26
Introduction The STEVAL-ESC001V1 reference design for electronic speed controllers (ESC) for drones fits entry-level commercial drone designs and drives any three-phase brushless (or PMSM) motor running off 6S LiPo battery packs, or any equivalent DC supply, up to 30 A peak current. The STEVAL-ESC001V1 lets you spin a motor and its propeller in minutes thanks to a complete pre-configured firmware package (STSW-ESC001V1), implementing a sensorless Field Oriented Controlled algorithm with 3-shunt current reading, speed control and full active braking. The reference design board can accept commands from a flight control unit through PWM signals; other communication bus interfaces like UART, CAN, and I²C are also available. The reference embeds a battery eliminator circuit working at 5 V, an NTC sensor for temperature measurement and circuitry for overcurrent / overvoltage protection (OCP/OVP). The compact form factor and current capability render this reference design suitable for electronic speed controllers on small and light unmanned aerial vehicles like professional drones. The STSW-ESC001V1 firmware/software package plus STM32 PMSM FOC software development kit - MC library let you refine your electronic speed controller design by acting on the field oriented control parameters embedded in the STM32 and experiment with the ST motor profiler to rapidly retrieve the motor parameters. The ST sensorless FOC algorithm ensures longer flight times and optimal dynamic performance. The STEVAL-ESC001V1 has been designed around the highly efficient, low R dson STripFET F7 power MOSFETs, the high- performance STM32F303CBT7 microcontroller with ARM ® Cortex ® -M4 core and the L6398 drivers. Figure 1. STEVAL-ESC001V1 evaluation board Electronic speed controller for BLDC and PMSM three phase brushless motor UM2197 User manual UM2197 - Rev 2 - November 2018 For further information contact your local STMicroelectronics sales office. www.st.com

Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

IntroductionThe STEVAL-ESC001V1 reference design for electronic speed controllers (ESC) for drones fits entry-level commercial dronedesigns and drives any three-phase brushless (or PMSM) motor running off 6S LiPo battery packs, or any equivalent DC supply,up to 30 A peak current.

The STEVAL-ESC001V1 lets you spin a motor and its propeller in minutes thanks to a complete pre-configured firmwarepackage (STSW-ESC001V1), implementing a sensorless Field Oriented Controlled algorithm with 3-shunt current reading,speed control and full active braking.

The reference design board can accept commands from a flight control unit through PWM signals; other communication businterfaces like UART, CAN, and I²C are also available. The reference embeds a battery eliminator circuit working at 5 V, an NTCsensor for temperature measurement and circuitry for overcurrent / overvoltage protection (OCP/OVP). The compact form factorand current capability render this reference design suitable for electronic speed controllers on small and light unmanned aerialvehicles like professional drones.

The STSW-ESC001V1 firmware/software package plus STM32 PMSM FOC software development kit - MC library let you refineyour electronic speed controller design by acting on the field oriented control parameters embedded in the STM32 andexperiment with the ST motor profiler to rapidly retrieve the motor parameters. The ST sensorless FOC algorithm ensureslonger flight times and optimal dynamic performance.

The STEVAL-ESC001V1 has been designed around the highly efficient, low Rdson STripFET F7 power MOSFETs, the high-performance STM32F303CBT7 microcontroller with ARM® Cortex®-M4 core and the L6398 drivers.

Figure 1. STEVAL-ESC001V1 evaluation board

Electronic speed controller for BLDC and PMSM three phase brushless motor

UM2197

User manual

UM2197 - Rev 2 - November 2018For further information contact your local STMicroelectronics sales office.

www.st.com

Page 2: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

1 Main features

• Complete reference design for electronic speed controller implementing a sensorless FOC algorithm• Designed for drones with 6S pack of LiPo batteries or systems with an equivalent suitable DC supply• ESC ready for communication with any standard flight control unit (FCU): PWM or CAN• Temperature overheating protection• Nominal operating voltage range: 3S-6S Li-Po battery DC voltage level (11.1 to 22.2 V)• Maximum RMS output current: 20 Arms• Output peak current: 30 A• Battery eliminator circuit (BEC): 5 V/0.5 A for external receiver or FCU• Complete pre-configured firmware package available (STSW-ESC001V1)• Supported by ST motor control software SDK and ST motor profiler• Compact PCB design: 29.1 x 58 mm• Further target applications:

– motor driving for RC vehicles: electric cars, helicopter, trucks, etc.– any three-phase BLDC or PMSM motor application

• RoHS and WEEE compliant

1.1 Target applicationMotor driving for remote control vehicles, UAV drones, electrical cars and boats, etc.

Figure 2. STEVAL-ESC001V1 target applications

UM2197Main features

UM2197 - Rev 2 page 2/26

Page 3: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

2 Description

The STEVAL-ESC001V1 electronic speed controller (ESC) evaluation board drives a single three phasebrushless motor with very high performance in sensorless mode (without position sensor).It is designed to provide fast and efficient propulsion for remote control applications like electric cars, boats anddrones and is capable of low and very high speed regulation and strong dynamic response under different loadconditions.An external signal via a communication bus between the board and a generic central unit sets the speedregulation reference and another signal reports the status of the system, including faults, which the central unitcan use to trigger corrective events..The same 6Step (or trapezoidal) control algorithm (often with no shunt resistors) drives the many different ESCsoffering various motor current, size and input voltages for remote control applications.A more sophisticated control algorithm is used in the STEVAL-ESC001V1, based on field oriented control (FOC);it features:• better torque control• motor current regulation in case of fast load change• vibration reduction• active braking function• better efficiency• noise reduction• a real-time monitor of the rotor speed• energy recovery during the deceleration

The typical system architecture pictured below shows individual ESC boards connected to single brushlessmotors in a quadcopter system. An external Li-Po battery powers the four boards and a wired bus carriescommunication between each board and an external unit such as a flight control board.

UM2197Description

UM2197 - Rev 2 page 3/26

Page 4: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Figure 3. System structure overview

Figure 4. Typical quadcopter architecture

UM2197Description

UM2197 - Rev 2 page 4/26

Page 5: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

The on-board I²C, UART, PWM and CAN communication protocols provide maximum flexibility and a DC-DCconverter with 5 V output connector (BEC) can supply an external control unit or sensor board.

2.1 STEVAL-ESC001V1 hardware overviewThe STEVAL-ESC001V1 power and control platform is based on the ST componentry illustrated below.

Figure 5. STEVAL-ESC001V1 block diagram

2.1.1 STEVAL-ESC001V1 top side componentsThe inverter section is formed by the L6398 gate driver and the STL160N4F7 and the Power MOSFETs.

Figure 6. Top side features

L6398 high voltage high and low-side driverThe L6398 is a high voltage device manufactured with the BCD™ “offline” technology. It is a single-chip halfbridge gate driver for the N-channel power MOSFET or IGBT.The high-side (floating) section is designed to stand a voltage rail up to 600 V. The logic inputs are CMOS/TTLcompatible down to 3.3 V for the easy interfacing microcontroller/DSP.Key features:• High voltage rail up to 600 V

UM2197STEVAL-ESC001V1 hardware overview

UM2197 - Rev 2 page 5/26

Page 6: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

• dV/dt immunity ±50 V/ns in full temperature range• Driver current capability:

– 290 mA source– 430 mA sink

• Switching times 75/35 ns rise/fall with 1 nF load• 3.3 V, 5 V TTL/CMOS input comparators with hysteresis• Integrated bootstrap diode• Fixed 320 ns deadtime• Interlocking function• Compact and simplified layout• Bill of material reduction• Flexible, easy and fast design

STL160N4F7 160 A STripFET™ F7 Power MOSFETsThis N-channel Power MOSFET uses STripFET™ F7 technology with an enhanced trench gate structure thatresults in very low on-state resistance, while also reducing internal capacitance and gate charge for faster andmore efficient switching.L7986, LD1117S50 and LD39050PU33RThese devices provide the appropriate voltage for gate driving, BEC output and MCU power.

2.1.2 STEVAL-ESC001V1 bottom side componentsBottom side componentry is mainly for the digital section; featuring an STM32F303 microcontroller for three-shuntsensorless FOC control in an LQFP 48-pin package.STM32F303xB 32-bit ARM Cortex-M4 MCU with 128 Kbytes Flash and 72 MHz CPUThe family of microcontrollers is based on the high-performance ARM®Cortex®-M4 32-bit RISC core plus FPUoperating at 72 MHz max and embedded memory protection unit (MPU).

Figure 7. Bottom side features

UM2197STEVAL-ESC001V1 hardware overview

UM2197 - Rev 2 page 6/26

Page 7: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

2.1.3 Board dimensions (29.1 x 58 mm)

Figure 8. STEVAL-ESC001V1 board dimensions (not including capacitors)

2.2 Communication, programming and command interfacesThe STEVAL-ESC001V1 features these communication interfaces:• CAN port (J1): comes with an on-board transceiver; the J1 connector includes 3V3 and GND pins.• UART/I²C port (J2): normally used for serial communication between the ESC board and a PC; ST MC

Workbench can be connected with the STM32, adding an external circuit (requires USB/RS232converter-3v3 level)

Figure 9. UART TX/RX (3v3 level)

• PWM signal input (J3): connects with an external board (e.g., flight control unit), to receive commands; thesignal level (at 3v3) sets the motor speed according to the Ton duration (i.e., 1060 µs for min. speed and1860 µs for max. speed). Other pins are for GND and a +5Vdc power line to supply an external board

• SWD debug port (J4): provides the SWD connection between the STM32 and ST-LINK programmer; otherpins like 3V3 and GND are available.

2.3 STM32 pinout for motor control

Table 1. Main STM32 pinout for motor control

Pin Default Signal Solder Bridge

1 VBAT 3V3

2 PC13/TAMP/RTC TP4

3 PC14 N.C.

UM2197Communication, programming and command interfaces

UM2197 - Rev 2 page 7/26

Page 8: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Pin Default Signal Solder Bridge

4 PC15 N.C.

5 PF0/OSC-IN OSC 8Mhz

6 PF1/OSC-OUT OSC 8Mhz R4

7 NRST RESET

8 VSSA/VREF- GND

9 VDDA/VREF+ 3V3

10 PA0-WKUP Curr_fdbk1

11 PA1 Curr_fdbk2

12 PA2 Curr_fdbk3

13 PA3 Temperature feedback

14 PA4 VREF, DAC1, TP8 R6 N.M.

15 PA5 DAC2, TP9

16 PA6 N.C.

17 PA7 Vshunt_1_filtered

18 PB0 Vshunt_2_filtered

19 PB1 TIM1_CH3N

20 PB2 STATUS

21 PB10 N.C.

22 PB11 Vshunt_3_filtered

23 VSS1 GND

24 VDD1 3V3

25 PB12 PHASE_1

26 PB13 VBUS R5

27 PB14 PHASE_2

28 PB15 PHASE_3

29 PA8 TIM1_CH1

30 PA9 TIM1_CH2 R51

31 PA10 TIM1_CH3

32 PA11 TIM1_CH1N

33 PA12 TIM1_CH2N

34 PA13 SWDIO

35 VSS2 GND

36 VDD2 3V3

37 PA14 SWCLK

38 PA15 INPUT

39 PB3 N.C.

40 PB4 TP3

41 PB5 N.C.

42 PB6 USART1_TX/I2C1_SCL

43 PB7 USART1_RX/I2C1_SDA

UM2197STM32 pinout for motor control

UM2197 - Rev 2 page 8/26

Page 9: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Pin Default Signal Solder Bridge

44 BOOT0 BOOT0 R3

45 PB8 CAN_RX

46 PB9 CAN_TX

47 VSS

48 VDD

Table 2. Input/output terminals

Screw Terminal Function

J5/J6 Li-Po battery power input (3S-6S)

J7 3-PH Motor connector

UM2197STM32 pinout for motor control

UM2197 - Rev 2 page 9/26

Page 10: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

3 Initializing and using the STEVAL-ESC001V1 ESC board

Step 1. Connect the ST-LINK/V2 programmer to the J4 connector on the board.

Table 3. Relationship between the STEVAL board SWD pinout and SWD on ST-Link/V2programmer

Pin no. in STLINK ST-LINK/V2connector ST-LINK/V2 function Target connection

(SWD)Pin no. in STEVAL-

ESC001V1 (J4 connector)

1 VAPP Target VCC MCU VDD 1

2 VAPP Target VCC MCU VDD 1

6 GND 4

7 SW IO SWDIO 3

9 SW CLK SWCLK 2

Figure 10. STEVAL-ESC001V1 connection for MCU programming

Step 2. Set the SWD interface in the IDE tool

UM2197Initializing and using the STEVAL-ESC001V1 ESC board

UM2197 - Rev 2 page 10/26

Page 11: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Figure 11. Sample SWD configuration on IAR tool

Step 3. Solder the three motor wires U,V,W at the motor connector with no particular color sequence.As shown in Figure 12. STEVAL-ESC001V1 input/output connection, the right side is for the motorconnection with three pads provided for soldering.

Step 4. Solder the PWM input at J3 connector.The INPUT pin level must not exceed 3V3.

Step 5. Connect the STEVAL-ESC001V1 with a Li-Po battery (or DC power supply: min 3S – max 6S) with theright polarity and turn ON.The input connector has two large pads for soldering: the top layer for GND and bottom for Vdc+. Atransil device prevents damage in case of reverse polarity.

UM2197Initializing and using the STEVAL-ESC001V1 ESC board

UM2197 - Rev 2 page 11/26

Page 12: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Figure 12. STEVAL-ESC001V1 input/output connection

Step 6. Verify if the green led is turned on.Step 7. Open ST MC

Figure 13. ST MC Workbench

Step 8. Fill in the motor parameters

UM2197Initializing and using the STEVAL-ESC001V1 ESC board

UM2197 - Rev 2 page 12/26

Page 13: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Figure 14. ST MC Workbench – electrical motor parameters

Step 9. Fill in the startup parameters

UM2197Initializing and using the STEVAL-ESC001V1 ESC board

UM2197 - Rev 2 page 13/26

Page 14: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Figure 15. ST MC Workbench – startup parameters

Step 10. Open the correct workspace in your IAR IDE tool (STM32F30x_Workspace)Step 11. Select the STM32303C-EVAL_SINGLEDRIVE project configuration (blue arrow), compile the source

code and upload the binary to the MCU (red arrow)

Figure 16. IAR tool select, compile and upload

Step 12. Generate a PWM signal at 490 Hz and duty cycle between 1060 µs and 1860 µsThe ESC is not armed (no driving signals generated) if the duty cycle is lower than 1060 µs.

UM2197Initializing and using the STEVAL-ESC001V1 ESC board

UM2197 - Rev 2 page 14/26

Page 15: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

If the motor is already started, a blank time of 1500 ms on the PWM signal switches the system off(ESC turned OFF).

Figure 17. PWM input signal for motor speed regulation

Step 13. The motor starts to rotate between the minimum and maximum speed.

UM2197Initializing and using the STEVAL-ESC001V1 ESC board

UM2197 - Rev 2 page 15/26

Page 16: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

4 Schematic diagrams

Figure 18. STEVAL-ESC001V1 circuit schematic (1 of 4)

CAN_RX

CAN_TX

+3.3V

+3.3V

+3.3V

+3v3

V-

J1CAN

1234

R2120

C1100nF

U1

SN65HVD230

D1

GND2

VCC3

R4

VREF5CANL6CANH7RS8

R10

TP1CAN_TX

1

TP2CAN_RX

1

Figure 19. STEVAL-ESC001V1 circuit schematic (2 of 4)

VDD

124

R50

PB6

42

1

USART1_RX/I2C1_SDA

R8510

C710nF

C13100nF

VDDA/VREF+9

PA9-VH

SWCLK

PA829

BOO

T044

R60N.M

PB2

20

1

R4220

3

PA1233

TIM1_CH1PF0/OSC-IN

5

STATUS

PA0-WKUP10

VDD

48

PB1

19

J3PWMINPUT

4

PA10-WH

PHASE_1

PA7

17

PB9

46

SWDIO

VSS

47

+3.3V

PA1334

C5100nF

3

VREF

PHASE_3

C8

100nF

J2UART

PB1-

WL

1

+3.3V

SWDIO

PA10

CAN_RX

1VSS1

23

PA3

13

D1RED

C91µF

Vshu

nt_3

_filt

ered

+3.3V

2

TP9

TP7PhW

VSSA/VREF-8

DAC

_OU

T2

Curr_fdbk3

DAC

_OU

T

PA12-VL

TIM1_CH2

PA5

15

PA8-UH

+3.3V

R310k

PA1-PhV

USART1_TX/I2C1_SCL

INPUT

TP5PhU

PB5

41

31

Vshu

nt_2

_filt

ered

TP8

VSS235

+5V

TIM1_CH1N

C2100nF

1

+3.3V

PC154

PA6

16

1

PB1528

1

J4SWD

PA111

TP4

PA4

14

PC143

+3.3V

TP6PhV

1

Curr_fdbk1PB13

26

STATUS

VDD236

PB1225

X18MHz

TP3

GPIO1

PA212

1

TIM1_CH2N

R7510

PA930

PA11-UL

GND

3

+3v3

PB3

39

PB11

22

1

INPUT

PA15

38

+3.3V

VBUS

U2

STM32F303CBT7

V-

TIM

1_C

H3N

PHASE_2

C41nF

C12100nF

2

C111nF

PB1427

USART1_TX/I2C1_SCL

PB7

43

+3.3VPA0-PhU

SWCLK

PB13-BUSV

PA14

37

PPM from FC unit

TIM1_CH3PA11

32VBAT

1

D2GREEN

PC13/TAMP/RTC2

PF1/OSC-OUT6

4

CAN_TX

PB4

40PB

018

PA2-PhW

USART1_RX/I2C1_SDA

PB8

45

GND

Vshu

nt_1

_filt

ered

Curr_fdbk2

Temperature feedback

NRST7

C10100nF

C31nF

PB10

21

2

C64.7µF

UM2197Schematic diagrams

UM2197 - Rev 2 page 16/26

Page 17: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Figure 20. STEVAL-ESC001V1 circuit schematic (3 of 4)For internal comparator

OCP circuit

Vshunt_3_GNDVshunt_2_GNDVshunt_1_GND

External op-amp

0.5 V

3V3

3V3

3V3

3V33V3 3V3

3V3

3V3

Vshunt_1 Vshunt_2_filteredVshunt_2 Vshunt_3_filteredVshunt_3Vshunt_1_filteredVREF

V-

Vshunt_1

Curr_fdbk1 Curr_fdbk2

Vshunt_2

Curr_fdbk3

Vshunt_3

+3v3

C18

100nF

C14100nF

R213.4k 1% R22

3.4k 1%

-

+U5TSV991ILT3

2

14

5

C26N.M. 100pF

C19

100nF

C1615nF 6.3V

R25 13k 1%

R20787

R19787

R12680

R11680

R17787

R148060 1%

R168060 1%

R158060 1%

R10680

R183.4k 1%

R2413k 1%

R135.9K

C25N.M. 100pF

-

+U3TSV991ILT3

2

14

5

C22

680pF 10V

C21

680pF 10VC23

100nF

-

+

U4TSV991ILT

3

2

14

5

C1715nF 6.3V

R23 13k 1%

C20

680pF 10V

C24N.M. 100pF

C1515nF 6.3V

R933K

Figure 21. STEVAL-ESC001V1 circuit schematic (4 of 4)

VBUS

POWER SECTION

SHUNT RESISTOR

AUX POWER SUPPLY

BEC 5V, 0.5A

PHASE SENSING CIRCUIT

small signal

LPS4018-333MR Coilcraft33uH/0.5A38Vmax

1MHz

0.5A

DNG_3_tnuhsVDNG_2_tnuhsVVshunt_1_GND

VIN+

VBUS

Vshunt_1 Vshunt_2 Vshunt_3

+5V

VIN+

TIM1_CH2TIM1_CH2N

TIM1_CH3TIM1_CH3N

TIM1_CH1TIM1_CH1N

+10V

+10V

+10V

Vshunt_2

V+

+5V

Vshunt_1

Vshunt_3

PHASE_2

PHASE_3

PHASE_1

V-

+10V

+3v3

V+

+10V

+3v3

V-

Temperature feedback

+3v3

C49470nF X7R

D9

BAT30KFILM

R660.010 3W

R37 100

D11

STPS0560Z

1 2

R564.02k 1%

C50 1uF X7R

U9 LD1117S50TR

Vout2

GND

1

Vin3

C3627pF

D4

STPS0560Z

1 2

J6

CON1

1

R361

R31300 1%

C29

10uF, 50V

+

C35330uF,35V

C47100pF

R2762

R59 100

C4510uF

TP14TP CH3

1

Q1STL160N4F7

R461

R33 100

TP13TP CH2N

1

R670.010 3W

R35 56

C53100pF

R5233k 1%

TP11TP CH1N

1

U7

L6398DTR

LIN1

HIN2

VCC3

GND4

LVG5OUT6HVG7BOOT8

R654.7k

Q2

C40470nF X7R

R581

R2934.8k 1%

R62

169K 1%

C273.9nF

C374.7nF

R55 56

C461uF

R3410k

C48100pF

TP12TP CH2

1

Q6

R30 56

C56100nF

C42 1uF X7R

L1 33uH

C38100pF

C4110nF

R3810k

J7

Motor

123

R45 100

R264.7k 1%

R50 100

R68

18K 1%

C51

10nF

C44100nF

C34

100nF 100V

R6110k

D6

BAT30KFILM

D7

BAT30KFILM

C58

10nF

R39

0

C31 1uF X7R

Q4

C39100pF

R5333k 1%

R574.02k 1%

D13

BAT30KFILMC57100nF

TP10TP CH1

1

R44 56

Q5

C33

100nF 100V

R49 56

R5433k 1%

R28

0 D5SMBJ26A-TR

R42 100

R63

NTC 10K

21

R4710k

U11

L6398DTR

LIN1

HIN2

VCC3

GND4

LVG5OUT6HVG7BOOT8

+

C32330uF,35V

C55100nF

R410

C431uF

D10

BAT30KFILM

C28220nF

D14BAT30KFILM

R5110k

R40 56

D12

BAT30KFILM

U8LD39050PU33R

PG3 EN1 VIN6

NC5

VOUT4

GND1

2

GND

7

Q3

D8

STPS0560Z

1 2

R48

0

R640.010 3W

C54470nF X7R

C52100pF

C604.7nF 10V

U6L7986TR

OUT22

Fsw7

GND8

FB6

EN4

COMP5

SYNC3

VCC99

EP11

VCC1010

OUT11

R604.02k 1%

R328.2k

D3STPS1L40M

12

J5

CON1

1

U10

L6398DTR

LIN1

HIN2

VCC3

GND4

LVG5OUT6HVG7BOOT8

TP15TP CH3N

1

C3022uF 25V

C5910nF 10V

R4310k

OUT1

VBUS_SENS

OUT1

OUT3

OUT2

OUT3

OUT2

STL160N4F7

STL160N4F7

STL160N4F7

STL160N4F7

STL160N4F7

UM2197Schematic diagrams

UM2197 - Rev 2 page 17/26

Page 18: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

5 Bill of materials

Table 4. STEVAL-ESC001V1 bill of materials

Item Q.ty Ref. Part / Value Description Manufacturer Order code

1 15

C1, C2, C5, C8, C10

C12, C13, C14, C18

C19, C23, C44, C55

C56, C57

100 nF 25 V±10% X7R Ceramic capacitor any

2 3 C3, C4, C11 1 nF 50 V±10% X7R Ceramic capacitor any

3 1 C6 4.7 µF 10 V±10% X5R Ceramic capacitor Murata GRM188R61A475KE15D

4 2 C7, C59 10 nF 50 V±10% X7R Ceramic capacitor any

5 3 C9, C43, C46 1 µF 16 V±10% X7R Ceramic capacitor TDK C1608X7R1C105K080AC

6 3 C15, C16, C17 15 nF 10 V±10% X7R Ceramic capacitor any

7 3 C20, C21, C22 680 pF 10 V±5% C0G Ceramic capacitor any

8 3 C24, C25, C26 100 pF ±0% Capacitors (notmounted)

9 1 C27 3.9 nF 50 V±10% X7R Ceramic capacitor any

10 1 C28 220 nF 50 V±10% X7R Ceramic capacitor any

11 1 C29 10 µF 50 V±10% X5R Ceramic capacitor any

12 1 C30 22 µF 25 V±10% X5R Ceramic capacitor any

13 3 C31, C42, C50 1 µF X7R 50 V±10% Ceramic capacitor any

14 2 C32, C35 330 µF,35 V±20% Electrolytic capacitor Rubycon 35ZLH330MEFC10X12.5

15 2 C33, C34 100 nF 100 V±10% X7R Ceramic capacitor any

16 1 C36 27 pF 50 V±5% C0G Ceramic capacitor any

17 2 C37, C60 4.7 nF 16 V±10% X7R Ceramic capacitor any

18 6C38, C39, C47

C48, C52, C53100 pF 16 V±10% X7R Ceramic capacitor any

19 3 C40, C49, C54 470 nF 25 V±10% X7R Ceramic capacitor any

20 3 C41, C51, C58 10 nF 100 V±10% X7R Ceramic capacitor any

21 1 C45 10 µF 25 V±10% X7R Ceramic capacitor Murata GRM21BR61E106KA73L

UM2197Bill of materials

UM2197 - Rev 2 page 18/26

Page 19: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Item Q.ty Ref. Part / Value Description Manufacturer Order code

22 1 D1 Red LED Lite-on LTST-C193KRKT-5A

23 1 D2 Red LED Lite-on LTST-C193KGKT-5A

24 1 D3 40 V 1 A Low drop powerSchottky diode ST STPS1L40M

25 3 D4, D8, D11 60V/0.5A Power Schottkydiode ST STPS0560Z

26 1 D5 Transil ST SMBJ26A-TR

27 7D6, D7, D9, D10

D12, D13, D1430V, 0.3A Schottky diode ST BAT30KFILM

28 2 J1, J2CAN, UART: 4 WAYSSTRIP LINE - MALE1.27mm

any

29 1 J3 PWM INPUT: 3 waywires welding

30 1 J4 SWD: 4-way strip line- male 2.54mm any

31 2 J5, J6CON1 - Input powerconnector: 1-waywire welding

32 1 J7 Motor Connetor: 3-way wire welding

33 1 L1 33 µH 0.5 A Power inductor Coilcraft LPS4018-333MRB

34 6Q1, Q2, Q3

Q4, Q5, Q6

30 V, 160 APower MOSFETs ST

STL160NS3LLH7

40 V, 160 A STL160N4F7

35 6R1, R5, R28

R39, R41, R480 62.5 mW

±5% SMD resistor any

36 1 R2 120 62.5 mW±5% SMD resistor any

37 1 R3 10 k 62.5 mW±5% SMD resistor any

38 1 R4 220 62.5 mW±5% SMD resistor any

39 1 R6 62.5 mW ±5% SMD resistor any

40 2 R7, R8 510 62.5 mW±5% SMD resistor any

41 1 R9 33 K 62.5 mW±5% SMD resistor any

42 3 R10, R11, R12 680 62.5 mW±5% SMD resistor any

43 1 R13 5.9 K 62.5 mW±5% SMD resistor any

44 3 R14, R15, R16 8.06 k 62.5mW ±1% SMD resistor Vishay CRCW04028K06FKED

45 3 R17, R19, R20 787 62.5 mW±1% SMD resistor Panasonic ERJ2RKF7870X

46 3 R18, R21, R22 3.4 k 62.5 mW±1% SMD resistor Panasonic ERJ2RKF3401X

UM2197Bill of materials

UM2197 - Rev 2 page 19/26

Page 20: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Item Q.ty Ref. Part / Value Description Manufacturer Order code

47 2 R23, R24, R25 13 k 62.5 mW±1% SMD resistor any

48 1 R26 4.7 k 62.5 mW±1% SMD resistor any

49 1 R65 4.7 k 62.5 mW±5% SMD resistor any

50 1 R27 62 62.5 mW±1% SMD resistor any

51 1 R29 34.8 k 62.5mW ±1% SMD resistor any

52 6R30, R35, R40

R44, R49, R5556 0.1 W ±5% SMD resistor any

53 1 R31 300 62.5 mW±1% SMD resistor any

54 1 R32 8.2 k 62.5 mW±1% SMD resistor any

55 6R33, R37, R42

R45, R50, R59100 0.1 W

±5% SMD resistor any

56 6R34, R38, R43

R47, R51, R6110 k 0.1 W

±5% SMD resistor any

57 3 R36, R46, R58 1 0.125 W±5% SMD resistor any

58 3 R52, R53, R54 33 k 0.1 W±1% SMD resistor any

59 3 R56, R57, R60 4.02 k 62.5mW ±1% SMD resistor any

60 1 R62 169 K 62.5mW ±1% SMD resistor any

61 1 R63 NTC 10 K±1% NTC Thermistor TDK NTCG103JF103F

62 3 R64, R66, R67 0.01 3 W ±1% 10 mOhm shuntresistor

Bourns CRA2512-FZ-R010ELF

KOA Speer TLR3APDTE10L0F50

63 1 R68 18 K 62.5 mW±1% SMD resistor any

64 1

TP1, TP2, TP3, TP4

TP5, TP6, TP7, TP8

TP9, TP10, TP11

TP12, TP13, TP14

TP15

SMD PAD 1mm ±0% Test point any

65 1 U1 CAN transceiver TI SN65HVD230D

66 1 U2 32bit MCU ST STM32F303CBT7

67 3 U3, U4, U5Rail-to-rail input/output 20 MHz GBPoperational amplifiers

ST TSV991ILT

68 1 U6 3 A step-downswitching regulator ST L7986TR

69 3 U7, U10, U11 High voltage highand low-side driver ST L6398D

UM2197Bill of materials

UM2197 - Rev 2 page 20/26

Page 21: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Item Q.ty Ref. Part / Value Description Manufacturer Order code

70 1 U8 Low drop vo ltageregulator ST LD39050PU33R

71 1 U9 Low drop vo ltageregulator ST LD1117S50TR

72 1 X1 Resonators 8 Mhz Murata CSTCE8M00G55-R0

UM2197Bill of materials

UM2197 - Rev 2 page 21/26

Page 22: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Revision history

Table 5. Document revision history

Date Version Changes

07-Apr-2017 1 Initial release.

13-Nov-2018 2Updated Introduction and Section 5 Bill of materials.

Added references to STL160N4F7.

UM2197

UM2197 - Rev 2 page 22/26

Page 23: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

Contents

1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.1 Target application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2.1 STEVAL-ESC001V1 hardware overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 STEVAL-ESC001V1 top side components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 STEVAL-ESC001V1 bottom side components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Board dimensions (29.1 x 58 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Communication, programming and command interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 STM32 pinout for motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Initializing and using the STEVAL-ESC001V1 ESC board . . . . . . . . . . . . . . . . . . . . . . . . . .10

4 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

UM2197Contents

UM2197 - Rev 2 page 23/26

Page 24: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

List of figuresFigure 1. STEVAL-ESC001V1 evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. STEVAL-ESC001V1 target applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Figure 3. System structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 4. Typical quadcopter architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 5. STEVAL-ESC001V1 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 6. Top side features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 7. Bottom side features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 8. STEVAL-ESC001V1 board dimensions (not including capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 9. UART TX/RX (3v3 level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 10. STEVAL-ESC001V1 connection for MCU programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 11. Sample SWD configuration on IAR tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 12. STEVAL-ESC001V1 input/output connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 13. ST MC Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 14. ST MC Workbench – electrical motor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 15. ST MC Workbench – startup parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 16. IAR tool select, compile and upload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 17. PWM input signal for motor speed regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 18. STEVAL-ESC001V1 circuit schematic (1 of 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 19. STEVAL-ESC001V1 circuit schematic (2 of 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 20. STEVAL-ESC001V1 circuit schematic (3 of 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 21. STEVAL-ESC001V1 circuit schematic (4 of 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

UM2197List of figures

UM2197 - Rev 2 page 24/26

Page 25: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

List of tablesTable 1. Main STM32 pinout for motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 2. Input/output terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 3. Relationship between the STEVAL board SWD pinout and SWD on ST-Link/V2 programmer. . . . . . . . . . . . . . . 10Table 4. STEVAL-ESC001V1 bill of materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Table 5. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

UM2197List of tables

UM2197 - Rev 2 page 25/26

Page 26: Electronic speed controller for BLDC and PMSM …– motor driving for RC vehicles: electric cars, helicopter, trucks, etc. – any three-phase BLDC or PMSM motor application • RoHS

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

UM2197

UM2197 - Rev 2 page 26/26