Elementos finitos en el análisis de los recipientes a presión y tuberías, una adición de una bibliografía

Embed Size (px)

Citation preview

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    1/26

    Review

    Finite elements in the analysis of pressure vessels and piping,an addendum: a bibliography (19982001)

    Jaroslav Mackerle*

    Department of Mechanical Engineering, Linkoping Institute of Technology, S-581 83 Linkoping, Sweden

    Received 28 September 2001; revised 8 October 2001; accepted 8 October 2001

    Abstract

    The paper gives a bibliographical review of nite element methods (FEMs) applied for the analysis of pressure vessel structures/

    components and piping from the theoretical as well as practical points of view. This bibliography is an addendum to the Finite elementsin the analysis of pressure vessels and pipinga bibliography (19761996) published [Int J Press Vess Piping 69 (1996) 279] and Finite

    elements in the analysis of pressure vessels and piping, an addendum (19961998) published [Int J Press Vess Piping 76 (1999) 461]. The

    new bibliography at the end of the paper contains approximately 670 references to papers and conference proceedings on the subject that

    were published in 19982001. These are classied in the following categories: linear and nonlinear, static and dynamic, stress and deection

    analyses; stability problems; thermal problems; fracture mechanics problems; contact problems; uidstructure interaction problems;

    manufacturing of pipes and tubes; welded pipes and pressure vessel components; development of special nite elements for pressure vessels

    and pipes; nite element software; and other topics. q 2002 Elsevier Science Ltd. All rights reserved.

    Keywords: Finite element; Bibliography; Pressure vessels; Pipes; Linear and nonlinear static and dynamic analysis; Fracture mechanics; Contact problems;

    Thermal problems; Fluidstructure interaction; Welding

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2. Finite elements in the analysis of pressure vessels and piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.1. Linear and nonlinear, static and dynamic, stress and deection analyses (STR) . . . . . . . . . . . . . . . . . . . . . . . 2

    2.2. Stability problems (STA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.3. Thermal problems (THE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.4. Fracture mechanics problems (FRA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.5. Contact problems (CON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.6. Fluidstructure interaction problems (FLU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.7. Manufacturing of pipes and tubes (MAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.8. Welded pipes and pressure vessel components (WEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.9. Development of special nite elements for pressure vessels and pipes (ELE) . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.10. Finite element software (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.11. Other topics (OTH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Appendix A. A bibliography (19982001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    A.1. Linear and nonlinear, static and dynamic, stress and deection analyses (STR) . . . . . . . . . . . . . . . . . . . . . . . 4

    A.2. Stability problems (STA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    A.3. Thermal problems (THE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    A.4. Fracture mechanics problems (FRA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    A.5. Contact problems (CON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    A.6. Fluidstructure interaction problems (FLU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    A.7. Manufacturing of pipes and tubes (MAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    International Journal of Pressure Vessels and Piping 79 (2002) 126

    0308-0161/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

    PII: S0308-0161(01) 00128-4

    www.elsevier.com/locate/ijpvp

    * Tel.: 146-13-28-1111; fax: 146-13-28-2717.

    E-mail address: [email protected] (J. Mackerle).

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    2/26

    A.8. Welded pipes and pressure vessel components (WEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    A.9. Development of special nite elements for pressure vessels and pipes (ELE) . . . . . . . . . . . . . . . . . . . . . . . . 24

    A.10. Finite element software (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    A.11. Other topics (OTH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    1. Introduction

    Pressure vessels and piping are widely used in reactor

    technology, the chemical industry, marine and space engi-

    neering. They often operate under extremes of high and

    low temperatures and high pressures, are becoming highly

    sophisticated and therefore also need advanced methods

    for their analyses. Advances are also made with materials

    applied for their fabrication. Concrete and composite

    materials are used in pressure vessels and their components

    more frequently to replace, in some cases, conventional

    steels.

    During the last three decades considerable advances have

    been made in the applications of numerical techniques to

    analyze pressure vessels and piping problems. Among the

    numerical procedures, nite element methods are the most

    frequently used.

    Pressure vessel and piping analyses may have a variety of

    phases such as: elastic stress and deformation analysis

    where both mechanical and thermal loads may be applied;

    heat transfer analysis; dynamic analysis; plastic and creep

    analysis; etc. There is in existence a large number of general

    purpose and special purpose nite element programs avail-

    able to cope with each phase of the analysis.

    This review on the subject is divided into the followingparts and it concerns:

    linear and nonlinear, static and dynamic, stress and

    deection analyses (STR);

    stability problems (STA);

    thermal problems (THE);

    fracture mechanics problems (FRA);

    contact problems (CON);

    uidstructure interaction problems (FLU);

    manufacturing of pipes and tubes (MAN);

    welded pipes and pressure vessel components (WEL);

    development of special nite elements for pressurevessels and pipes (ELE);

    nite element software (SOF);

    other topics (OTH).

    The status of nite element literature published between

    1976 and 2001, and divided into the categories described

    earlier, is illustrated in Fig. 1. Data presented in this gure

    include published technical papers in the primary literature;

    this means papers appearing in the various general and

    specialized journals, conference proceedings as well as

    theses and dissertations. If we take the number of published

    papers as a measure of research activity in these various

    subjects, we can see the priority trend in research in the past.

    This paper is organized into two parts. In the rst, each

    subject listed above is briey described by keywords where

    current trends in application of nite element techniques

    are mentioned. The second part, Appendix A, is a listing

    of references on papers published in the open literature for

    the period 19982001, retrieved from the author's data-

    base MAKEBASE [1,2]. Readers interested in the nite

    element literature in general are referred to Ref. [3] or to

    the author's Internet Finite Element Book Bibliography

    (http://www.solid.ikp.liu.se/fe/index.html). The presented

    bibliography is an addendum to the author's earlier bibli-

    ographies [4,5] where approximately 1900 and 630 refer-

    ences, respectively, have been listed.

    2. Finite elements in the analysis of pressure vessels and

    piping

    2.1. Linear and nonlinear, static and dynamic, stress and

    deection analyses (STR)

    The main topics included deal with the static and dynamic

    nite element analyses of pressure vessels, their compo-

    nents and piping, namely: stress and deformation analysis;

    2D and 3D linear elastic static and dynamic analysis;

    material and geometrical nonlinear static and dynamic

    analysis; shakedown analysis; stress concentration factor

    studies; local stresses and deformations; free vibration

    analysis; response to shock loading; cyclic loading; seismic

    response analysis; random excitation; vibro-impact dyna-

    mics; estimation of residual stresses; study of mechanical

    properties; creep relaxation; whipping analysis; constraint

    effects; prestressing effects; boundary conditions identica-

    tion; stiffness properties identication; structural integrity.

    Applications to: pipes; tubes; pipelines; pressure vessels;

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 262

    Fig. 1. Finite elements and various topics in pressure vessels and piping

    (19762001).

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    3/26

    reactor pressure vessels; curved pipes; cantilevered pipes;

    dented pipelines; multi-supported pipelines; saddle-

    supported pipelines and pressure vessels; sling-supported

    pressure vessels; pressure vessel heads; pressure vessel

    components; anges; piping elbows; pipe bends; nozzles;

    bellows; perforated tubesheets; framed-tube systems; verti-

    cal pumps; conical reducers; burst discs; PWR cores;

    boilers; corroded pipes; submarine pipelines; pipeline cross-

    ings; inatable tubes; coaxial exible tubes; tubes with

    coating; shell intersections.

    Materials under consideration: steels; stainless steels;

    aluminium; composites; polymers; lament wound compo-

    sites; bre-reinforced composites; concrete-lled steel

    tubes.

    2.2. Stability problems (STA)

    Stability problems are the main subject of this section.

    Other topics included are: stability and instability; buckling;

    postbuckling; local buckling; lateral buckling; torsionalbuckling; lateral thermal buckling; high-temperature buck-

    ling; buckle propagation; collapse; plastic collapse.

    Applications to: pipes; tubes; pipelines; pressure vessels;

    ellipsoids and toroids; corroded pipes; braced tubes; elbows;

    liners; bellows; conecylinder intersections; buckle arrestors.

    Materials: steels; low-alloy steels.

    2.3. Thermal problems (THE)

    Heat transfer problems and thermomechanical nite

    element analyses are the main subjects of this section. The

    following topics are included: heat transfer analysis

    natural convection, forced convection, mixed convection,radiation, turbulent problems; thermomechanical 2D and

    3D analysis; thermoviscoplastic analysis; thermal deforma-

    tion analysis; thermal shock; thermal ratchetting; transient

    and residual thermal stresses.

    Applications to: pipes; tubes; pressure vessels; reactor

    pressure vessels; PWR vessels; tube bundles; tubesheets;

    ns; pipe-cooling systems; liquid metal target container;

    boiler drums.

    Materials: steels; zircaloy; composites; glass reinforced

    plastics.

    2.4. Fracture mechanics problems (FRA)

    In this section fracture mechanics and fatigue problems

    are handled. The listing of references in Section A.4

    includes: linear and nonlinear 2D and 3D static and dynamic

    fracture mechanics problems; mechanical and thermal

    loading; macromechanical and micromechanical studies;

    cracks; multiple cracks; crack growth; crack opening;

    crack path bifurcation; crack arrest; crack shape develop-

    ment; circumferential cracks; longitudinal cracks; trans-

    verse cracks; axial cracks; surface cracks; through-wall

    cracks; part-through cracks; tight cracks; ductile fracture;

    brittle fracture; residual strength; ultimate strength; fracture

    toughness; fatigue studies; thermal fatigue; multi-axial

    fatigue; damage; local damage; damage identication;

    creep-damage analysis; creep failure; failure behaviour;

    cleavage failure; damage tolerance; creep crack growth;

    aws; aw detection; cladding effects; leak-before-break;

    load bearing capacity; limit load analysis; wave scattering;

    ring test; squash test; wide-plate test; failure probability;

    stochastic analysis; autofrettage; parametric studies.

    Applications to: pipes; tubes; pipelines; pressure vessels;

    reactor pressure vessels; bellows; elbows; nozzles; pump

    casing; threaded pressure vessels; pressure vessel closures;

    ring joint groove; tube-gusset plate connections; adhesively

    bonded connections; reinforced branch connections; ange

    joints; welded pipes; pipe couplers; pipe piers; crushed tubes;

    corroded pipes; shell intersections; concrete containments.

    Materials: steels; stainless steels; low-alloy steels; alumi-

    nium; zircaloy; zirconium; concrete; composites; bre-

    reinforced composites; polymers; PVC; graphiteepoxy;

    refractory; functionally graded materials.

    2.5. Contact problems (CON)

    2D and 3D nite element studies of static and dynamic

    contact problems dealing with pipes and pressure vessels are

    included in this section. Other subjects under consideration

    are: mechanical behaviour of joints; structures under impact

    loading; blast loading effects; stress concentration factors;

    expansion and residual contact pressure.

    Applications to: pipes; tubes; pressure vessels; reactor

    pressure vessels; tube-to-tubesheet joints; reinforced nozzle

    connections; gasket seal rings; cylindrical shell connections;

    casing-tubing connections; threaded connections; bolted

    joints; bonded connections; adhesive butt joints; pipe angeconnections; press t joining; piping branch junctions;

    multi-connected systems.

    Materials: steels; stainless steels; aluminium; composites.

    2.6. Fluid structure interaction problems (FLU)

    The main topics include: coupled uidstructure

    response analyses; pipe/tube conveying uids; cross-ow-

    induced vibrations; modal analysis and damping; active

    modal control; dynamic analysis of uid-lled pipes;

    uidstructure interaction under cavitation; large displace-

    ment uidstructure interaction; Stokes ow problems;

    internal unsteady ow; gassolid ow; instability analysis.

    Applications to: pipes; tubes; pressure vessels; tube

    bundles; submerged perforated tubes; cylindrical shells.

    Materials: steels; composites; elastomers; uids; hot

    liquid sodium; high temperature uids.

    2.7. Manufacturing of pipes and tubes (MAN)

    The nite element simulation of manufacturing processes

    is the subject of this section. The main topics listed are:

    material characteristics and formability; spring-back analysis;

    drawing; bulge forming; hot extrusion process; isostatic

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 3

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    4/26

    pressing; hydro-bulge forming; roll bending; rolling;

    extrudingbulging process; cold upsettingextruding; die-

    less forming; hydroforming; backward tube spinning; local

    induction heating; pressure ltrating process; hydraulic

    bulge testing.

    Applications to manufacturing of: pipes; tubes; pressure

    vessels and closures; non-circular tubes; tube anges; pipe

    bends; toroidal shells; elbows.

    Materials: steels; stainless steels; metals; copper; tung-

    sten; composites; silicon carbide; ferromagnetic materials.

    2.8. Welded pipes and pressure vessel components (WEL)

    The subjects in the simulation of welding processes

    included here are: 2D and 3D thermomechanical analysis;

    heat transfer analysis; shrinkage analysis; assessment of

    creep behaviour; residual stresses; effect of welding condi-

    tions on residual stresses; measurement of residual stresses;

    burn-through prediction; effects of repair; friction welding;

    seam welds; butt welds; multi-pass butt welds; multi-pass

    girth welds; circular patch welds; spiral weld cladding;

    bimetallic welds; wet repair welding.

    Welding of: pipes; tubes; pressure vessels; reactor pressure

    vessels; pipe-to-pipe; nozzles on spheres; pipeange.

    Materials: steels; stainless steels; austenitic steels;

    bimetallic materials.

    2.9. Development of special nite elements for pressure

    vessels and pipes (ELE)

    In this section, references dealing with development as

    well as applications of special nite elements used for

    analyses of pressure vessels and piping systems are given.The element types included are: experiences with various

    types of elements; 3D special shell element; axisymmetric

    thin shell element; axisymmetric hybrid-stress displace-

    ment element; enhanced pipe elbow element; interface

    beam element.

    2.10. Finite element software (SOF)

    At present, thousands of nite element software packages

    exist and new programs are under development. The exist-

    ing software can vary from large, sophisticated, general

    purpose, integrated systems to small, special purpose

    programs for PCs. Most of these programs have beenmentioned and described in Ref. [4]. In Section A.10

    some new references dealing with development/applica-

    tions of FE software are listed. They are concerned with:

    code developments for pressure vessels and piping, code

    evaluations, users' experiences, etc.

    2.11. Other topics (OTH)

    In this section, subjects not treated earlier are included.

    They deal with: static and dynamic geomechanical analyses

    of pressure vessels and pipes in 2D and 3D; buried struc-

    tures; soilstructure interaction; seismic studies; inspection

    and maintenance; nondestructive testingeddy current,

    neutron diffraction; health monitoring; design sensitivity

    analysis; structural integrity assessment; pipeline bundles

    on seabed; reliability analysis; optimization problems.

    Applications to: crossbores; high-curvature well bores;

    steam generator tubes; evacuation pipes; offshore pipelines;

    pile-supported buried pipelines; metal beverage containers;

    pressure vessels with embedded sensors.

    Materials: steels; composites; braided composites; lament

    wound composites.

    Acknowledgements

    The bibliography presented in Appendix A is by no means

    complete, but it gives a comprehensive representation of

    different nite element applications on the subject. The author

    wishes to apologize for the unintentional exclusions of miss-

    ing references and would appreciate receiving comments

    and pointers to other relevant literature for a future update.

    Appendix A. A bibliography (19982001)

    This bibliography provides a list of literature references

    on nite element analysis of pressure vessel structures/

    components and pipes/tubes. The listings presented contain

    papers published in scientic journals and conference

    proceedings retrospectively to 1998. References have been

    retrieved from the author's database, MAKEBASE. They

    are grouped into the same sections described in the rst

    part of this paper, and are sorted alphabetically according

    to the rst author's name. In some cases, if a specic paper

    is relevant to several subject categories, the same reference

    is listed under the respective section headings.

    A.1. Linear and nonlinear, static and dynamic, stress and

    deection analyses (STR)

    1. STR Abdel-Hamid AN, Farahat WA. Evaluation of

    stresses in piping systems subjected to unspecied

    random excitation. 17th Int Modal Anal Conf. Kissim-

    mee: IMAC, 1999. p. 4639.

    2. STR Abdel-Haq M, et al. Constraint effects on energy

    absorption in unidirectional PMC tubes. J Compos

    Mater 1999;33(9):77493.3. STR Abhary K, et al. Exact analytical method for

    stress analysis of pipelines. Int J Press Vess Piping

    1999; 76(8):5615.

    4. STR Afshari P, Widera GEO. Free vibration analysis

    of composite plates. J Press Vess Technol, ASME

    2000; 122(3):390 8.

    5. STR Al-Hassani STS, Vartdal B. Investigation into the

    effect of circumferential through-wall slits on a canti-

    levered pipe subjected to a transverse end load. Proc

    Inst Mech Engng, Part E 1998;212(3):16370.

    6. STR Alexander CR. Analysis of dented pipelines

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 264

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    5/26

    considering constrained and unconstrained dent

    congurations. 1999 ASME Energy Sources Technol-

    ogy Conference, Houston. New York: ASME, 1999.

    p. 113.

    7. STR Alleyne DN, et al. The reection of guided waves

    from circumferential notches in pipes. J Appl Mech,

    ASME 1998;65(3):63541.

    8. STR Averbuch D, et al. Implementation of elastoplas-

    tic material laws in dynamic riser analysis with appli-

    cations to reeled pipes. 9th International Offshore

    Polar Engineering Conference, ISOPE, vol. 2. 1999.

    p. 2727.

    9. STR Babu S, Iyer PK. Inelastic analysis of components

    using a modulus adjustment scheme. J Press Vess

    Technol, ASME 1998;120(1):15.

    10. STR Babu S, Iyer PK. A robust method for inelastic

    analysis of components made of anisotropic material.

    J Press Vess Technol, ASME 1999;121(2):1549.

    11. STR Badr EA, et al. An analytical procedure for esti-

    mating residual stresses in blocks containing cross-bores. Int J Press Vess Piping 2000;77(12):73749.

    12. STR Baniotopoulos CC, Preftitsi F. Inuence of the

    design parameters on the stress state of saddle-

    supported pipelines: an articial neural network

    approach. Int J Press Vess Piping 1999;76(7):4019.

    13. STR Beltman WM, et al. The structural response of

    cylindrical shells to internal shock loading. J Press

    Vess Technol, ASME 1999;121(3):31522.

    14. STR Betten J, Krieger J. Bestimmung des Aushartung-

    seinusses bei FVK-Bauteilen mittels FEA. ZAMM

    1999;79(S3):8556.

    15. STR Binienda WK, Wang Y. Residual stress reductionin lament wound composite tubes. J Reinf Plast

    Compos 1999;18(8):684701.

    16. STR Blachut J, Jaiswal OR. On the choice of initial

    geometric imperfections in externally pressurized

    shells. J Press Vess Technol, ASME

    1999;121(1):716.

    17. STR Burdekin FM, Lidbury DPG. Views of TAGSI on

    the current position with regard to benets of warm

    prestressing. Int J Press Vess Piping 1999;76(13):885

    90.

    18. STR Carter P. Stress analysis and design for cyclic

    loading. J Press Vess Technol, ASME 2000;122(4);

    42730.19. STR Chan WS, Demirhan KC. A simple closed-form

    solution of bending stiffness for laminated composite

    tubes. J Reinf Plast Compos 2000;19(4):27891.

    20. STR Chawla DS, et al. Assessment of operability and

    structural integrity of a vertical pump for extreme

    loads. Int J Press Vess Piping 1998;75(4):297306.

    21. STR Cohn MJ, Yee RK. Creep relaxation behavior of

    high energy piping. ASME/JSME Joint Pressure

    Vessel Piping Conference PVP 380, New York:

    ASME, 1998. p. 13550.

    22. STR Cunha J, Piranda J. Identication of stiffness pro-

    perties of composite tubes from dynamic tests. Exp

    Mech 2000;40(2):2118.

    23. STR Da Dilveira JLL, et al. Shakedown and limit

    analysis in a pressure vessel. Fourth World Cong

    Comput Mech, Buenos Aires, 1998. p. 198.

    24. STR Datta TK. Seismic response of buried pipelines:

    a state-of-the-art review. Nucl Engng Des 1999;

    192(2/3):27184.

    25. STR Desikan V, Sethuraman R. Analysis of material

    nonlinear problems using pseudo-elastic nite element

    method. J Press Vess Technol, ASME

    2000;122(4):45761.

    26. STR El-Abbasi N, et al. Three-dimensional nite

    element analysis of saddle supported pressure vessels.

    Int J Mech Sci 2001;43(5):122942.

    27. STR Filippov SB, et al. Free vibrations of square elas-

    tic tubes with a free end. Mech Res Commun 2000;

    27(4):45764.

    28. STR Franco JRQ, Barros FB. Advances in nite

    element modelling of plastic behaviour of pressurevessels. 4th World Cong Comput Mech, Buenos Aires.

    1998. p. 185.

    29. STR Frikha S, et al. Boundary condition identication

    using condensation and inversionapplication to

    operating piping network. J Sound Vib

    2000;233(3):495514.

    30. STR Fyrileiv O, et al. Free span assessment of the

    Zeepipe IIA pipeline. 17th Int Conf Offshore Mech

    Arctic Engng. Lisbon: OMAE, 1998. p. 18.

    31. STR Goncalves JPM, De Castro PMST. Application of

    the line spring model to some complex geometries,

    and comparison with three-dimensional results. Int JPress Vess Piping 1999;76(8):55160.

    32. STR Hajjar JF, et al. Distributed plasticity model for

    concrete-lled steel tube beam-columns with inter-

    layer slip. Engng Struct 1998;20(8):66376.

    33. STR Halldorsson B. On modeling of earthquake wave

    motion and its effects on multi-support pipelines. Acta

    Polytech Scand, Civ Engng Build Cons 1999;(115):1

    29.

    34. STR Hamilton R, et al. A simple upper-bound method

    for calculating approximate shakedown loads. J Press

    Vess Technol, ASME 1998;120(2):195 9.

    35. STR Hari Y, Williams DK. Analysis of transition radii in

    conical reducers. ASME/JSME Joint Press Vess PipingConf PVP 360. New York: ASME, 1998. p. 33542.

    36. STR Hauch S, Bai Y. Bending moment capacity of

    groove corroded pipes. 10th Int Offshore Polar Engng

    Conf, Seattle. 2000. p. 25362.

    37. STR Hersh CL, Herakovich CT. Local effects in

    stiffened composite tubes under generalized plane defor-

    mation. J Compos Mater 1999;33(5):42042.

    38. STR Hsieh CS, et al. Investigation of anges subjected

    to operating conditions of pressure, temperature and

    bending moments. ASME/JSME Joint Press VessPiping

    Conf PVP 368. New York: ASME, 1998. p. 24557.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 5

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    6/26

    39. STR HsuPW.Stresses in a uniformly paralelepiped solid

    with a pressurized cylindrical cavity. 42nd Str, Str Dyn

    Mater Conf, Seattle. 2001. p. 294750.

    40. STR Hu G, et al. Mechanical behaviour of lament-

    wound glass-bre/epoxy-resin tubes. III. Macro-

    mechanical model of the macroscopic behaviour of

    tubular structures. Compos Sci Technol 1998;58(1):

    1929.

    41. STR Hyer MW, Riddick JC. Internal pressure loading of

    segmented-stiffness composite cylinders. Compos Struct

    1999;45(4):31120.

    42. STR Jacquelin E, et al. Modelling the behaviour of a

    PWR core by a homogenization technique. Comp

    Meth Appl Mech Engng 1999;155(1/2):113.

    43. STR Jones DP, Holliday JE. Elasticplastic analysis of

    the PVRC burst disk tests with comparison to the ASME

    code primary stress limits. J Press Vess Technol, ASME

    2000;122(2):14651.

    44. STR Jones DP, et al. Application of equivalent elastic

    methods in three-dimensional nite element structuralanalysis. J Press Vess Technol, ASME 1999;121(3):

    28390.

    45. STR Kabir MZ. Computer analysis of lament over-

    wrapped metallic pressure vessels with an optimum

    head shape. 6th Int Conf Comput Meth Compos Mater,

    Montreal. Southampton: CMP, 1998. p. 48392.

    46. STR Kabir MZ. Finite element analysis of composite

    pressure vessels with a load sharing metallic liner.

    Compos Struct 2000;49(3):24755.

    47. STR KalliontzisC. Non-linearnite element simulations

    of highly curved submarine pipelines. Commun Numer

    Meth Engng 1998;14(11):106788.48. STR Kalliontzis C. Geometric nonlinear modelling of

    submarine pipeline crossings. Int J Offshore Polar

    Engng 1998;8(4):292302.

    49. STR Kardaras C, Lu G. Finite element analysis of thin

    walled tubes under point loads subjected to large

    plastic deformation. Key Engng Mater 2000;177180:

    7338.

    50. STRKnudsen J, Massih AR.Vibro-impactdynamics of a

    periodically forced beam. J Press Vess Technol, ASME

    2000;122(2):21021.

    51. STR Koerner JP, Hiller W. Elasticplastic nite element

    analysis of high pressure components in low density

    polyethylene plants. ASME/JSME Joint Press VessPiping Conf PVP 371. New York: ASME, 1998. p.

    1722.

    52. STR Koh BK, Park GJ. Analysis and optimization of

    bellows with general shape. J Press Vess Technol,

    ASME 1998;120(4):32533.

    53. STR Konno K, et al. Study on mechanical property of

    prestressed concrete encased by double steel tubes

    subjected to axial forces. Proc Jpn Soc Civil Engng

    1999;613(V):118.

    54. STR Kosasayama H, et al. New stress analysisprocedure

    for piping with refractory lining. ASME/JSME Joint

    Press Vess Piping Conf PVP 368. New York: ASME,

    1998. p. 20110.

    55. STR KristiansenNO,et al.Structural modelling of multi-

    span pipe congurations subjected to vortex induced

    vibrations. 8th Int Offshore Polar Engng Conf, Montreal,

    vol. 2. 1998. p. 12733.

    56. STR Kumar R, Saleem MA. Bend angle effect on B2 and

    C2 stress indices for piping elbows. J Press Vess Tech-

    nol, ASME 2001;123(2):22631.

    57. STR Kussmaul K, Mayinger W. Numerical and experi-

    mental analyses of the behaviour of a nozzle with ther-

    mal sleeve under stratied ow. Nuclear Engng Des

    1999; 190(1/2):127 40.

    58. STR Lengsfeld M, et al. Spring rates for low type tank

    nozzles.ASME/JSMEJoint Press VessPipingConf PVP

    368. New York: ASME, 1998. p. 27580.

    59. STR Lengsfeld M, et al. Alternate method to determine

    xed tube sheet thickness. ASME/JSME Joint Press

    Vess Piping Conf PVP 368. New York: ASME, 1998.

    p. 416.60. STR LiangCC, et al. Study of the nonlinear responses of

    a submersible pressure hull. Int J Press Vess Piping

    1998;75(2):13149.

    61. STR Liang CC, et al. Curvature effect on stress concen-

    trations around circular hole in opened shallow cylind-

    rical shell under externalpressure. IntJ Press VessPiping

    1998;75(10):74963.

    62. STR LidburyDPG,et al.Key features arising from struc-

    tural analysis of the NESC-1 PTS benchmark experi-

    ment. Int J Press Vess Piping 2001;78(2/3):22536.

    63. STR Lin CY, Chan WS. Stiffness evaluation of elliptical

    laminated composite tube under bending. 42nd Str, StrDyn Mater Conf, Seattle. 2001. p. 117580.

    64. STR Liu J, Hirano T. Design and analysis of FRP pres-

    sure vessels with load-carrying metallic liners. ASME/

    JSME Joint Press Vess Piping Conf PVP 368. New York:

    ASME, 1998. p. 95101.

    65. STR Lo YL, et al. Pressure vessel wall thinning

    detection using multiple pairs of ber Bragg

    gratings for unbalanced strain measurements.

    J Nondestr Eval 2000;19(3):10513.

    66. STR Loktionov VD, et al. Numerical investigation of

    the reactor pressure vessel behaviour under severe

    accident conditions taking into account the combined

    processes. Nuclear Engng Des 1999;191(1):3152.67. STR Madureira L, Melo FQ. A hybrid formulation in

    the stress analysis of curved pipes. Engng Comput

    2000; 17(8):97080.

    68. STR Maher A, Hamada AA. On the modelling of tubes

    with composite coat. IMAC-XIX, Kissimmee, FL.

    2001. p. 7829.

    69. STR Mamalis AG, et al. The bending of bre-rein-

    forced composite thin-walled tubular components:

    numerical modelling. Int J Crashworth 2000;5(2):

    193205.

    70. STR Masu LM. Numerical analysis of cylinders con-

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 266

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    7/26

    taining circular offset cross-bores. Int J Press Vess

    Piping 1998;75(3):1916.

    71. STR Matzen VC, Yu L. Elbow stress indices using

    nite element analysis. Nucl Engng Des 1998;181

    (1/3):25765.

    72. STR McGrath TJ. Replacing E prime with the con-

    strained modulus in exible pipe design. Proc Pipe

    Div Conf Pipelines Constr Env, San Diego. New

    York: ASCE, 1998. p. 2840.

    73. STR Miki C, et al. Study on seismic resistance of steel

    pipe pier made of two different sections. Proc Jpn Soc

    Civil Engng 1998;605(I-45):117 27.

    74. STR Mirza S, et al. Fiber-reinforced composite cylind-

    rical vessel with lugs. Compos Struct 2001;53(2):143

    51.

    75. STR Mohamed AI, et al. Applications of iterative elas-

    tic techniques for elasticplastic analysis of pressure

    vessels. J Press Vess Technol, ASME 1999;121(1):

    249.

    76. STR Mohan R, et al. A study of effects of pipe geome-try on FAD curves for austenitic stainless steel and

    ferritic steel piping materials. J Press Vess Technol,

    ASME 1998;120(1):8692.

    77. STR Mourad HM, Younan MYA. The effect of model-

    ing parameters on the predicted limit loads for pipe

    bends subjected to out-of-plane moment loading and

    internal pressure. J Press Vess Technol, ASME 2000;

    122(4):4506.

    78. STR Mourad HM, Younan MYA. Nonlinear analysis

    of pipe bends subjected to out-of-plane moment load-

    ing and internal pressure. J Press Vess Technol, ASME

    2001;123(2):2538.79. STR Moussa WA, Abdel Hamid AN. On the evalua-

    tion of dynamic stresses in pipelines using limited

    vibration measurements and FEA in the frequency

    domain. 1998 Int Pipeline Conf, Calgary. New York:

    ASME, 1998. p. 70510.

    80. STR Moussa WA, Abdel Hamid AN. On the evalua-

    tion of dynamics stresses in pipelines using limited

    vibration measurements and FEA in the time domain.

    ASME/JSME Joint Press Vess Piping Conf PVP 368.

    New York: ASME, 1998. p. 2934.

    81. STR Moussa WA, Abdel Hamid AN. On the evalua-

    tion of dynamic stresses in pipelines using limited

    vibration measurements and FEA in the time domain.J Press Vess Technol, ASME 1999;121(1):3741.

    82. STR Moussa WA, Abdel Hamid AN. On the

    evaluation of dynamic stresses in pipelines using

    limited vibration measurements and FEA in the

    frequency domain. J Press Vess Technol, ASME

    1999;121(3): 2415.

    83. STR Mullarkey TP, et al. Assessment of alternative

    approaches for the representation of torque and twist

    in pipeline and riser analysis. 10th Int Offshore Polar

    Engng Conf, Seattle, vol. 2. 2000. p. 3741.

    84. STR Muller C, Bohmann A. Numerical simulation of

    mechanical effects in composite structures by the

    nite element method. J Press Vess Technol, ASME

    2001;123(2):24852.

    85. STR Nadarajah C, Foo LT. Finite element study of

    keyed backing ring design for oating head. Int J

    Press Vess Piping 1998;75(6):521 6.

    86. STR Nash DH, et al. A parametric study of metal-to-

    metal full face taper-hub anges. Int J Press Vess

    Piping 2000;77(13):7917.

    87. STR Nash DH, et al. Finite element modelling of sling-

    supported pressure vessels. Thin-Wall Struct 1998;

    30(1/4):95110.

    88. STR Pantelelis NG, Kanarachos AE. FEM stress

    analysis and design of a PVC reinforced pipe. 56th

    Ann Tech Conf, ANTEC, Atlanta. 1998. p. 351721.

    89. STR Porter MA, Martens DH. Stress evaluation of a

    typical vessel nozzle using PVRC 3D stress criteria:

    guidelines for application. ASME/JSME Joint Press

    Vess Piping Conf PVP 368. New York: ASME,

    1998. p. 297301.90. STR Preiss R. On the shakedown analysis of nozzles

    using elasto-plastic FEA. Int J Press Vess Piping 1999;

    76(7):42134.

    91. STR Price NM, et al. Vibrations of cylindrical pipes

    and open shells. J Sound Vib 1998;218(3):36187.

    92. STR Ramos A, et al. Delayed coke drum assessment

    using eld measurements and FEA. ASME/JSME

    Joint Press Vess Piping Conf PVP 368. New York:

    ASME, 1998. p. 2317.

    93. STR Ramos R, et al. Comparative analysis between

    analytical and FE-based models for exible pipes

    subjected to axisymmetric loads. 10th Int OffshorePolar Engng Conf, Seattle, vol. 2. 2000. p. 808.

    94. STR Reid SR, Kim TH. Softening effects in the bend-

    ing of tubular structures and components. Key Engng

    Mater 2000;177180:67990.

    95. STR Reid SR, Yang JL. Non-linear dynamic analysis

    of cantilever whipping pipes. Proc Inst Mech Engng,

    Part E 1998;212(3):13349.

    96. STR Roberts KA, Pick RJ. Correction for longitudinal

    stress in the assessment of corroded line pipe. 1998

    Int Pipeline Conf, Calgary. New York: ASME, 1998.

    p. 55361.

    97. STRRoss CTF, Etheridge J. Thevibration andinstability

    of tube-stiffened axisymmetric shells under externalhydrostatic pressure. Adv Civil Str Engng Comput

    Pract. Edinburgh: Civil-Comp, 1998. p. 33542.

    98. STR Sakamoto H, et al. Deection of multi-cellular

    inatable tubes for redundant space structures. 42nd

    Str, Str Dyn Mater Conf, Seattle. 2001. p. 320411.

    99. STR Sanal Z. Geometrically and physically nonlinear

    analysis of pressure vessels. Stahlbau 1998;67(6):

    47882.

    100. STR Sanal Z. Nonlinear analysis of pressure vessels:

    some examples. Int J Press Vess Piping 2000; 77(12):

    7059.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 7

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    8/26

    101. STR Sarma GB, et al. Modeling studies to predict

    stresses in composite oor tubes of black liquor

    recovery boilers. J Engng Mater Technol, ASME

    2001;123(3):34954.

    102. STR Sattari-Far I, Dahlberg L. Sensitivity study of the

    pretest analysis of the NESC-1 spinning cylinder

    experiment. ASME/JSME Joint Press Vess Piping

    Conf PVP 365. New York: ASME, 1998. p. 5966.

    103. STR Schneider SP. Flexural capacity of pressurized

    steel pipe. J Struct Engng, ASCE 1998;124(3):330

    40.

    104. STR Schneider SP. Axially loaded concrete-lled steel

    tubes. J Struct Engng, ASCE 1998;124(10):112538.

    105. STR Seay PA, Plaut RH. Three-dimensional behavior

    of geosynthetic tubes. Thin-Wall Struct 1998; 32(4):

    26374.

    106. STR Seibi AC, Al-Shabibi AM. Pipe bending and

    running forces in medium to high-curvature wells

    using FE analysis. J Energy Resource Technol,

    ASME 1998;120(4):2637.107. STR Seshadri R, Babu S. Extended GLOSS method

    for determining inelastic effects in mechanical compo-

    nents and structures: isotropic materials. J Press Vess

    Technol, ASME 2000;122(4):41320.

    108. STR Shalaby MA, Younan MYA. Nonlinear analysis

    and plastic deformation of pipe elbows subjected

    to in-plane bending. Int J Press Vess Piping 1998;

    75(8):60311.

    109. STR Shalaby MA, Younan MYA. Effect of internal

    pressure on elasticplastic behavior of pipe elbows

    under in-plane bending moments. J Press Vess Tech-

    nol, ASME 1999;121(4):4005.110. STR Shen ZY, et al. Synthetic discrete method for

    analyzing the elastoplastic seismic response of tall

    steel framed-tube systems. Adv Struct Engng 1998;

    1(3):17783.

    111. STR Sherry AH, et al. Application of local approach to

    predict the outcome of the NESC experiment. ASME/

    JSME Joint Press Vess Piping Conf PVP 365. New

    York: ASME, 1998. p. 7584.

    112. STR Sherry AH, et al. Developments in local approach

    methodology with application to the analysis re-

    analysis of the NESC-1 PTS benchmark experiment.

    Int J Press Vess Piping 2001;78(2/3):23749.

    113. STR Shoji Y, Nagata S. On the modeling of pressurevessel shell portion affecting local deformation at

    nozzles and other structural discontinuities. ASME/

    JSME Joint Press Vess Piping Conf PVP 368. New

    York: ASME, 1998. p. 4753.

    114. STR Shu D, et al. Investigation of pressure in pipe

    subjected to axial-symmetric pulse loading. Int J

    Impact Engng 2001;25(6):52336.

    115. STR Sinha JK, et al. Parameter identication techni-

    que for detection of spacer locations in an assembly of

    two coaxial exible tubes. Nuclear Engng Des 2000;

    196(2):13951.

    116. STR Skopinsky VN.Stress analysisof shell intersections

    with torus transition under internal pressure loading.

    J Press Vess Technol, ASME 1998; 119(3): 28892.

    117. STR Skopinsky VN. Stresses in ellipsoidal pressure

    vessel heads with noncentral nozzle. Nuclear Engng

    Des 2000;198(3):31723.

    118. STR Skopinsky VN. Stress concentration in cone

    cylinder intersection. Int J Press Vess Piping 2001;

    78(1):3541.

    119. STR Takahashi H, et al. Multiple-slip work-hardening

    model in crystals with application to torsiontension

    behaviors of aluminium tubes. Int J Plasticity 1998;

    14(6):489509.

    120. STR Taljat B, et al. Mechanical design of steel tubing

    for use in black liquor recovery boilers. Int Symp

    Corros Pulp Paper Ind. Ottawa: CPPA, 1998. p. 1937.

    121. STR Taware A, Brown RH. Dynamic linear nite

    element model for pressure prediction in a gas pipe-

    line. 38th IEEE Conf Decision Contr. Piscataway:

    IEEE, 1999. p. 324852.122. STR Touboul F, et al. Experimental, analytical, and

    regulatory evaluation of seismic behavior of piping

    systems. J Press Vess Technol, ASME 1999; 121(4):

    38892.

    123. STR Tripa VM, et al. On the transfer-matrix method

    (TMM) for the cylindrical vessels with an intermediate

    edge under uniformly distributed pressure. ASME/

    JSME Joint Press Vess Piping Conf PVP 375. New

    York: ASME, 1998. p. 638.

    124. STR Truong KT. Improved FCCU refractory-lined

    piping design. Hydrocarbon Process 1998;77(7):14.

    125. STR Tsukimori K. Theoretical modeling of creepbehavior of bellows and some applications. J Press

    Vess Technol, ASME 2001;123(2):17990.

    126. STR Ukadgaonker VG, Kale PA. Finite element stress

    analysis of tubesheets perforated by circular holes in

    square pitch pattern. J Press Vess Technol, ASME

    1998;120(1):126.

    127. STR Varga L. Design of pressure vessels taking plastic

    reserve into account. Int J Press Vess Piping 1998;

    75(4):33141.

    128. STR Vitali L, et al. Hotpipe project: capacity of pipes

    subject to internal pressure, axial force and bending

    moment. 9th Int Offshore Polar Engng Conf. ISOPE,

    vol. 2. 1999. p. 223.129. STR Vrbka J, et al. On stress and strain computational

    modelling at compound vessel. 4th World Cong

    Comput Mech, Buenos Aires. 1998. p. 204.

    130. STR Wada H, Oguchi N. Interaction between double

    dressed zones on the outer surface of a pressure vessel.

    ASME/JSME Joint Press Vess Piping Conf PVP 375.

    New York: ASME, 1998. p. 5561.

    131. STR Williams DK. Finite element analysis of compo-

    site pressure vessels in a microwave environment.

    ASME/JSME Joint Press Vess Piping Conf PVP 368.

    New York: ASME, 1998. p. 7985.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 268

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    9/26

    132. STR Xu JJ, et al. Local pressure stresses on lateral

    pipe-nozzle with various angles of intersection. Nucl

    Engng Des 2000;199(3):33540.

    133. STR Xue M, et al. Analytical solution for cylindrical

    thin shells with normally intersecting nozzles due to

    external moments on the ends of shells. Sci China Ser

    A 1999;42(3):293304.

    134. STR Xue MD, et al. Stress analysis of cylindrical

    shells with nozzles due to external run pipe moments.

    J Strain Anal Engng Des 2000;35(3):15970.

    135. STR Yee RK, Cohn MJ. Creep relaxation behavior of

    high-energy piping. J Press Vess Technol, ASME

    2000;122(4):48893.

    136. STR Yokoyama T. Finite element computation of

    torsional plastic waves in a thin-walled tube. Arch

    Appl Mech 2001;71(6/7):35970.

    137. STR Yoshizaki K, et al. Large deformation behavior of

    pipe bends subjected to in-plane bending. 1998 Int

    Pipeline Conf, Calgary. New York: ASME, 1998.

    p. 73340.138. STR Yu L, Matzen VC. B2 stress index for elbow

    analysis. Nuclear Engng Des 1999;192(2/3):261

    70.

    139. STR Yu TX, et al. Dynamic behavior of double

    cantilever beams subjected to impact. Int J Press

    Vess Piping 2001;78(1):4957.

    140. STR Zouain N, Silveira JL. Bounds to shakedown

    loads. Int J Solids Struct 2001;38(10):224966.

    A.2. Stability problems (STA)

    1. STA Assanelli AP, et al. Analysis of the collapse of

    steel tubes under external pressure. 4th World Cong

    Comput Mech, Buenos Aires. 1998. p. 172.

    2. STA Assanelli AP, et al. Experimental/numerical analy-

    sis of the collapse behavior of steel pipes. Engng

    Comput 2000;17(4):45986.

    3. STA Bai Y, Hauch S. Analytical collapse capacity of

    corroded pipes. 8th Int Offshore Polar Engng Conf,

    Montreal, vol. 2. 1998. p. 1828.

    4. STA Bai Y, Song R. Reliability-based limit-state design

    and re-qualication of pipelines. 17th Int Conf Offshore

    Mech Arctic Eng. Lisbon: OMAE, 1998. p. 18.

    5. STA Bai Y, et al. Local buckling and plasticcollapse of corroded pipes with yield anisotropy.

    9th Int Offshore Polar Engng Conf, ISOPE, vol. 2,

    1999. p. 7481.

    6. STA Bastard AH. New buckle arrestor for reeled pipe-

    in-pipe. 10th Int Offshore Polar Engng Conf, Seattle,

    vol. 2. 2000. p. 20511.

    7. STA Blachut J, Jaiswal OR. Buckling of imperfect

    ellipsoids and closed toroids subjected to external

    pressure. ASME/JSME Joint Press Vess Piping Conf

    PVP 368. New York: ASME, 1998. p. 1218.

    8. STA Chattopadhyay J, et al. Closed-form collapse

    moment equations of elbows under combined internal

    pressure and in-plane bending moment. J Press Vess

    Technol, ASME 2000;122(4):4316.

    9. STA El-Sawy K, Moore ID. Stability of loosely tted

    liners used to rehabilitate rigid pipes. J Struct Engng,

    ASCE 1998;124(11):13507.

    10. STA Frederiksen PS, et al. Controlled lateral buckling

    of submarine pipelines in snaked conguration. 17th Int

    Conf Offshore Mech Arctic Engng. Lisbon: OMAE,

    1998. p. 110.

    11. STA Gresnigt AM, Steenbergen, HMGM. Plastic defor-

    mation and local buckling of pipelines loaded by

    bending and torsion. 8th Int Offshore Polar Engng

    Conf, Montreal, vol. 2. 1998. p. 14352.

    12. STA Gresnigt AM, et al. Collapse of UOE manu-

    factured steel pipes. 10th Int Offshore Polar Engng

    Conf, Seattle, vol. 2. 2000. p. 17081.

    13. STA Hoo Fatt MS, et al. Steady-state buckle propagation

    in corroded pipelines. 10th Int Offshore Polar Engng

    Conf, Seattle, vol. 2. 2000. p. 197204.14. STA Koundy V, Thiebaut C. High-temperature buck-

    ling analysis of titanium cans under external pressure.

    J Press Vess Technol, ASME 1999;121(4):3648.

    15. STA Koundy V, et al. Effects of torsional buckling

    on the cleavage failure of low-alloy steel tension

    pipe specimens. J Press Vess Technol, ASME 1998;

    120(3):25661.

    16. STA Kyriakides S, Netto TA. On the dynamics of

    propagating buckles in pipelines. Int J Solids Struct

    2000;37(46/47):684367.

    17. STA Li JZ, et al. Finite element analysis for buckling of

    pressure vessels with ellipsoidal head. Int J Press VessPiping 1998;75(2):11520.

    18. STA Magnucki K, Szyc W. Stability problems of pres-

    sure vessel ellipsoidal heads. Arch Budowy Maszyn

    1999;46(1):4355.

    19. STA Mikkelsen LP, Tvergaard V. A nonlocal two-

    dimensional analysis of instabilities in tubes under

    internal pressure. J Mech Phys Solids 1999; 47(4):

    95369.

    20. STA Miles DJ, Calladine CR. Lateral thermal buckling

    of pipelines on the sea bed. J Appl Mech, ASME

    1999;66(4):8917.

    21. STA Mou Y, et al. Plastic instability in pressure vessels

    and their role in design. ASME/JSME Joint PressVess Piping Conf PVP 370. New York: ASME, 1998.

    p. 13541.

    22. STA Netto TA, Kyriakides S. Dynamic performance of

    integral buckle arrestors for offshore pipelines. Part II.

    Analysis. Int J Mech Sci 2000;42(7):142552.

    23. STA Palmer-Jones R, Turner TE. Pipeline buckling,

    corrosion and low cycle fatigue. 17th Int Conf Offshore

    Mech Arctic Engng. Lisbon: OMAE, 1998. p. 18.

    24. STA Payten W, Law M. Estimating the plastic collapse

    of pressure vessels using plasticity contours. Int J Press

    Vess Piping 1998;75(7):52936.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 9

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    10/26

    25. STA Razakamiadana A, Zidi M. Buckling and post-

    buckling of concentric cylindrical tubes under external

    pressure. Mech Res Commun 1999;26(3):35362.

    26. STA Skoczen B. Effect of shear deformation and

    relaxation of support conditions on elastic buckling

    of pressurized expansion bellows. J Press Vess Technol,

    ASME 1999;121(2):12732.

    27. STA Spinazze M, et al. Hotpipe project: use of analy-

    tical models/formulas in prediction of lateral buckling

    and interacting buckles. 9th Int Offshore Polar Engng

    Conf. ISOPE, vol. 2. 1999. p. 921.

    28. STA Sriskandarajah T, et al. Effect of initial imperfec-

    tions on the lateral buckling of subsea pipelines. 9th Int

    Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. p.

    16875.

    29. STA Teng JG, Ma HW. Elastic buckling of ring-

    stiffened conecylinder intersections under internal

    pressure. Int J Mech Sci 1999;41(11):135783.

    30. STA Teng JG, Zhao Y. On the buckling failure of a

    pressure vessel with a conical end. Engng FailureAnal 2000;7(4):261 80.

    31. STA Wang A. Stresses and stability for the cone

    cylinder shells with toroidal transition. Int J Press

    Vess Piping 1998;75(1):4956.

    32. STA Wu L, Carney JF. Experimental analyses of

    collapse behaviors of braced elliptical tubes under

    lateral compression. Int J Mech Sci 1998;40(8):76177.

    33. STA Xu B, et al. Practical computation of the plastic

    collapse limit of defective pipelines under complex

    loadings. Key Engng Mater 2000;177180:691702.

    34. STA Yan AM, et al. Practical estimation of the plastic

    collapse limit of curved pipes subjected to complexloading. Struct Engng Mech 1999;8(4):42138.

    A.3. Thermal problems (THE)

    1. THE Amin MR. Conjugate forced convection heat

    transfer in tubes with obstruction. J Thermophys Heat

    Transf 1998;12(1):114 6.

    2. THE Aswendt P, et al. Thermal deformation behaviour

    of CFRP pipes: verication of nite element simulation

    by interferometric measurements. Materialpruefung/

    Mater Test 1999;41(7):3149.

    3. THE Bass BR, et al. Overview of the internationalcomparative assessment study of pressurized thermal

    shock in reactor pressure vessels (RPV PTS ICAS).

    Int J Press Vess Piping 2001;78(2/3):197211.

    4. THE Cannarozzi AA, et al. A hybrid ux axisymmetric

    model for thermal analysis. Comput Struct 2001;

    79(12):1187201.

    5. THE Chellapandi P, et al. Theoretical and experimental

    investigations of thermal ratchetting in PFBR main

    vessel. Trans Indian Inst Met 2000;53(3):3919.

    6. THE Diaz V, et al. Simplied thermo-visco-plastic

    model for PWR vessel behaviour during a severe

    accident. ASME/JSME Joint Press Vess Piping Conf

    PVP 362. New York: ASME, 1998. p. 918.

    7. THE Fabbri G. Optimum proles for asymmetrical

    longitudinal ns in cylindrical ducts. Int J Heat Mass

    Transf 1999;42(3):51123.

    8. THE Gowda YTK, et al. Finite element analysis of

    mixed convection over in-line tube bundles. Int J Heat

    Mass Transf 1998;41(11):16139.

    9. THE Guijt W. Design considerations of high-tempera-

    ture pipelines. 9th Int Offshore Polar Engng Conf,

    ISOPE, vol. 2. 1999. p. 6839.

    10. THE Han LH. Fire performance of concrete lled

    steel tubular beam-columns. J Constr Steel Res 2001;

    57(6):697711.

    11. THE Holstein D, et al. Simulation and experiment on

    the thermal deformation of composite tubes. Proc SPIE

    1998;3479:26473.

    12. THE Igari T, et al. Mechanism-based evaluation of

    thermal ratchetting due to travelling temperature

    distribution. J Press Vess Technol, ASME 2000;122(2):1308.

    13. THE Keim E, et al. Life management of reactor pres-

    sure vessels under pressurized thermal shock loading:

    deterministic procedure and application to western type

    of reactor. Int J Press Vess Piping 2001;78(2/3):8598.

    14. THE Kim JK, et al. Thermal analysis of hydration

    heat in concrete structures with pipe-cooling system.

    Comput Struct 2001;79(2):163 71.

    15. THE Kim JS, Jin TE. Structural integrity assessment of

    the reactor pressure vessel under the external reactor

    vessel cooling condition. Nucl Engng Des 1999;

    191(2):11733.16. THE Konka WT. Natural convection heat transfer

    around horizontal tube in vertical slot. Int J Heat Mass

    Transf 2000;43(3):44755.

    17. THE Kostylev VI, Margolin BZ. Determination of resi-

    dual stress and strain elds caused by cladding and

    tempering of reactor pressure vessels. Int J Press Vess

    Piping 2000;77(12):72335.

    18. THE Li LJ, et al. Turbulent heat transfer to near-critical

    water in a heated curved pipe under the conditions of

    mixed convection. 1998 ASME Int Mech Engng Cong

    Expo HTD 361-1. New York: ASME, 1998. p. 1018.

    19. THE Lin CL, et al. Thermal performance of embedded

    heat pipe composite sandwich panels. 1999 Str, Str DynMater Conf Exhib, St Louis, AIAA, 1999. p. 112534.

    20. THE Lin CX, Ebadian MA. Combined laminar forced

    convection and thermal radiation in a curved pipe. 7th

    Joint Thermophys Heat Trans Conf, Albuquerque,

    AIAA. 1998. p. 7380.

    21. THE Looyeh MRE. Thermomechanical modelling of

    glass reinforced plastic pipes. 10th Int Offshore Polar

    Engng Conf, Seattle, vol. 4. 2000. p. 839.

    22. THE Mehta RC, et al. Thermal stress analysis of a solid

    rocket motor nozzle throat insert using FEM. Ind J

    Engng Mater Sci 1998;5(5):2717.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 2610

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    11/26

    23. THE Mensah PF, et al. Thermal stress analysis of heat

    activated coupling of composite-to-composite pipe.

    1999 ASME Energy Sources Tech Conf, Houston.

    New York: ASME, 1999. p. 19.

    24. THE Miles DJ, Calladine CR. Lateral thermal buckling

    of pipelines on the sea bed. J Appl Mech, ASME

    1999;66(4):8917.

    25. THE Miroshnik R, et al. Probabilistic life assessment of

    chest valve under thermal stresses. Int J Press Vess

    Piping 1998;75(1):1 5.

    26. THE Moinereau D, et al. Methodology for the pressur-

    ized thermal shock evaluation: recent improvements in

    French RPV PTS assessment. Int J Press Vess Piping

    2001;78(2/3):6983.

    27. THE Mukhopadhyay NK, et al. Deterministic assess-

    ment of reactor pressure vessel integrity under

    pressurised thermal shock. Int J Press Vess Piping

    1998;75(15):105564.

    28. THE Ni L, Bauer GS. Dynamic stress of a liquid metal

    target container under pulsed heating. J Press VessTechnol, ASME 1998;120(4):35964.

    29. THE Ong LS, et al. Parametric equations for maximum

    stresses in cylindrical vessels subjected to thermal

    expansion loading. Int J Press Vess Piping 1998;

    75(3):25562.

    30. THE Perl M, Greenberg Y. Three-dimensional analysis

    of thermal shock effect on inner semi-elliptical surface

    cracks in a cylindrical pressure vessel. Int J Fracture

    1999;99(3):16170.

    31. THE Reinhardt W, et al. Design and analysis of a tube-

    sheet for extreme transient thermal loading. ASME/

    JSME Joint Press Vess Piping Conf PVP 370. NewYork: ASME, 1998. p. 14350.

    32. THE Reinhardt W, et al. Analysis of a tubesheet under-

    going rapid transient thermal loading. J Press Vess

    Technol, ASME 2000;122(4):47681.

    33. THE Reinhardt WD. Yield criteria for the elastic

    plastic design of tubesheets with triangular penetration

    patterns. ASME/JSME Joint Press Vess Piping Conf

    PVP 370. New York: ASME, 1998. p. 1139.

    34. THE Reinhardt WD. Yield criteria for the elastic

    plastic design of tubesheet with triangular penetration

    pattern. J Press Vess Technol, ASME 2001; 123(1):

    11823.

    35. THE Schafer I, et al. Thermomechanical behavior andmodeling between 350 Degree C and 400 C of Zircaloy-

    4 cladding tubes from an unirradiated state to high

    uence. J Engng Mater Technol, ASME 2000;

    122(2):16876.

    36. THE Sen S, et al. Transient and residual thermal stresses

    in quenched cylindrical bodies. Int J Mech Sci 2001;

    42(10):201329.

    37. THE Schimpfke T, et al. Simulation of the structure-

    mechanical behaviour of a PWR coolant loop under

    extreme loads. Nucl Engng Des 1999;190(1/2):11726.

    38. THE Seibi AC, Amateau MF. Finite element modelling

    and optimization for controlling the residual thermal

    stresses of laminated composite tubes. Compos Struct

    1998;41(2):1517.

    39. THE Taler J, et al. Analysis of thermal stresses in a

    boiler drum during start-up. J Press Vess Technol,

    ASME 1999;121(1):8493.

    40. THE Tsai SF, Sheu TWH. Some physical insights into a

    two-row nned-tube heat transfer. Comput Fluids

    1998;27(1):2946.

    41. THE Tzou DY, et al. Thermomechanical fracture on

    pressurized cylindrical vessels. Proc SPIE 1998;3343:

    60817.

    A.4. Fracture mechanics problems (FRA)

    1. FRA Abah L, Limam A. Upon the effects of cutouts on

    the behaviour of axially crushed tubes. ASME/JSME

    Joint Press Vess Piping Conf PVP 361. New York:

    ASME, 1998. p. 18794.2. FRA Andersen A, et al. Protection against high-energy

    line breaks in WWER power plants. Nucl Engng Des

    2001;206(2/3):11928.

    3. FRA Andrade-Lima E, Bruno AC. Improving the

    detection of aws in steel pipes using SQUID planar

    gradiometers. IEEE Trans Appl Supercond 2001;

    11(1):1299302.

    4. FRA Arsene S, Bai J. New approach to measuring

    transverse properties of structural tubing by a ring

    testexperimental investigation. J Test Eval 1998;

    26(1):2630.

    5. FRA Bai H, et al. Scattering of guided waves bycircumferential cracks in steel pipes. J Appl Mech,

    ASME 2001;68(4):619 31.

    6. FRA Bass BR, et al. An investigation of cladding

    effects on shallow-aw fracture toughness of reactor

    pressure vessel steel under prototypic biaxial loading.

    J Press Vess Technol, ASME 1999;121(3):25768.

    7. FRA Becht C. Fatigue of bellows, a new design

    approach. Int J Press Vess Piping 2000;77(13):843

    50.

    8. FRA Bhandari S, et al. Mechanical behaviour of RPV

    materials in case of complete core melt. ASME/JSME

    Joint Press Vess Piping Conf PVP 362. New York:

    ASME, 1998. p. 16774.9. FRA Bhandari S, et al. Creep-damage analysis:

    comparison between coupled and uncoupled models.

    J Press Vess Technol, ASME 2000;122(4):40812.

    10. FRA Bhuyan GS, et al. Prediction of failure behavior

    of a welded pressure vessel containing aws during a

    hydrogen-charged burst test. J Press Vess Technol,

    ASME 1999;121(3):24651.

    11. FRA Bouchard PJ, et al. J-integral and local damage

    fracture analyses for a pump casing containing large

    weld repairs. Int J Press Vess Piping 2001;78(4):295

    305.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 11

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    12/26

    12. FRA Bouyne E, et al. Mechanical and microstructural

    investigations into the crack arrest behaviour of a

    modern 2 1/4 Cr1 Mo pressure vessel steel. Fatigue

    Fract Engng Mater Struct 2001;24(2):10516.

    13. FRA Brickstad B, Sattari-Far I. Crack shape develop-

    ments for LBB applications. Engng Fract Mech 2000;

    67(6):62546.

    14. FRA Brighenti R. Surface cracks in shells under differ-

    ent hoop stress distributions. Int J Press Vess Piping

    2000; 77(9):5039.

    15. FRA Brighenti R. Axially-cracked pipes under pulsat-

    ing internal pressure. Int J Fatigue 2000;22(7):55967.

    16. FRA Brighenti R. External longitudinal aws in pipes

    under complex loading. J Press Vess Technol, ASME

    2001;123(1):13945.

    17. FRA Brocca M, Bazant ZP. Evaluation of tube-squash

    test of concrete at very large strains using microplane

    nite element analysis. 5th US Nat Cong Comput

    Mech, Boulder. 1999. p. 320.

    18. FRA Brown RG, et al. Fitness for service evaluation ofring joint groove cracking. J Press Vess Technol,

    ASME 2000;122(1):725.

    19. FRA Burande S, Sethuraman R. Computational simu-

    lation of fatigue crack growth and demonstration of

    leak before break criterion. Int J Press Vess Piping

    1999;76(5):3318.

    20. FRA Cai W, et al. Nonlinear analysis on residual

    strength of corroded pipeline. J Univ Petrol China

    1999;23(1): 66 8.

    21. FRA Carpinteri A, Brighenti R. Circumferential

    surface aws in pipes under cyclic axial loading.

    Engng Fract Mech 1998;60(4):383 96.22. FRA Carpinteri A, Brighenti R. A three-parameter

    model for fatigue behaviour of circumferential surface

    aws in pipes. Int J Mech Sci 2000;42(7):125569.

    23. FRA Carpinteri A, et al. Part-through cracks in pipes

    under cyclic bending. Nucl Engng Des 1998;185(1):

    110.

    24. FRA Carpinteri A, et al. External longitudinal part-

    through aw in an internally pressurized pipe. Fatigue

    '99, Higher Educat Press China, 1999. p. 2397402.

    25. FRA Carpinteri A, et al. Fatigue behavior of cracked

    pipes under rotary bending. Fatigue '99, Higher

    Educat Press China, 1999. p. 243135.

    26. FRA Carpinteri A, et al. Fatigue growth simulation ofpart-through aws in thick-walled pipes under rotary

    bending. Int J Fatigue 2000;22(1):19.

    27. FRA Casey GA, et al. Stress intensity factors for

    circumferential cracks in pressure vessel door

    closures. Int J Press Vess Piping 1999;76(1):112.

    28. FRA Cavak M, et al. Initial bending fatigue of PVC

    pipe joints. ASME/JSME Joint Press Vess Piping Conf

    PVP 365. New York: ASME, 1998. p. 40936.

    29. FRA Chamis CC, Minnetyan L. Defect/damage toler-

    ance of pressurized ber composite shells. Compos

    Struct 2001;51(2):15968.

    30. FRA Chang YS, et al. A parametric study on the frac-

    ture mechanics analysis of elbow with surface crack.

    Key Engng Mater 2000;183187:50510.

    31. FRA Chapuliot S, et al. Stress intensity factors for

    internal circumferential cracks in tubes over a wide

    range of radius over thickness ratios. ASME/JSME

    Joint Press Vess Piping Conf PVP 365. New York:

    ASME, 1998. p. 95106.

    32. FRA Chattopadhyay J, et al. Leak-before-break quali-

    cation of primary heat transport piping of 500 MWE

    Tarapur atomic power plant. Int J Press Vess Piping

    1999;76(4):22143.

    33. FRA Chen HF, Shu D. Simplied limit analysis of

    pipelines with multi-defects. Engng Struct 2001;

    23(2):20713.

    34. FRA Chen HF, Shu DW. Lower and upper bound limit

    analyses for pipeline with multi-slots of various con-

    gurations. Int J Press Vess Piping 2000;77(1):1725.

    35. FRA Chen HF, Shu DW. The effects of the distance

    between two defects on the load-carrying capacity of apressure vessel. J Press Vess Technol, ASME 2000;

    122(2):198203.

    36. FRA Chen HF, Shu DW. The load carrying capacity of

    the pressure vessel with two defects along axial direc-

    tion. Key Engng Mater 2000;177180:75762.

    37. FRA Chen HF, Shu DW. Numerical method for lower

    bound limit analysis of 3-D structures with multi-load-

    ing systems. Int J Press Vess Piping 1999;76(2):105

    12.

    38. FRA Chiesa M, et al. Efcient fracture assessment

    of pipelines. A constraint-corrected SENT specimen

    approach. Engng Fract Mech 2001;68(5):527 47.39. FRA Choi JB, et al. Effect of cladding on stress inten-

    sity factors in the pressure vessel. ASME/JSME Joint

    Press Vess Piping Conf PVP 374. New York: ASME,

    1998. p. 2933.

    40. FRA Choi SN, et al. Effect of cladding on the stress

    intensity factors in the reactor pressure vessel. Nucl

    Engng Des 2000;199(1/2):10111.

    41. FRA Chung M, et al. 3-D analysis and validation of a

    crack in a pressurized pipe under creep conditions

    using submodelling techniques. 4th World Cong

    Comput Mech, Buenos Aires. 1998. p. 561.

    42. FRA Cowan AL, et al. Crack path bifurcation at a tear

    strap in a pressured shell. 41st Str, Str Dyn Mater ConfExhib, AIAA, 2000. p. 1090101.

    43. FRA Cui X, et al. Analysis on the elastic load bearing

    capacity of tubes inside slips. J Univ Petrol China

    1999;23(1):625.

    44. FRA Das J, Sivakumar SM. An evaluation of multi-

    axial fatigue life assessment methods for engineering

    components. Int J Press Vess Piping 1999;76(10):741

    6.

    45. FRA Dhar S, et al. A continuum damage mechanics

    model for ductile fracture. Int J Press Vess Piping

    2000;77(6):33544.

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 2612

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    13/26

    46. FRA Dinovitzer AS,et al. Strain-based failurecriteria for

    sharp part-wall defects in pipelines. 1998 Int Pipeline

    Conf, Calgary. New York: ASME, 1998. p. 25561.

    47. FRA Dixon RD, Perez EH. Effects of cross-bores on

    the limit load of high pressure cylindrical vessels.

    ASME/JSME Joint Press Vess Piping Conf PVP 371.

    New York: ASME, 1998. p. 11923.

    48. FRA Eisinger FL, Francis JT. Acoustically induced

    structural fatigue of piping systems. J Press Vess Tech-

    nol, ASME 1999;121(4):43843.

    49. FRA Endicott JS, Leventry SC. Ultimate strength of

    reduced girth seams on cylindrical vessels. ASME/

    JSME Joint Press Vess Piping Conf PVP 360. New

    York: ASME, 1998. p. 3619.

    50. FRA Estrada H, Parsons ID. Strength and leakage

    nite element analysis of a GFRP ange joint. Int J

    Press Vess Piping 1999;76(8):54350.

    51. FRA Feng H, et al. Finite element modelling of low-

    temperature autofrettage of thick-walled tubes of the

    austenitic stainless steel AISI 304 L. Part I. ModelSimul Mater Sci Engng 1998;6(1):5169.

    52. FRA Feng H, et al. Finite element modelling of low-

    temperature autofrettage of thick-walled tubes of the

    austenitic stainless steel AISI 304 L. Part II. Model

    Simul Mater Sci Engng 1998;6(1):7185.

    53. FRA Folias ES, Perry LJ. Failure of a threaded

    pressurized vessel. Int J Press Vess Piping

    1999;76(10):68592.

    54. FRA Foxen J, Rahman S. Elasticplastic analysis of

    small cracks in tubes under internal pressure and bend-

    ing. Nucl Engng Des 2000;197(1):7587.

    55. FRA Goldthorpe MR, Wiesner CS. Micromechanicalprediction of fracture toughness for pressure vessel

    steel using a coupled model. ASTM Spec Publ

    1999;1332:34163.

    56. FRA Goncalves R, Casanova EL. Stress intensication

    factors for encirclement sleeve reinforced branch

    connections. ASME/JSME Joint Press Vess Piping

    Conf PVP 360. New York: ASME, 1998. p. 47782.

    57. FRA Gong JM, et al. Damage assessment and main-

    tenance strategy of hydrogen reformer furnace tubes.

    Engng Failure Anal 1999;6(3):143 53.

    58. FRA Grant RJ, Smart J. Crack growth in pin-loaded

    tubes. II. Comparison of experimental data with

    numerical results. J Strain Anal Engng Des1999;34(4):27184.

    59. FRA Han J, Yamazaki K. A study on maximization of

    dynamic crushing energy absorption of square tubes

    with and without stiffener. JSME Int J, A

    2000;43(2):13845.

    60. FRA Han LH, et al. Limit moment of local wall thin-

    ning in pipe under bending. Int J Press Vess Piping

    1999; 76(8):53942.

    61. FRA Harris DO, Woytowitz PJ. Fully plastic J-inte-

    grals for through-wall axial cracks in pipes. ASTM

    Spec Publ 1999;1332:21532.

    62. FRA Hassan T, Liu Z. On the difference of fatigue

    strengths from rotating bending, four-point bending,

    and cantilever bending tests. Int J Press Vess Piping

    2001;78(1):1930.

    63. FRA Hassan T, et al. Improved ratchetting analysis of

    piping components. Int J Press Vess Piping 1998;

    75(8):64352.

    64. FRA Hayhurst DR, Perrin IJ. Continuum damage

    mechanics analyses of Type IV creep failure in ferritic

    steel crossweld specimens. Int J Press Vess Piping

    1999;76(9):599617.

    65. FRA Hong SJ, et al. A study on crushing characteris-

    tics of thick-walled aluminum tubes under axial load-

    ing. Int J Crashworth 1998;3(3):22536.

    66. FRA Hoogkamer D, et al. Damage tolerance of

    cracked cylindrical shells under internal pressure.

    42nd Str, Str Dyn Mater Conf, Seattle. 2001. p.

    226576.

    67. FRA Hornet P, Comparison of experimental results,

    FE calculations and analytical approach on the fracturebehavior of circumferential through wall cracked

    pipes. ASME/JSME Joint Press Vess Piping Conf

    PVP 373. New York: ASME, 1998. p. 1638.

    68. FRA Hornet P, Eripret C. Fracture behaviour of

    circumferential through wall cracked welded pipes in

    four point bending. Engng Fract Mech 1999;

    64(4):45972.

    69. FRA Hornet P, et al. Failure probability calculation of

    an axisymmetrically cracked pipe under pressure and

    tension using a nite element code. ASME/JSME Joint

    Press Vess Piping Conf PVP 373. New York: ASME,

    1998. p. 3 7.70. FRA Hou YC, et al. Fracture analysis of welded pipes

    with consideration of residual stresses. ASME/JSME

    Joint Press Vess Piping Conf PVP 373. New York:

    ASME, 1998. p. 4337.

    71. FRA Hsieh MF, et al. Nozzles in the knuckle region of

    a torispherical head: limit load interaction under

    combined pressure and piping loads. Int J Press Vess

    Piping 2000;77(13):80715.

    72. FRA Hu HT, Liang JI. Ultimate analysis of BWR

    Mark III reinforced concrete containment subjected

    to internal pressure. Nucl Engng Des 2000;195(1):1

    11.

    73. FRA Huang X, et al. Collapse strength analysis ofcasing design using nite element method. Int J

    Press Vess Piping 2000;77(7):35967.

    74. FRA Huh NS, et al. Prediction of piping failure beha-

    vior using wide-plate test. Key Engng Mater

    2000;183187:65560.

    75. FRA Huo L, et al. Effect of mismatching on J-integral

    for pipe-welded joints with circumferential through-

    wall crack. Int J Press Vess Piping 1999;76(12):857

    62.

    76. FRA Huo L, et al. Reliability calculation for

    piping containing circumferential crack based on

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 13

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    14/26

    3-D elasticplastic SFEM. Key Engng Mater

    2000;183187:6138.

    77. FRA Huo LX, et al. Effect of the mismatching of

    J-integral for pipe welded joint with circumferential

    surface crack. Key Engng Mater 2000;183

    187:132732.

    78. FRA Huysmans G, et al. Structural analysis of GRP

    pipe couplers by using a fracture mechanical approach.

    Compos, Part B 1998;29(4):477 87.

    79. FRA Hyde TH, et al. Assessment of the use of nite

    element creep steady state stresses for predicting the

    creep life of welded pipes. Adv FE Proced Technol.

    Edinburgh: Civil-Comp, 1998. p. 24751.

    80. FRA Hyde TH, et al. Experimental and nite element

    investigations on the static collapse of a plane tubular

    framework structure. 9th Int Offshore Polar Engng

    Conf. 4. ISOPE. 1999. p. 6370.

    81. FRA Hyde TH, et al. Prediction of creep failure life of

    internally pressurised thick walled CrMoV pipes. Int J

    Press Vess Piping 1999;76(14):92533.82. FRA Hyde TH, et al. Failure prediction for multi-

    material creep test specimens using a steady-state

    creep rupture test. Int J Mech Sci 2000;42(3):40123.

    83. FRA Hyde TH, et al. Effect of weld angle and axial

    load on the creep failure behaviour of an internally

    pressurised thick walled CrMoV pipe weld. Int J

    Press Vess Piping 2001;78(5):365 72.

    84. FRA Jing JP, et al. A continuum damage mechanics

    model on low cycle fatigue life assessment of steam

    turbine rotor. Int J Press Vess Piping 2001;78(1):59

    64.

    85. FRA Jones DP, Holliday JE. Elasticplastic analysisof the PVRC burst disk tests with comparison to the

    ASME code primary stress limits. J Press Vess Tech-

    nol, ASME 2000;122(2):14651.

    86. FRA Jones DP, et al. Elasticplastic failure analysis of

    pressure burst tests of thin toroidal shells. J Press Vess

    Technol, ASME 1999;121(2):14953.

    87. FRA Jun HK, et al. Plastic collapse solutions based on

    nite element analyses for axial surface cracks in pipe-

    lines under internal pressure. ASME/JSME Joint Press

    Vess Piping Conf PVP 373. New York: ASME, 1998.

    p. 5238.

    88. FRA Keeney JA, Williams PT. Fracture analysis of

    ductile crack growth in weld material from a full-thickness clad RPV shell segment. ASTM Spec Publ

    1999; 1332:85161.

    89. FRA Kim CH, et al. Welding residual stress analysis

    and fatigue crack growth characteristics of multi-pass

    welded pipe weldment. Key Engng Mater 2000;183

    187:134550.

    90. FRA Kim JH, Hwang IS. Elastic plastic fracture

    mechanics behavior of a part-through crack in nuclear

    piping. ASME/JSME Joint Press Vess Piping Conf

    PVP 365. New York: ASME, 1998. p. 32531.

    91. FRA Kim WB. Ultimate strength of tube-gusset plate

    connections considering eccentricity. Engng Struct

    2001;23(11):141826.

    92. FRA Kim YJ, et al. Development of modied piping

    evaluation diagram for leak-before-break application

    to Korean next generation reactor. Nucl Engng Des

    1999;191(2):13545.

    93. FRA Kisioglu Y, et al. Determination of burst pressure

    and location of the DOT-39 refrigerant cylinders.

    J Press Vess Technol, ASME 2001;123(2):2407.

    94. FRA Knox EM, et al. Fatigue performance of adhe-

    sively bonded connections in GRE pipes. Int J Fatigue

    2000; 22(6):5139.

    95. FRA Kobidze G, Lord W. Tight crack modeling for the

    nite element simulation of inspection tools in pipe-

    lines. Mater Eval 1998;56(10):1223 6.

    96. FRA Koh BH, et al. Crack stability evaluation of

    nuclear main steam pipe considering load reduction

    effect. Nucl Engng Des 2001;203(2/3):17584.

    97. FRA Koh SK. Fatigue analysis of autofrettaged pres-

    sure vessels with radial holes. Int J Fatigue2000;22(8):71726.

    98. FRA Kosai M, et al. Axial crack propagation and arrest

    in a pressurized cylinder: an experimentalnumerical

    analysis. Exp Mech 1999;39(4):256 64.

    99. FRA Koundy V, et al. Effects of torsional buckling on

    the cleavage failure of low-alloy steel tension pipe

    specimens. J Press Vess Technol, ASME 1998;

    120(3):25661.

    100. FRA Koyama K, et al. Low alloy steel piping test for

    fracture criteria of leak before break. Nucl Engng Des

    1999;191(2):14756.

    101. FRA Kriel CJ, Heyns PS. Damage identication onpiping systems using on-line monitoring of dynamic

    properties. 17th Int Modal Anal Conf. Kissimmee:

    IMAC, 1999. p. 4828.

    102. FRA Kriel CJ, Heyns PS. Damage identication on

    piping systems using on-line monitoring of dynamic

    properties. Shock Vib Dig 2000;32(1):45.

    103. FRA Kumar R. Fatigue life estimation for internal

    threads in Class 1 components. J Press Vess Technol,

    ASME 1998;120(1):81 5.

    104. FRA Kuroda M, et al. Inuence of precipitated hydride

    on the fracture behavior of zircaloy fuel cladding tube.

    J Nucl Sci Technol 2000;37(8):6705.

    105. FRA Kwon O, et al. Effects of residual stress in creepcrack growth analysis of cold bent tubes under internal

    pressure. Int J Press Vess Piping 2001;78(5):34350.

    106. FRA Kwon O, et al. The development of a multiaxial

    stress rupture criterion for bolting steels using new

    and service aged materials. Int J Press Vess Piping

    2000;77(2/3):917.

    107. FRA Labbe F, Donoso JR. An optimal nite element

    meshing for modeling large scale yielding around a

    defect in a nuclear pressure vessel. Int Conf Simul

    Tech Nuclear Power Plant, San Diego. 2000. p. 1217.

    108. FRA Lam PS, Sindelar RL. Flaw stability in mild steel

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 2614

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    15/26

    tanks in the upper-shelf ductile range. Part II. J-integral-

    based fracture analysis. J Press Vess Technol, ASME

    2000;122(2):16973.

    109. FRA Lapsley C, Mackenzie D. Autofrettage of thick

    cylinders with radial cross bores. ASME/JSME Joint

    Press Vess Piping Conf PVP 371. New York: ASME,

    1998. p. 715.

    110. FRA Law M, et al. Finite element analysis of creep

    using theta projection data. Int J Press Vess Piping

    1998;75(5):43742.

    111. FRA Le Delliou P, et al. Analysis of a bending test on a

    full-scale PWR hot leg elbow containing a surface

    crack. Nucl Engng Des 1999;193(3):27382.

    112. FRA Lee H, Parks DM. Line-spring nite element for

    fully plastic crack growth. II. Surface cracked plates

    and pipes. Int J Solids Struct 1998;35(36):513958.

    113. FRA Lee HY, et al. Assessment of fatigue and fracture

    on a tee-junction of LMFBR piping under thermal

    striping phenomenon. J Korean Nucl Soc 1999;

    31(3):26775.114. FRA Lee HY, et al. Green's function approach for

    crack propagation problem subjected to high cycle

    thermal fatigue loading. Int J Press Vess Piping

    1999; 76(8):48794.

    115. FRA Lee JH, et al. Evaluation of plugging criteria on

    steam generator tubes and coalescence model of

    collinear axial through-wall cracks. J Korean Nucl

    Soc 2000;32(5):46576.

    116. FRA Lee JH, et al. Determination of equivalent single

    crack based on coalescence criterion of collinear axial

    cracks. Nucl Engng Des 2001;205(1/2):111.

    117. FRA Lee S, et al. Effect of triggering on the energyabsorption capacity of axially compressed aluminum

    tubes. Mater Des 1999;20(1):31 40.

    118. FRA Lee SM, et al. Leak before break criteria applied

    to main steam line. ASME/JSME Joint Press Vess

    Piping Conf PVP 365. New York: ASME, 1998.

    p. 397402.

    119. FRA Lei Y, et al. J estimation and defect assessment

    for combined residual stress and mechanical loading.

    Int J Press Vess Piping 2000;77(6):32133.

    120. FRA Lei YP, et al. Effect of mechanical hetero-

    geneity and limit load of a weld joint with long-

    itudinal weld crack on the J-integral and failure

    assessment curve. Int J Press Vess Piping 1998;75(8):62532.

    121. FRA Leitch BW. Fracture analyses of an internally

    pressurized tube containing an axial through-wall

    crack. ASTM Spec Publ 1999;1332:83050.

    122. FRA Leung AYT, Su RKL. Two-level nite element

    study of axisymmetric cracks. Int J Fracture 1998;

    89(2):193203.

    123. FRA Leung AYT, Su RKL. Eigenfunction expansion

    for penny-shaped and circumferential cracks. Int J

    Fracture 1998;89(3):205 22.

    124. FRA Levy C, et al. Three dimensional erosion geo-

    metry effects on the stress intensity factors of an

    inner crack emanating from an erosion in an auto-

    frettaged cylinder. ASME/JSME Joint Press Vess

    Piping Conf PVP 370. New York: ASME, 1998.

    p. 117.

    125. FRA Levy C, et al. Cracks emanating from an erosion

    in a pressurized autofrettaged thick-walled cylinder.

    Part I. Semi-circular and arc erosion. J Press Vess

    Technol, ASME 1998;120(4):34953.

    126. FRA Li C, Zhou Z. Internally circumferentially

    cracked cylinder with functionally graded material

    properties. Int J Press Vess Piping 1998;75(6):499

    507.

    127. FRA Lin XB, Smith RA. Fatigue growth prediction of

    internal surface cracks in pressure vessels. J Press Vess

    Technol, ASME 1998;120(1):1723.

    128. FRA Lin XB, Smith RA. Direct simulation of fatigue

    crack growth for arbitrary-shaped defects in pressure

    vessels. Proc Inst Mech Engng, Part C 1999;

    213(2):17589.129. FRA Ling X, et al. Damage mechanics considerations

    for life extension of high-temperature components.

    J Press Vess Technol, ASME 2000;122(2):1749.

    130. FRA Ling X, et al. Application of RungeKutta

    Merson algorithm for creep damage analysis. Int J

    Press Vess Piping 2000;77(5):243 8.

    131. FRA Liu Y, et al. On the limit analysis of defective

    pipelines under complex loadings. Arch Mech 2000;

    52(4/5):62944.

    132. FRA Liu YH, et al. Plastic collapse analysis of defective

    pipelines under multi-loading systems. Int J Mech Sci

    2000;42(8):160722.133. FRA Lowe MJS, et al. The mode conversion of a

    guided wave by a part-circumferential notch in a

    pipe. J Appl Mech, ASME 1998;65(3): 64956.

    134. FRA Lu Tao, et al. Residual stress distributions and

    plastic zones in heterogeneous welded plates with

    a transverse crack. Int J Press Vess Piping 2000;

    77(9):54953.

    135. FRA Majumdar S. Prediction of structural integrity of

    steam generator tubes under severe accident condi-

    tions. Nucl Engng Des 1999;194(1):3155.

    136. FRA Majumdar S. Failure and leakage through

    circumferential cracks in steam generator tubing

    during accident conditions. Int J Press Vess Piping1999; 76(12):83947.

    137. FRA Margolin BZ, Kostylev VI. Analysis of biaxial

    loading effect on fracture toughness of reactor pressure

    vessel steels. Int J Press Vess Piping 1998;75(8):589

    601.

    138. FRA Margolin BZ, Kostylev VI. Modeling for ductile-

    to-brittle transition under ductile crack growth for

    reactor pressure vessel steels. Int J Press Vess Piping

    1999;76(5):30917.

    139. FRA Margolin BZ, Kostylev VI. Prediction of

    ductilebrittle transition for ductile crack growth in

    J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1 26 15

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    16/26

  • 7/27/2019 Elementos finitos en el anlisis de los recipientes a presin y tuberas, una adicin de una bibliografa

    17/26

    170. FRA Park YK, et al. Creep crack growth in X20CrMoV

    121steel and its weld joint.J Press Vess Technol, ASME

    2001;123(2):1916.

    171. FRA Pavankumar TV, et al. Numerical investigations

    of crack-tip constraint parameters in two-dimensional

    geometries. Int J Press Vess Piping 2000;77(6):34555.

    172. FRA Pengfei He, et al. The cracking of zirconia refrac-

    tory tubes under hot shock. J Mater Sci 2000;

    35(10):24439.

    173. FRA Perl M, Greenberg Y. Three-dimensional analysis

    of thermal shock effect on inner semi-elliptical surface

    cracks in a cylindrical pressure vessel. Int J Fracture

    1999;99(3):16170.

    174. FRA Perl M, Nachum A. Effect of autofrettage on 3-D

    internal radial surface cracks in a pressurized cylinder.

    ASME/JSME Joint Press Vess Piping Conf PVP 371.

    New York: ASME, 1998. p. 3743.

    175. FRA Perl M, Nachum A. 3-D stress intensity factors for

    internal cracks in an overstrained cylindrical pressure

    vessel. Part I. The effect of autofrettage level. J PressVess Technol, ASME 2000;122(4):4216.

    176. FRA Perl M, et al. Cracks emanating from an erosion

    in a pressurized autofrettaged thick-walled cylinder.

    Part II. Erosion depth and ellipticity effects. J Press

    Vess Technol, ASME 1998;120(4):3548.

    177. FRA Perl M, et al.Three-dimensional analysisof a semi-

    elliptical crack emanating from an erosion at the bore of

    an autofrettaged pressurized cylinder. J Press VessTech-

    nol, ASME 1999;121(2):209 15.

    178. FRA Perrin IJ, et al. Approximate