(ψ4|ψ1, ψ2, ψ3)

Special cases: blocked and collapsed Gibbs, e.g., PCG I.More interestingly, a PCG sampler consists of incompatibleconditional distributions, e.g., PCG II. Modifying the orderof steps of PCG II may alter its stationary distribution.

10 / 41

Page 11: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Three Stages to Derive a PCG Sampler

(a) Gibbsp(ψ1|ψ′2, ψ′3, ψ′4)p(ψ2|ψ1, ψ

′3, ψ

′4)

p(ψ3|ψ1, ψ2, ψ′4)

p(ψ4|ψ1, ψ2, ψ3)

(b) Marginalizep(ψ1, ψ

?3|ψ′2, ψ′4)

p(ψ?2|ψ1, ψ?3, ψ

′4)

p(ψ2, ψ3|ψ1, ψ′4)

p(ψ4|ψ1, ψ2, ψ3)

(c) Permutep(ψ1, ψ

?3|ψ′2, ψ′4)

p(ψ?2, ψ3|ψ1, ψ′4)

p(ψ2|ψ1, ψ3, ψ′4)

p(ψ4|ψ1, ψ2, ψ3)

(d) Trim [PCG II]p(ψ1|ψ′2, ψ′4)p(ψ2, ψ3|ψ1, ψ

′4)

p(ψ4|ψ1, ψ2, ψ3)

“?”—Intermediate Draws11 / 41

Page 12: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Outline

1 Algorithm Review

2 Combining Strategies

3 Surrogate Distribution

4 Extensions on Cosmological Model

5 Conclusion

12 / 41

Page 13: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Combining Different Strategies into One Sampler

Cannot Sample Conditionals?

Embed Metropolis-Hastings (MH) into Gibbs5—standard.

Embed MH into PCG6—subtle implementation!

Further Improvement in ConvergenceSeveral parameters converge slowly—a strategy is efficientfor one parameter, but has little effect on others; Anotherstrategy has opposite effect. By combining, we improve all.

One strategy alone is useful for all parameters—prefer touse a combination, as long as gained efficiency exceedsextra computational expense.

5Gilks et al. (1995)6van Dyk, D. A. and Jiao, X. (2015)

13 / 41

Page 14: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Background

Physics Nobel Prize (2011): discovery of acceleration ofexpansion of the universe.

The acceleration is attributed to existence of dark energy.

Type Ia supernova (SNIa) observations: critical to quantifycharacteristics of dark energy.

Mass > “Chandrasekhar threshold” (1.44 M) =⇒ SN explosion.

Image credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

14 / 41

Page 15: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

“Standardizable Candles”

Common history =⇒ similar absolute magnitudes for SNIa, i.e.,

Mi ∼ N(M0, σ2int)

=⇒ SNIa are “standardizable candles”.

Phillips corrections:

Mi = Mεi − αxi + βci , Mε

i ∼ N(M0, σ2ε );

xi—stretch correction, ci—color correction,

σ2ε ≤ σ2

int

15 / 41

Page 16: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Distance Modulus

Apparent Magnitude − Absolute Magnitude = Distance Modulus:

mB −M = µ = 5log10[distance(Mpc)] + 25.

Nearby SN: distance = zc/H0;

Distant SN: µ = µ(z,Ωm,ΩΛ,H0);

c—speed of light

H0—Hubble constant

z—redshift

Ωm—total matter density

ΩΛ—dark energy density

16 / 41

Page 17: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Bayesian Hierarchical Model7

Level 1: Errors-in-variables regression:

mBi = µi + Mεi − αxi + βci ; ci

ximBi

∼ N

cixi

mBi

, Ci

, i = 1, . . . ,n.

Level 2:Mε

i ∼ N(M0, σ2ε ); xi ∼ N(x0,R2

x ); ci ∼ N(c0,R2c ).

Priors:Gaussian for M0, x0, c0;Uniform for Ωm, ΩΛ, α, β, log(Rx ), log(Rc), log(σε).z and H0 fixed.

7March et al. (2011)17 / 41

Page 18: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Notation and Data

Notation

X(3n×1)—(c1, x1,Mε1, . . . , cn, xn,Mε

n);b(3×1)—(c0, x0,M0);L(3n×1)—(0,0, µ1, . . . ,0,0, µn);

T(3×3) =

1 0 00 1 0β −α 1

, and A(3n×3n) = Diag(T , . . . ,T ).

Data: A sample of 288 SNIa compiled by Kessler et al. (2009).

18 / 41

Page 19: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Algorithms for Cosmological Herarchical Model

MH within Gibbs sampler: Update of (Ωm,ΩΛ) needs MH.

MH within PCG sampler:Sample (Ωm,ΩΛ) and (α, β) without conditioning on (X ,b).Updates of both (Ωm,ΩΛ) and (α, β) need MH.

ASIS sampler: Ymis,S for (Ωm,ΩΛ) and (α, β): AX + L;Ymis,A for (Ωm,ΩΛ) and (α, β): X .

MH within PCG+ASIS sampler:Given (α, β), sample (Ωm,ΩΛ) with MH within PCG;Given (Ωm,ΩΛ), sample (α, β) with ASIS.

For each sampler, run 11,000 iterations with a burn-in of 1,000.

19 / 41

Page 20: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Convergence Results of Gibbs and PCG

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

Iteration

Ωm

0 10 20 30 40

0.0

0.4

0.8

LagA

uto

co

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

0.4

0.8

1.2

Iteration

ΩΛ

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

60

.12

0.1

8

Iteration

α

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

2.2

2.6

3.0

Iteration

β

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

MH within Gibb

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

Iteration

Ωm

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

0.4

0.8

1.2

Iteration

ΩΛ

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

60

.12

0.1

8

Iteration

α

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

2.2

2.6

3.0

Iteration

β

0 10 20 30 40

0.0

0.4

0.8

LagA

uto

co

rre

latio

n

MH within PCG

20 / 41

Page 21: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Convergence Results of ASIS and Combining

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

Iteration

Ωm

0 10 20 30 40

0.0

0.4

0.8

LagA

uto

co

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

0.4

0.8

1.2

Iteration

ΩΛ

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

60

.12

0.1

8

Iteration

α

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

2.2

2.6

3.0

Iteration

β

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

ASIS

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

Iteration

Ωm

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

0.4

0.8

1.2

Iteration

ΩΛ

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

0.0

60

.12

0.1

8

Iteration

α

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

2.2

2.6

3.0

Iteration

β

0 10 20 30 40

0.0

0.4

0.8

LagA

uto

co

rre

latio

n

PCG within ASIS

21 / 41

Page 22: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Effective Sample Size (ESS) per Second

The larger the ESS/sec, the more efficient the algorithm.

Gibbs PCG ASIS PCG+ASIS

Ωm 0.00166 0.0302 0.0103 0.0392

ΩΛ 0.000997 0.0232 0.00571 0.0282

α 0.00712 0.0556 0.0787 0.0826

β 0.00874 0.0264 0.0830 0.0733

22 / 41

Page 23: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Factor Analysis Model

Model

Yi∼N[Ziβ,Σ = Diag(σ2

1, . . . , σ2p)], for i = 1, . . . ,n.

Yi —(1× p) vector of the i th observation;Zi —(1× q) vector of factors; Zi |β∼N(0, I); q < p.

β and Σ —unknown parameters.Priors: p(β) ∝ 1; σ2

j ∼ Inv-Gamma(0.01,0.01), j = 1, . . . ,p.

Simulation StudySet p = 6, q = 2, and n = 100.

σ2j ∼ Inv-Gamma(1,0.5), (j = 1, . . . ,6);βhj ∼ N(0,32), (h = 1,2; j = 1, . . . ,6).

23 / 41

Page 24: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Algorithms for Factor Analysis

Standard Gibbs sampler:[Z |β′,Σ′

]−→

[σ2

j |Z , β′, σ2−j′]p

j=1−→ [β|Z ,Σ].

MH within PCG sampler: sampling σ21, σ2

3 and σ24 without

conditioning on Z . This should be facilitated by MH.

ASIS sampler: Ymis,A for β: Zi ;Ymis,S for β: Wi = Ziβ.

MH within PCG+ASIS sampler:Given β, update Σ with MH within PCG;Given Σ, update β with ASIS.

For each sampler, run 11,000 iterations with a burn-in of 1,000.

24 / 41

Page 25: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Convergence Results of Factor Analysis Model

0 2000 4000 6000 8000 10000

−7

−5

−3

−1

Iteration

log(σ

12)

Gib

bs

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

−7

−5

−3

−1

Iteration

log(σ

12)

PC

G

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

−7

−5

−3

−1

Iteration

log(σ

12)

AS

IS

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

−7

−5

−3

−1

Iteration

log(σ

12)

PC

G+

AS

IS

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

−2

−1

01

2

Iteration

β1

3

Gib

bs

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

−2

−1

01

2

Iteration

β1

3

PC

G

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000−

2−

10

12

Iteration

β1

3

AS

IS

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n

0 2000 4000 6000 8000 10000

−2

−1

01

2

Iteration

β1

3

PC

G+

AS

IS

0 10 20 30 40

0.0

0.4

0.8

Lag

Au

toco

rre

latio

n25 / 41

Page 26: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Effective Sample Size (ESS) per Second

The larger the ESS/sec, the more efficient the algorithm.

Gibbs PCG ASIS PCG + ASIS

log(σ21) 0.18 2.17 0.15 1.91

β13 0.0087 0.0090 17.54 15.37

26 / 41

Page 27: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Outline

1 Algorithm Review

2 Combining Strategies

3 Surrogate Distribution

4 Extensions on Cosmological Model

5 Conclusion

27 / 41

Page 28: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Bivariate Surrogate Distribution

Target distribution: p(ψ1, ψ2).

Surrogate distribution: π(ψ1, ψ2).π(ψ1) = p(ψ1), π(ψ2) = p(ψ2); The correlation between ψ1 andψ2 is lower for π than for p.

Sampler S.1p(ψ1|ψ′2)p(ψ2|ψ1)

Sampler S.2π(ψ1|ψ′2)p(ψ2|ψ1)

Sampler S.3π(ψ1|ψ′2)π(ψ2|ψ1)

Stationary distribution of Samplers S.1 and S.2: p(ψ1, ψ2).Stationary distribution of Sampler S.3: π(ψ1, ψ2).Condition for Sampler S.2 maintaining the target:π(ψ1) = p(ψ1), π(ψ2) = p(ψ2); Step order is fixed.

28 / 41

Page 29: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Comparison of Samplers S.1–S.3

Example.

p(ψ1, ψ2) : N[(

00

),(

1 0.990.99 1

)];π(ψ1, ψ2) : N

[(00

),(

1 ρπρπ 1

)].

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρπ

Con

verg

ence

rate

Sampler S.1Sampler S.2Sampler S.3

29 / 41

Page 30: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Ways to Derive Surrogate Distributions

ASIS: [Ymis,S|θ′]→ [Ymis,A|Ymis,S]→ [θ|Ymis,A].

π(θ|Ymis,S) =∫

p(Ymis,A|Ymis,S)p(θ|Ymis,A)dYmis,A;π(θ,Ymis,S) = π(θ|Ymis,S)p(Ymis,S).

PCG: intermediate stationary distributions.PCG II: [ψ1|ψ′2, ψ′4]→ [ψ2, ψ3|ψ1, ψ

′4]→ [ψ4|ψ1, ψ2, ψ3].

Intermediate stationary ending with Step 1:π(ψ1, ψ2, ψ3, ψ4) = p(ψ2, ψ3, ψ4)p(ψ1|ψ2, ψ4).

MDA: [α?, Ymis|θ′] −→ [α, θ|Ymis].

p(θ|Ymis) =∫

p(α, θ|Ymis)dαSet Ymis as Ymis============ π(θ|Ymis);

π(θ,Ymis) = π(θ|Ymis)p(Ymis).

30 / 41

Page 31: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Advantages of Surrogate Distribution

Surrogate distribution unifies different strategies under acommon framework.

For ASIS, a sampler involving surrogate distribution, butequivalent to the original ASIS sampler, has fewer steps.

If we are only interested in marginal distributions, surrogatedistribution strategy is promising to produce more efficientalgorithms.

31 / 41

Page 32: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Outline

1 Algorithm Review

2 Combining Strategies

3 Surrogate Distribution

4 Extensions on Cosmological Model

5 Conclusion

32 / 41

Page 33: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Model Review and New Data

Recall:Level 1: Errors-in-variables regression:

mBi = µi + Mεi − αxi + βci ; ci

ximBi

∼ N

cixi

mBi

, Ci

, i = 1, . . . ,n.

Level 2:Mε

i ∼ N(M0, σ2ε ); xi ∼ N(x0,R2

x ); ci ∼ N(c0,R2c ).

σε small =⇒ “Standardizable candle”

Data: A “JLA” sample of 740 SNIa in Betoule, et al. (2014).

33 / 41

Page 34: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Shrinkage Estimation

Low mean squared error estimates of Mεi

0.00 0.05 0.10 0.15 0.20

−1

9.6

−1

9.4

−1

9.2

−1

9.0

−1

8.8

−1

8.6

σε

Co

nd

itio

na

l Po

ste

rio

r E

xpe

cta

tion

of

Miε

95% CI

34 / 41

Page 35: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Shrinkage Error

Reduced standard deviations

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

σε

Con

ditio

nal P

oste

rior

Sta

ndar

d D

evia

tion

of M

95% CI

35 / 41

Page 36: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Systematic Errors

Systematic errors: sevensources of uncertainties.Blocks: different surveys.

Effect on cosmological parameters:

Cstat vs Cstat + Csys.

0.0 0.2 0.4 0.6 0.8 1.0Ωm

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΩΛ

68% stat+sys95% stat+sys68% only stat95% only stat

36 / 41

Page 37: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Adjusting for Galaxy Mass: Method I

Method I: Divide Mεi by wi = log10(Mgalaxy/M);

Mεi ∼ N(M01, σ

2ε1), if wi < 10,

Mεi ∼ N(M02, σ

2ε2), if wi > 10.

5 6 7 8 9 10 11 12

−1

9.4

−1

9.3

−1

9.2

−1

9.1

−1

9.0

−1

8.9

−1

8.8

wi

0 2 4 6 8 10 12

−1

9.4

−1

9.3

−1

9.2

−1

9.1

−1

9.0

−1

8.9

−1

8.8

Density

po

ste

rio

r m

ea

n o

f M

0 2 4 6 8 10 12

−1

9.4

−1

9.3

−1

9.2

−1

9.1

−1

9.0

−1

8.9

−1

8.8

Density

37 / 41

Page 38: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Adjusting for Galaxy Mass: Method II

Much scatter in both Mi and wi .

4 6 8 10 12

−19.

4−1

9.3

−19.

2−1

9.1

−19.

0−1

8.9

−18.

8

wi

post

erio

r m

ean

of M

Treat wi as covariate like xi and ci ,wi ∼ N(wi , σ

2w ):

mBi = µi + Mεi − αxi + βci + γwi .

−0.05 0.00 0.05 0.10

010

2030

γ

Den

sity

38 / 41

Page 39: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Model Checking

Model setting:Fix (Ωm,ΩΛ);mBi = µi + Mε

i − αxi + βci ;µi = µ(zi ,Ωm,ΩΛ,H0)+t(zi),t(zi)—cubic spline

Results:Red line—posterior mean;Gray band—95% region;Black dots—(mBi −M0 + αxi − βci)− µi .

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.2

0.0

0.2

0.4

z (red shift)

µ mea

n−

µ the

ory

Cubic Spline Curve Fitting (K=4)

39 / 41

Page 40: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Outline

1 Algorithm Review

2 Combining Strategies

3 Surrogate Distribution

4 Extensions on Cosmological Model

5 Conclusion

40 / 41

Page 41: Embedding Supernova Cosmology into a Bayesian Hierarchical ... · 1/27/2015  · Algorithm ReviewCombining StrategiesSurrogate DistributionExtensions on Cosmological ModelConclusion

Algorithm Review Combining Strategies Surrogate Distribution Extensions on Cosmological Model Conclusion

Conclusion

SummaryCombining strategy and surrogate distribution samplers areuseful to produce more efficiency in convergence.

The hierarchical Gaussian model reflects the underlyingphysical understanding of supernova cosmology.

Future WorkMore numerical examples to illustrate the algorithms.

Complete the theory of surrogate distribution strategy.

Embed this hierarchical model into a model for the fulltime-series of the supernova explosion, using Gaussianprocess to impute apparent magnitudes over time.

41 / 41