12
1 ELECTRONIC SUPPLEMENTARY INFORMATION for the paper entitled Interaction of 6,6’’-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4- benzotriazin-3-yl)-2,2’:6’,2’’-terpyridine (CyMe 4 -BTTP) with some Trivalent Ions such as Lanthanide(III) Ions and Americium(III) Frank W. Lewis,* a Laurence M. Harwood,* a Michael J. Hudson, a Michael G. B. Drew, a Giuseppe Modolo, b Michal Sypula, b Jean F. Desreux, c Nouri Bouslimani c and Geoffrey Vidick c a Department of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK. E-mail: [email protected], [email protected] b Forschungszentrum Jülich GmbH, Sicherheitsforschung und Reaktortechnik, D-52425 Jülich, Germany. E-mail: [email protected] c Coordination and Radiochemistry, University of Liège, Sart Tilman B16, B-4000 Liège, Belgium. E-mail: [email protected] Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

ELECTRONIC SUPPLEMENTARY INFORMATION Interaction of … · ELECTRONIC SUPPLEMENTARY INFORMATION for the paper entitled Interaction of 6,6’’-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)

Embed Size (px)

Citation preview

1

ELECTRONIC SUPPLEMENTARY INFORMATION

for the paper entitled

Interaction of 6,6’’-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-

benzotriazin-3-yl)-2,2’:6’,2’’-terpyridine (CyMe4-BTTP) with some

Trivalent Ions such as Lanthanide(III) Ions and Americium(III)

Frank W. Lewis,*a Laurence M. Harwood,*a Michael J. Hudson,a Michael G. B. Drew,a

Giuseppe Modolo,b Michal Sypula,b Jean F. Desreux,c Nouri Bouslimanic and Geoffrey

Vidickc

a Department of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK.

E-mail: [email protected], [email protected] b Forschungszentrum Jülich GmbH, Sicherheitsforschung und Reaktortechnik, D-52425

Jülich, Germany. E-mail: [email protected] c Coordination and Radiochemistry, University of Liège, Sart Tilman B16,

B-4000 Liège, Belgium. E-mail: [email protected]

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

2

CONTENTS PAGE

1. Figure S1. Mass spectrum of a 5:Gd(ClO4)3

mixture (2.5:1 ratio) 3

2. Figure S2. Expanded view of the mass peak at

m/z = 460.19 of [Gd(5)2]3+ 3

3. Figure S3. Computer simulation of the isotope

distribution pattern of [Gd(5)2]3+ 4

4. Figure S4. Mass Spectrum of a 5:Yb(NO3)3

mixture (1:1 ratio) 4

5. Figure S5. Expanded view of the mass peak at

m/z = 909.27 of [Yb(5)(NO3)2]+ 5

6. Figure S6. Computer simulation of the isotope

distribution pattern of [Yb(5)(NO3)2]+ 5

7. Figure S7. Expanded view of the methylene

resonances in the 1H NMR spectrum of a 2:1

5:Eu(ClO4)3 mixture in anhydrous CD3CN 6

8. Figure S8. 1H-1H COSY spectrum of a 2:1

5:Eu(ClO4)3 mixture in anhydrous CD3CN 7

9. Figure S9. Expanded view of the methylene

resonances in the 1H NMR spectrum of a 2:1

5:Yb(ClO4)3 mixture in anhydrous CD3CN 8

10. Figure S10. 1H-1H COSY spectrum of a 2:1

5:Yb(ClO4)3 mixture in anhydrous CD3CN 9

11. Figure S11. 1H-13C HSQC correlation of a 2:1

5:Yb(ClO4)3 mixture in anhydrous CD3CN 10

12. Figure S12. Correlation between the calculated

and experimental paramagnetic shifts in the

1H NMR spectrum of [Yb(5)](NO3)3 11

13. Figure S13. Expanded view of the mass peak at

m/z = 358.6264 of the Pd2+ complex of

CyMe4-BTTP 5 11

14. Figure S14. Computer simulation of the isotope

distribution pattern of the 1:1 complex [Pd(5)]2+ 12

15. Figure S15. Computer simulation of the isotope

distribution pattern of the 2:2 complex [Pd2(5)2]4+ 12

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

3

460.19

612.33

634.31

0.0

0.2

0.4

0.6

0.8

1.0

1.2

300 400 500 600 700 800 900 1000 1100 Figure S1. Mass spectrum of a 5:Gd(ClO4)3 mixture (2.5:1 ratio). m/z = 460.19: [Gd(5)2]3+,

m/z = 612.33: 5 + H+, m/z = 634.31: 5 + Na+.

458.856145

459.189621

459.522918

459.856934

460.190033

460.524571

460.857932

461.192367

461.526257

461.860732

+MS, 0.0-0.5min #(2-20)

0

1

2

3

5 x10 Intens.

457 458 459 460 461 462 m/z Figure S2. Expanded view of the mass peak at m/z = 460.19 of [Gd(5)2]3+.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

4

458.872120

459.206032

459.539620

459.873484

460.207033

460.541083

460.874529

461.208586

461.542808

461.877074

C74 H82 N18 Gd ,1380.62

0

500

1000

1500

2000

Intens.

457 458 459 460 461 462 m/z Figure S3. Computer simulation of the isotope distribution pattern of [Gd(5)2]3+.

612.36

634.34

909.27

0.0

0.5

1.0

1.5

2.0

2.5

200 400 600 800 1000 1200 1400 1600 1800 Figure S4. Mass Spectrum of a 5:Yb(NO3)3 mixture (1:1 ratio). m/z = 612.36: 5 + H+,

m/z = 634.34: 5 + Na+, m/z = 909.27: [Yb(5)(NO3)2]+.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

5

905.3

906.3

907.3908.3

909.3

910.3 911.3

912.3

0

1

2

3

4

5

6

4 x10 Intens.

900 902 904 906 908 910 912 914 916 m/z Figure S5. Expanded view of the mass peak at m/z = 909.27 of [Yb(5)(NO3)2]+.

905.

2583

60

906.

2600

12

907.

2606

21

908.

2623

52

909.

2630

2

910.

2655

53

911.

2666

04

912.

2691

38

913.

2717

04

YbC37H41N11O6 ,909.26

0

500

1000

1500

2000

Intens.

902 904 906 908 910 912 914 m/z Figure S6. Computer simulation of the isotope distribution

pattern of [Yb(5)(NO3)2]+.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

6

1.73

6.54

1.72

1.68

1.35

4.82

-0.5

3-0

.50

-0.4

8

-0.2

9

0.44

0.46

0.48

0.64

0.67

0.69

0.91

1.27

1.51

1.53

1.56

1.64

1.77

1.93

1.93

1.94

1.95

1.95

2.11

Figure S7. Expanded view of the methylene resonances in the 1H NMR spectrum

of a 2:1 5:Eu(ClO4)3 mixture in anhydrous CD3CN.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

7

Figure S8. 1H-1H COSY spectrum of a 2:1 5:Eu(ClO4)3 mixture in anhydrous CD3CN.

Correlations between the central pyridine protons are in green, between the side pyridine

protons in black and between the methylene protons in red.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

8

-6.0-5.6-5.2-4.8-4.4-4.0-3.6-3.2-2.8-2.4-2.0-1.6-1.2-0.8-0.40.0f1 (ppm)

GV_YbMe4Cyterpy 1-2+ 181108Yb(Me4Cy-BTTP)2+Yb(ClO4)3CD3CN, rt18/11/08

-2.7-2.6-2.5-2.4-2.3-2.2-2.1f1 (ppm) -6.2-6.1-6.0-5.9-5.8

f1 (ppm)

Figure S9. Expanded view of the methylene resonances in the 1H NMR spectrum

of a 2:1 5:Yb(ClO4)3 mixture in anhydrous CD3CN.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

9

Figure S10. 1H-1H COSY spectrum of a 2:1 5:Yb(ClO4)3 mixture in anhydrous CD3CN.

Correlations between the protons in the outer pyridine rings in the terpyridine unit are

indicated by black lines. Correlations between the methylene protons are in red.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

10

-25-20-15-10-5051015202530354045f2 (ppm)

0

20

40

60

80

100

120

140

160

180

f1 (

ppm

)

Figure S11. 1H-13C HSQC correlation of a 2:1 5:Yb(ClO4)3 mixture in anhydrous CD3CN

(X axis: 1H NMR spectrum, Y axis: 13C NMR spectrum). The correlation between the two

types of each methylene carbon and its two protons are shown in red and in blue.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

11

Experimental paramagnetic shift, ppm

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

Cal

cula

ted

para

mag

netic

shi

ft, p

pm

-15

-10

-5

0

5

10

15

Figure S12. Correlation between the calculated and experimental paramagnetic shifts

in the 1H NMR spectrum of [Yb(5)](NO3)3. 99% confidence intervals are shown with dotted

lines. (slope: 0.97, intercept: -0.15).

# : :

357.6 357.8 358.0 358.2 358.4 358.6 358.8 359.0 359.2 359.4 359.6 359.8 360.0 360.2 360.4 360.6 360.8 361.0 361.2 361.4 m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

358.6264

359.6258

358.1269

359.1266

360.1266360.6264

358.8764359.3765358.3767 357.6263

359.8765

361.1273 360.3764357.8767

360.8769 361.3786

1 + 2

2

2 2

2

2

22

1 + 2

1 + 2

1 + 2

1 + 2

1 + 2 1 + 2

1 + 2

2

Figure S13. Expanded view of the mass peak at m/z = 358.6264 of the Pd(II)

complex of CyMe4-BTTP 5. Assignments: Peaks labeled 1: [Pd(5)]2+;

Peaks labeled 2: [Pd2(5)2]4+.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010

12

356.

6265

02

357.

6257

46

358.

1264

08

358.

6261

0

359.

1272

56

359.

6259

32

360.

1271

91

360.

6266

83

361.

1278

72

361.

6292

44

PdC37H41N9 ,717.25

0

500

1000

1500

2000

Intens.

355 356 357 358 359 360 361 362 m/z Figure S14. Computer simulation of the isotope distribution pattern

of the 1:1 complex [Pd(5)]2+.

357.

6260

89 357.

8761

60

358.

1261

63

358.

3763

01 358.

6262

47

358.

8763

92 359.

1262

6

359.

3766

09

359.

6264

46

359.

8768

30

360.

1266

82

360.

3770

08

360.

6271

38

360.

8774

65

Pd2C74H82N18 ,1434.50

0

500

1000

1500

2000

Intens.

356 357 358 359 360 361 m/z Figure S15. Computer simulation of the isotope distribution pattern

of the 2:2 complex [Pd2(5)2]4+.

Electronic Supplementary Information for Dalton TransactionsThis journal is © The Royal Society of Chemistry 2010