Electronics Ch10

  • Upload
    gnikunj

  • View
    232

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 Electronics Ch10

    1/21

    CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

    Chapter Outline10.1 The Two-Stage CMOS Op Amp

    10.2 The Folded-Cascode CMOS Op Amp

    10.3 The 741 Op-Amp Circuit

    10.4 DC Analysis of the 74110.5 Small-Signal Analysis of the 741

    10.6 Gain, Frequency Response, and Slew Rate of the 741

    10.7 Modern Techniques for the Design of BJT Op Amp

    NTUEE Electronics L.H. Lu 10-1

  • 8/12/2019 Electronics Ch10

    2/21

    10.1 The Two-Stage CMOS Op Amp

    Multi-stage amplifiersPractical transistor amplifiers usually consist of a number of stages connected in cascade

    Input stage:

    High input resistance to avoid signal loss due to high-resistance source

    Voltage gain

    Large CMRR for differential amplifiersMiddle stages:

    Voltage gain

    Shifting of the dc level for required voltage swing

    -

    NTUEE Electronics L.H. Lu 10-2

    Output stage: Low output resistance to avoid loss of gain due to low-resistance load

    Current supply required by the load

    Sufficient voltage swing required by the load

    Small-signal approximation may not apply

  • 8/12/2019 Electronics Ch10

    3/21

    Circuit ConfigurationMost widely used op amp in VLSI circuits

    Bias circuit:IREFand Q8Input stage: Q1-Q5 Active-loaded MOS differential pair

    Differential input and single-ended output Provides voltage gain and high input resistance

    Output stage: Q6-Q7 Active-loaded common-source amplifier

    High output resistance (not suitable for low-impedance loads)DC arrangement:

    The bias current of the input differential pair is provided by Q5 The bias current of the second stage is provided by Q7 To avoid systematic (predictable) offset:

    NTUEE Electronics L.H. Lu 10-3

    5

    7

    4

    6

    )/(

    )/(2

    )/(

    )/(

    LW

    LW

    LW

    LW

  • 8/12/2019 Electronics Ch10

    4/21

    Input common-mode range and output swingThe transistors are supposed to be in saturation for proper circuit operation

    ICMR:

    Output swing:

    Voltage gain

    Low-frequency small-signal gain:

    513 OVOVtpDDICMtptnOVSS VVVVVVVVV

    76 OVDDOOVSS VVvVV

    )||(

    ||

    421111

    421

    211

    oomm

    oo

    mmm

    gG

    rrgRGA

    rrR

    ggG

    Amplifier prototype:

    Input resistance:

    Output resistance:

    Transconductance:

    Common-mode rejection ratio:

    NTUEE Electronics L.H. Lu 10-4

    )||()||(

    )||(||

    76642121

    766222

    762

    oomoomv

    oomm

    oo

    rrgrrgAAA

    rrgRGArrR

    6421 )||( moomm grrgG

    iR

    76 || ooo rrR

    SSmoom RgrrgCMRR 3421 2)||(

  • 8/12/2019 Electronics Ch10

    5/21

    Frequency responsePoles and zeros

    C

    mZ

    mP

    Cm

    P

    Lgddbdb

    gsdbgddbgd

    C

    Gf

    C

    Gf

    CRGR

    f

    CCCCC

    CCCCCC

    21

    2

    22

    221

    1

    7762

    644221

    2

    1

    2

    1

    1

    2

    1

    fP2 decreases for a capacitive load

    May result in stability issue

    Unity-gain frequency for a dominant pole case

    and

    Phase margin

    NTUEE Electronics L.H. Lu 10-5

    C

    mPvt

    C

    GfAf 11

    2

    1

    21 mm GG 2

    21

    C

    G

    C

    G m

    C

    m

    )/(tan)/(tan90180

    )/(tan)/(tan90

    )/(tan

    )/(tan

    1

    2

    1

    12

    1

    1

    21

    2

    ZtPttotal

    ZtPttotal

    ZtZ

    PtP

    ffffPM

    ffff

    ff

    ff

  • 8/12/2019 Electronics Ch10

    6/21

    Phase margin improvement technique Adding a series resistance in the feedback path

    The zero is defined by

    The zero can be moved toward higher frequencies for better phase margin

    Slew rate

    Slew rate is defined as the maximum voltage change rate at output

    222

    1 imi VG

    sCR

    V

    RG

    C

    s

    m

    C

    2

    1

    1

    C

    Extreme cases: Limited by bias current of Q5 (typical case): SR =I/CC Limited by bias current of Q7: SR =I7/CC

    Relationship between SR andft SR = 2ftVOV= tVOV

    Slew rate is determined by the overdrive voltagefor a given unity-gain frequency

    PMOS devices are preferred for the differential pair

    with a fixed current I at the cost of lower gain

    NTUEE Electronics L.H. Lu 10-6

  • 8/12/2019 Electronics Ch10

    7/21

    Power-supply rejection ratio (PSRR)PSRR is defined as the ratio of the amplifier differential gain to the gain from the supply voltage

    Design trade-offs

    CMOS two-stage op amp performance is determined by

    The channel length of the MOSFETs

    sso

    idod

    ddo

    idod

    vv

    vv

    A

    APSRR

    vv

    vv

    A

    APSRR

    /

    /

    /

    /

    Performance benefit for a larger channel length: gain, CMRR, PSRR

    Performance benefit for a smaller overdrive voltage: gain, CMRR, PSRR, ICMR, output swing and offset

    Performance benefit for a larger overdrive voltage: high-frequency characteristics (gain)

    For modern submicron CMOS technologies:

    Typical VOVbetween 0.1 to 0.3 V

    Channel length is at least 1.5 to 2 times minimum length (Lmin)

    NTUEE Electronics L.H. Lu 10-7

    2

    5.1

    2

    1

    2

    1

    L

    V

    CC

    gf OVn

    gdgs

    mT

  • 8/12/2019 Electronics Ch10

    8/21

    10.2 The Folded-Cascode CMOS Op Amp

    Circuit ConfigurationCascode topology to increase the gain of the input differential pair

    Folded topology to improve the ICMR and to reduce the required supply voltage

    Is generally considered a single-stage amplifier

    Also called operational transconductance amplifier (OTA)

    DC bias:

    Bias current for Q1-Q2 isI/2

    Bias current for Q3-Q8isI/2 IBIB can be realized by MOS current mirrors

    NTUEE Electronics L.H. Lu 10-8

  • 8/12/2019 Electronics Ch10

    9/21

    Input common-mode range and output swingICMR:

    Output swing:

    Voltage gain

    High voltage gain due to increased output resistance

    Not desirable for applications where low output resistance is needed for the op amp

    tnOVDDICMtnOVOVSS VVVVVVVV 9111

    41075 OVOVDDOtnOVOVSS VVVvVVVV

    )}(||)]||({[

    )(||)]||([||

    866102442

    8661024464

    21

    oomooommomv

    oomooomooo

    mmm

    rrgrrrggRGA

    rrgrrrgRRR

    ggG

    requency response

    Dominant pole at the output node

    Excellent high-frequency response

    Slew rate

    The slew rate is limited by the bias current I and the load CL

    Slew rate SR =I/CL = 2ftVOV1 forIB >I

    TypicallyIB is set 10% ~ 20% larger thanI

    NTUEE Electronics L.H. Lu 10-9

    oL

    om

    id

    o

    RsC

    RG

    V

    V

    1 L

    mt

    C

    Gf

    2

    1

  • 8/12/2019 Electronics Ch10

    10/21

    Increasing the ICMR: rail-to-rail input operationNMOS and PMOS differential pairs in parallel

    ICMR exceeds the power supply voltage

    Differential output voltage provided

    ICM in the middle:

    Both pairs operate simultaneouslyAv = 2GmRo

    ICM near supply voltage:

    Only one of the pairs is operational

    Increasing the output voltage range: wide-swing current mirror

    Modified cascode current mirror

    Output swing increased by VtOutput resistance remains the same

    A proper dc bias voltage VBIASis needed

    NTUEE Electronics L.H. Lu 10-10

  • 8/12/2019 Electronics Ch10

    11/21

    The BJT DeviceHigh-frequency hybrid- model:

    The base-charging or diffusion capacitance Cde:

    The base-emitter junction capacitance Cje:

    The collector-base junction capacitance C:

    T

    CFmFde

    V

    IgC

    02 jje CC

    m

    CB

    V

    V

    CC

    0

    1

    The cutoff (unity-gain) frequency:

    NTUEE Electronics L.H. Lu 8-11

    c

    T

    CmT

    mfe

    m

    b

    c

    fe

    bb

    mc

    VCC

    I

    CC

    gf

    rCCsrCCs

    rgh

    CCsr

    sCg

    I

    I

    h

    sCsCr

    ICCrIV

    VsCgI

    )(2

    1

    2

    1

    )(1)(1

    )(/1

    /1)||||(

    )(

    0

  • 8/12/2019 Electronics Ch10

    12/21

    8.3 The 741 Op-Amp Circuit

    741 Op-AmpDevice parameters:

    npn:IS= 10-14 A, = 200, VA = 125 V

    pnp:IS= 10-14 A, = 50, VA = 50 V

    NTUEE Electronics L.H. Lu 10-12

  • 8/12/2019 Electronics Ch10

    13/21

    Bias circuit: Reference current generated by Q11, Q12 andR5 Bias for input stage: Widlar current source (Q10, Q11 andR4) and current mirror Q8, Q9 Bias for second stage: current mirror Q12, Q13B (Q13 is a two-output current source)

    Bias for output stage: current mirror Q12, Q13A /Q18-Q19provides 2VBEdrop between VB14 and VB20

    Input stage: (Q1-Q7,R1-R3) Input emitter follower (Q1-Q2): high input resistance

    Current-mirror load (Q5-Q7,R1-R3):high output resistance and differential to single-ended conversion

    Level shifting (Q3 and Q4): for required voltage swing and dc level at the input of the second stage

    Second sta e: - R -R

    Emitter follower Q16for high input resistance Common-emitter Q17for voltage gain

    Miller compensation technique by CCOutput stage: (Q14, Q20)

    Complementary pair Q14 and Q20

    Low output resistance Relatively large load current without dissipating a large amount of power

    Emitter follower Q23 to increase input resistance of the output stage

    Short-circuit protection circuitry Q15, Q21, Q24, Q22,R6,R7,R11

    NTUEE Electronics L.H. Lu 10-13

  • 8/12/2019 Electronics Ch10

    14/21

    10.4 DC Analysis of the 741

    Reference bias currentProvided by Q11, Q12 andR5

    IREF= 0.73 mA (for VCC= VEE= 15 V)

    Input-stage biasWidlar current source Q11, Q10 andR4:

    5

    1112 )(

    R

    VVVVI EEBEEBCCREF

    410

    10

    ln RII

    IV C

    C

    REFT

    C10 =

    Current mirror Q8and Q9:

    IC1 =IC2IC3 =IC4 = 9.5 A

    Q1-Q4 and Q8-Q9 form a negative feedback loop

    Bias current can be stabilized by the negative feedback

    NTUEE Electronics L.H. Lu 10-14

    10

    2

    /21

    2C

    PP

    III

  • 8/12/2019 Electronics Ch10

    15/21

    Current-source load Q5-Q7andR1-R3

    IC7= 10.5 A

    Input bias current and offset currents Input bias current:

    IB = 47.5 nA

    3

    2

    3

    2677

    65

    )/ln(22

    R

    IRIIVI

    R

    IRVIII

    III

    ST

    N

    BE

    N

    EC

    CC

    N

    BBB

    IIII

    221

    nput o set current:

    Non-zero input offset due to mismatches in thevalue

    Input common-mode range:

    Input common-mode voltage over which the input stage remains in the linear active mode

    The upper end limited by saturation of Q1 and Q2 The lower end limited by saturation of Q3 and Q4

    NTUEE Electronics L.H. Lu 10-15

    21 BBOS III

  • 8/12/2019 Electronics Ch10

    16/21

    Second-stage bias

    IC17IC13B = 550 A

    VEB17= 618 mV andIC16= 16.2 A

    Output-stage bias

    DC for Q23:

    S

    CTBE

    REFBCC

    I

    IVV

    III

    1717

    1317

    ln

    75.0

    9

    17817171616

    R

    VRIIII BEEBEC

    IC23 180 A (IB23 3.6 A negligible forIC17)

    DC for Q18-Q19:

    IC18 165 A andIC19VBE18/R10 +IB18= 15.8 A

    DC for Q14 and Q20:

    VBB = VBE18+ VBE19 = 588 mV + 530 mV = 1.118 V

    IC14 =IC20 = 154 A (forIS14 =IS20 = 310-14 A)

    NTUEE Electronics L.H. Lu 10-16

    REFEC III 25.02323

    S

    CTBE

    BEREFC

    I

    IVV

    RVII

    1818

    101818

    ln

    /25.0

  • 8/12/2019 Electronics Ch10

    17/21

    10.5 Small-Signal Analysis of the 741

    The input stageDifferential input resistance:

    re = 2.63 k andRid= 2.1 M

    Transconductance:

    Gm1 = 0.19 mA/V

    eNid

    eie

    rR

    rvi

    )1(4

    )4/(

    112

    1

    2

    2m

    ei

    e

    i

    om g

    rv

    i

    v

    iG

    Ro4 = ro4[1 + gm4(re4||r2)] = 10.5 M

    Ro6= ro6[1 + gm6(R2||r6)] = 18.2 M

    Ro1 =Ro4||Ro6= 6.7 M

    Equivalent circuit for the input stage:

    NTUEE Electronics L.H. Lu 10-17

    )]||(1[ rRgrR emoo

  • 8/12/2019 Electronics Ch10

    18/21

    The second stageInput resistance

    Ri2 4 M

    Transconductance

    )]})(1(||[){1( 81717916162 RrRrR eei

    179172

    1796

    179217

    817

    1717

    ||

    ||

    ||

    icm

    ie

    iib

    e

    bc

    RRiG

    RRr

    RRvv

    Rr

    vi

    Gm2 = 6.5 mA/V

    Output resistance

    Ro2 = 81 k

    Equivalent circuit for the second stage:

    NTUEE Electronics L.H. Lu 10-18

    17968172 ieei

    )]}||(1[{|||| 81717171317132 RrgrrRRR moBooBoo

  • 8/12/2019 Electronics Ch10

    19/21

    The output stageOutput voltage limits

    approximately 1 V below VCCand 1.5 V above VEE

    Input resistance (forRL = 2 k, IC20 = 5 mA andIC14 =0)

    Rin3 3.7 M

    -

    2023min

    14max

    EBEBCEsatEEO

    BECEsatCCO

    VVVVv

    VVVv

    )||()||)(1(

    )1(

    132023132023233

    20202020

    AoiAoiin

    LLi

    rRrRrR

    RRrR

    Transconductance

    NTUEE Electronics L.H. Lu 10-19

    12

    3 LRo

    ovo

    vvG

    20

    20

    0

    3

    3

    2023233

    1m

    e

    R

    i

    om

    bebi

    grv

    iG

    vvvv

    L

  • 8/12/2019 Electronics Ch10

    20/21

    Output resistance

    Rout 34

    Equivalent circuit for the output stage

    11

    ||

    1

    20

    2320

    20

    132320

    23

    22323

    oe

    Aooeout

    oeo

    Rr

    rRrR

    RrR

    Output short-circuit protection

    One of the two output transistors could conduct

    a large amount of current if output is short-circuited

    Short-circuit protection is adopted in the 741 op amp

    For current source case (IC14 > 20 mA)

    VBE15 > 540 mA

    Q15 turns on and takes away the base current of Q14IC14 is limited as the base current is reduced

    Similar case for current sink case (IC20 >20 mA)

    NTUEE Electronics L.H. Lu 10-20

  • 8/12/2019 Electronics Ch10

    21/21

    10.6 Gain, Frequency Response and Slew Rate of the 741

    Small-signal gain

    Av = 243147 V/V = 107.7 dB

    Frequency response

    outL

    Lvoomiom

    o

    o

    i

    o

    i

    i

    i

    ov

    RR

    RGRGRRG

    v

    v

    v

    v

    v

    v

    v

    vA

    322211

    22

    22 ))(||(

    Pt

    tin

    P

    iot

    Cin

    fAf

    RCf

    RRRACC

    0

    21

    2

    1

    2

    1

    |||)|1(

    fP

    = 4.1 Hz

    ft= 1 MHz

    Slew rate

    SR = 0.63 V/s

    Relationship betweenftand slew rate

    Slew rate of MOS opamp with sameftis 2~3 times higher than the 741

    Gm-reduction method: total bias current is kept constant with reduced Gm1

    NTUEE Electronics L.H. Lu 10-21

    CC

    ISR

    2

    tTVSR 4