25
PAL / POSTECH Efficiency analysis of a capacitor charging power supply for a pulsed klystron-modulator* J. S. Oh, S. D. Jang, Y. G. Son, M. H. Cho, W. Namkung, PAL/POSTECH, Pohang, Korea S. C. Ro Dong-A Hitech Co. Ltd., Busan, Korea Korean Physical Society Hanyang University, Korea October 24 – 26, 2002 * Work supported in part by Pohang Iron and Steel Company (POSCO) and MOST.

Efficiency analysis of a capacitor charging power supply ...psl.postech.ac.kr/publication/dom_poster_phy/kps_2002_fall_jsoh.pdf · Efficiency analysis of a capacitor charging power

Embed Size (px)

Citation preview

PAL / POSTECH

Efficiency analysis of a capacitor charging power supply for a pulsed klystron-modulator*

Efficiency analysis of a capacitor charging power supply for a pulsed klystron-modulator*

J. S. Oh, S. D. Jang, Y. G. Son, M. H. Cho, W. Namkung, PAL/POSTECH, Pohang, Korea

S. C. RoDong-A Hitech Co. Ltd., Busan, Korea

Korean Physical Society Hanyang University, Korea

October 24 – 26, 2002

* Work supported in part by Pohang Iron and Steel Company (POSCO) and MOST.

PAL / POSTECH

AbstractAbstract

A current source, inverter power supply is best choice for a capacitor-charging power supply of a pulsed klystron-modulator. Its high frequency technology makes the system size small and the regulation fine. The command-charging feature of the inverter guarantees higher reliability of switching function.

Thermal design is most critical in this power supply so the analysis of the system efficiency is essential. Better efficiency can be obtained through accurate evaluation of power loss distribution.

Design and fabrication detail of an air-cooled 50-kV, 15-kW inverter charging supply are presented. The efficiency and the stability of the power supply are estimated and examined.

PAL / POSTECH

Line-type Modulator & Charging WaveformLine-type Modulator & Charging Waveform

LC

RL

DC

IG

RC

Z ZPFN PFN

VGDI

S RLS

Voltage Source Current SourceVVPFN

2VG

PFN

2VG

Time Time

PAL / POSTECH

Modulator Layout with a Inverter Power Supply Modulator Layout with a Inverter Power Supply

Thyratron

HVInverterPowerSupply

ZPFN, N Stage

Pulse Transformer

1:n

DINV DTAIL

RTAIL

RSNUB

CSNUB

REOLC

RINV

PAL / POSTECH

Key Features with a Inverter Power Supply Key Features with a Inverter Power Supply

• High Reliability by Command Charging Function

• Short Circuit Protection

• Small Size by High Frequency Utilization

• Expandability by Parallel Operation

• Easy Maintenance by a Dead Module Replacement

• Flexible Control Interface

• Removal of a Lossy De-Q’ing System

• Removal of a Bulky EOLC Thyrite

PAL / POSTECH

Block Diagram of a Inverter Power SupplyBlock Diagram of a Inverter Power Supply

EMIFilter Rectifier PFC

InrushCurrent

Limit

FilterCapacitor

ResonantInverter

H-Bridge&Resonant

Components

HighFrequency

Transformer

HighVoltageRectifier

Controls

FrontPanel

RemoteControl

ExternalInterlock

Control Power

V, I Sense

Temp. Sense

GateDrive

INPUT POWER INVERTER HIGH VOLTAGE

HV Output

ACInput

CONTROL

PAL / POSTECH

Design BasicsDesign Basics

( )2

2

221,,2

121

;

DCrrDC

PPAV

rrDC

AVDCO

VCEZ

VIII

EfZ

VIVP

SupplyPower

===

===

π

π

TC

TP

TD

TI

VDC

IP Load;Po = E / TC = peak power [J/sec]Pav = E / TP = average power [W] E = (1/2) C VDC

2, C = load capacitance [F]TP = period, TC = charging timeTD = dwell time, TI = dead time

IAV

Time

PAL / POSTECH

Voltage Utilization & Switching DutyVoltage Utilization & Switching Duty

( )

( )2

2

221,,2

121

DCrrDC

PPAV

rrDC

AVDCPEAK

VCEZ

VIdII

dkEfdkZ

VIVkP

===

===

π

π

VDC

IAV

IP

TC TD

kVDC

DIAV

DdkZ

VDPP DCPEAKAV

21π

==

k ; Voltage utilization factor = VO / VDC

d ; Switching duty = fsw / frD ; Charging cycle duty = Tc / Tp

TI TimeTP

PAL / POSTECH

Resonant Current & Device CurrentResonant Current & Device Current

FREDAVGfFREDIGBTAVGCEIGBT

RMSTOTALRMSAVGTOTALAVG

RMSFREDRMS

RMSIGBTRMS

AVGFREDAVG

AVGIGBTAVG

PRMSPAVG

IVPIVP

IkIII

IkkI

IkkI

IkI

IkI

DdIIDdII

,,

2

,,

2

,

2

,

,

,

2,2

)3

1(2,

21

31

21

31

22

21

22

21

21,2

==

+==

+−=

++=

−=

+=

==π

Time

IP

TP

TD

(1+k)IP

kVDC

(1-k)IP

TITC

IGBT Current

FRED Current

PAL / POSTECH

SMART 5015SMART 5015

• Average Output Power [kW] 15• Peak Charging Rate [kJ/s] 18• Maximum Output Voltage [kV] 50• Average Output Current [A] 0.6• AC Input Voltage [VRMS] 480• Efficiency [%] 94• Switching Frequency [kHz] 34.5• Power Factor 0.85• Air cooling• 19" rack x 311 mm x 560mm• 40 kg

Capacitor-Charging Power SupplyCapacitor-Charging Power Supply

PAL / POSTECH

Photograph of Inverter Power SupplyPhotograph of Inverter Power Supply

EMI Filter

ResonantCapacitor

DC Bank &IGBT Stack

HV Tank

PAL / POSTECH

Full Bridge, Full Bridge, Series Resonant ConverterSeries Resonant Converter

Resonant Frequency 35 [kHz]Resonant Impedance 6.5 [Ω] Resonant Capacitance 0.7 [µF] Resonant Inductance 30 [µH] Switch On-Time 14 [µs] DC Bank Voltage 650 [VDC]Peak Switching Current 200 [A] RMS Switching Current 74 [A] Average Switching Current 52.5 [A]

Inverter SpecificationsInverter SpecificationsG1

G2

G3

G4

30 µH0.7 µF

PAL / POSTECH

Resonant Capacitor CSM 150Resonant Capacitor CSM 150

Celem Power CapacitorCelem Power CapacitorConduction Cooled PolypropyleneConduction Cooled Polypropylene

• Capacitance 1.2 [µF]• Maximum Voltage 500 [Vrms]• Maximum Current 300 [Arms]• Maximum Power 150 [kVAr]• Frequency Limit 700 [kHz]• Stray Inductance < 3 [nH]• Weight 300 [g]• Dimension [mm] 68 x 30 x 30.2

PAL / POSTECH

IGBT IXYS IXDR 30N120 D1IGBT IXYS IXDR 30N120 D1Vces, Collector-Emitter Voltage 1200 [V]Ic, Continuous Collector Current @ Tc=90oC 30 [A] Vce(ON), Collector-Emitter ON Voltage 2.4 [V]Rjc, Junction to Case Thermal Impedance 0.6 [oC/W]Tj, Maximum Junction Temperature 150 [oC]Td(on), Gate Turn-On Delay 100 [ns]Tr, Current Rise Time 70 [ns]Td(off), Gate Turn-Off Delay 500 [ns]Tf, Current Fall Time 70 [ns]

DiodeDiodeVf, Maximum Forward Voltage 2.5 [V]Qrr, Reverse Recovery Charge 2000 [nC]Trr, Reverse Recovery Time 200 [ns]

IGBT SwitchIGBT Switch

PAL / POSTECH

IGBT Stack CoolingIGBT Stack Cooling N; channel number S; channel space [in.]D; channel width [in.] H; channel length [in.]P; power [W], Q; air flow rate [CFM]DTa; air temperature rise [oC]DPa; pressure drop [in. H2O]DTs; heat sink temperature rise [oC]

Forced convectionForced convectionQ = 1.74 P / DTaDPa = 0.001 Q2 / (NSD)2 x [1+0.01 (H/S)]DTs = 140 [ S / (N0.2 D0.2 H) ] x ( P / Q0.8 )

N (channel) 30.00s (channel thickness) in 0.16d (channel width) in 4.57h (channel length) in 11.81DTa (air temp. diff) degC 4.00P (heat) W 350.00F (heat removal flow) CFM 152.25DP (air press. drop) in H2O 0.09DTs (heat sink temp. rise) degC 4.38Rth (forced air cooling) degC/W 0.01

PAL / POSTECH

Schematic Diagram of High Voltage SectionSchematic Diagram of High Voltage Section

HVOutput

CurrentSense

VoltageSenseInput

fromInverter

HighFrequencyTransformer

VoltageDivider

CurrentShunt

RCSnubber

7 Sections in Series

PAL / POSTECH

VMI Z50FGVMI Z50FG

Vr, Maximum DC Reverse Voltage 5000 [V]Io, Average Rectified Current @ TL=55 oC 1.0 [A]Ir, Reverse Leakage Current @ TL=100oC 25 [uA] Ifsm, 1 Cycle Surge Current @ TL=25 oC, 8.3ms 8 [A]Vf, Maximum Forward Voltage 9.0 [V]Tj, Maximum Junction Temperature 150 [oC]Rjl, Junction to lead Thermal Impedance

6 [oC/W] @ L = 3mm, 12 [oC/W] @ L = 6mm Qrr, Reverse Recovery Charge 100 [nC]Trr, Reverse Recovery Time @ Tc=125oC 200 [ns]Irrm, Reverse Recovery Current 1 [A]Cj, Junction Capacitance @ Tc=25 oC 16 [pF]

HV Rectifier DiodeHV Rectifier Diode

PAL / POSTECH

High Voltage Transformer & RectifierHigh Voltage Transformer & Rectifier

A. ConstructionCore : TDK PE22 UU120x160x21 (2ea)Primary : 24 turns, Litz wireLp = 3.8 [mH], B = 3260 [Gauss]Secondary : 2100 turns, 7 sectionRectifier : VMI Z50FG

B. Leakage Inductance, LlLl = 4 π Np2 Um (∆gap+Σδi /3) / Lm = 21 µH Np = Primary Turns = 24Um = Mean Circumference of windings =20 cm∆gap = Gap Length between Windings = 1 cmδi = Thickness of Windings = 1 cmLm = Winding Length = 9 cm

PAL / POSTECH

HV Tank CoolingHV Tank Cooling Inverter Input

Feedback Signal 290

300

250

Internal Dimension; 25 x 21 x 21 cmInternal Volume; 11 l

0

10

20

30

40

50

60

0 200 400 600

Input Power [W]

Tem

pera

ture

Ris

e [o C

]

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

Pres

sure

Ris

e [k

gf/c

m2 ]Temperature

Pressure

HV Output

Pressure Gauge

PAL / POSTECH

Circuit Diagram of PSPICE SimulationCircuit Diagram of PSPICE Simulation

V3

FREQ = 60VAMPL = vs*sqrt(2/3)VOFF = 0

PHASE = 240

Vpulse

TD = 1.8m

TF = risetimePW = 20uPER = 1.8m

V1 = -1

TR = risetimeV2 = 10

C2

5n

R6

1meg1n6519

Dr1

Vg3

TD = 0

TF = risetimePW = period*0.7PER = 1/20000

V1 = -1

TR = risetimeV2 = 10

L1

Lres

vsb

R2

100k

Vg4

TD = 1/40000

TF = risetimePW = period*0.7PER = 1/20000

V1 = -1

TR = risetimeV2 = 10

Cdc

4mIC = vs*sqrt(2)

1n6519D21

pulse

1n6519

Dr3

R1s

1u

vpbvsa

vpb

g2

1n6519

Dr2

g1

Cb

5uIC = vs*sqrt(2)

1n6519D23

Rdcc

10k

1n6519D22

L2

30uH

R10

10m

Ldc

63n

R7

1meg

Z1IXDR30N120D1

Vg1

TD = 0

TF = risetimePW = period*0.7PER = 1/20000

V1 = -1

TR = risetimeV2 = 10

V1

FREQ = 60VAMPL = vs*sqrt(2/3)VOFF = 0

PHASE = 0

0

filter

1n6519

D1

Z3IXDR30N120D1

b

0

R8

140

R5

1megg3

Z4

IXDR30N120D1

vpa

C31n

stack

R1p

1u

a

1n6519

Dr4

Rbc

100k

pulse

L1p lp

C4

0.15mIC = 0

1n6519D24

a

1n6519

Disol

0

vsa

Z2IXDR30N120D1

V2

FREQ = 60VAMPL = vs*sqrt(2/3)VOFF = 0

PHASE = 120

Vg2

TD = 1/40000

TF = risetimePW = period*0.7PER = 1/20000

V1 = -1

TR = risetimeV2 = 10

rectifier

g3

1n6519D4

1n6519D2

1n6519

Dr5

g4

Rcore

648*648/358Rwp

14/600

Lb

10n

Vo = 648 V, To = 22.2 usec, Co = 0.5 uFLo = 25 uH, Zo = 7.1 Ohm, Ip = 51 An = 85, Is = 0.6 A, Vs = 55 kV

L1sls

+-

+

-Sbreak

S1

R1

1u

g1

vsb

a

b

R4

1meg

vout

PARAMETERS:vs = 480fs = 50k/3lp = 20mls = 20m*1*1kc = 1Cres = (0.5uLres = 25u

1n6519D3

Rdc

40m

Rws

1136/9/85/85

C1

CresIC = 0

0

0

PARAMETERS:Roff_value = 1megRon_value = 1uVoff_value = 0Von_value = 0.5period = 22.2urisetime = 0.2u

Rb

1m

K K1

COUPLING = 1

K_Linear

L1 = L1pL2 = L1s

1n6519

Dr6

L3

1m

g2

vpa

R9

1g

g4

R4s100k

b

PAL / POSTECH

Circuit Analysis by PSPICE SimulationCircuit Analysis by PSPICE Simulation

Ti me

0s 0. 2ms 0. 4ms 0. 6ms 0. 8ms 1. 0ms 1. 2ms 1. 4ms 1. 6ms 1. 8ms 2. 0msABS( I ( R1s ) ) AVG( ABS( I ( R1s ) ) ) *3. 14/ 2

0A

200A

400A

SEL>>

V( VOUT)0V

400V

800VV( VOUT) 480*1. 414*3/ 3. 14

575V

600V

625V

650V

S( V( FI LTER) *I ( L2) ) S( V( VOUT) * I ( C4) )0

10

20

30

40S( V( VOUT) * I ( C4) ) / S( V( FI LTER) *I ( L2) ) 0. 94

0

0. 5

1. 0

PAL / POSTECH

Power Loss & EfficiencyPower Loss & Efficiency

Output Power 15 kWPower Loss 1.2 kWEfficiency 92.7 %

IGBT 242 WResonant Capacitor 44 WSnubber 217 WDC Bank 70 WOthers 120 W------------------------------------------------------------------Sub Total (Air) 693 W

Core 122 WHV Rectifier 124 WTrans. Winding 247 W------------------------------------------------------------------Sub Total (Oil Tank) 493 W

Power LossPower Loss

IGBT; 2Vce Iav + 2Vf If + 0.5 Qrr Vrm fsw

Snubber; 0.5 Cs Vdc2 fsw x 3

DC Bank; 2Vf Idc + Irms2 ESR

Resonant Capacitor; 2 π f C Vrms2 tan δ = Irms2 ESR

Primary Winding; Rdc Fac Irms2

Secondary Winding; Rdc Fac Irms2

Ferrite Core; k f[kHz]1.3 B[mT]2.5 Volume[m3] / 3.5

Rectifier; 2Vf If + 0.5 Qrr Vrm fsw

PAL / POSTECH

Measurement Waveform[1](Load Capacitance = 216 nF )

Measurement Waveform[1](Load Capacitance = 216 nF )

10.8 ms

Ir (100A/div)

Io (1A/div)

Vo (10kV/div)

Expanded ViewHorizontal : 20 us/divVertical : 10 kV/div

Horizontal : 2 ms/div, Vertical : 10 kV/divOutput Current = 0.73 ACharging Power = 13.2 kJ/secPeak Charging Power = 18.2 kJ/sec

PAL / POSTECH

Measurement Waveform[2](Load Capacitance = 352 nF )

Measurement Waveform[2](Load Capacitance = 352 nF )

7.1 ms

15 kV

Horizontal : 2 ms/div, Vertical : 5 kV/divOutput Current = 0.74 ACharging Power = 5.7 kJ/secPeak Charging Power = 18.6 kJ/sec

Expanded ViewHorizontal : 10 us/div, Vertical : 50 V/divResonant Frequency = 35 kHz

PAL / POSTECH

SummarySummary

1.1. Air cooling for simplicity.Air cooling for simplicity.

2. Resonant parameters; fr = 35 kHz, Lr = 29 µH, Zr = 6.5 Ω.

3. Peak charging power is 18 kJ/sec with 0.72 A.

4. Average power is 15 kW with 83% duty factor.

5. Total power loss is estimated to be 1.2 kW.

6. System efficiency is about 93%.

7. Cooling capacity of oil tank is 500 W by forced convection.

8.8. The cooling capability of HV oil tank is limiting factor.The cooling capability of HV oil tank is limiting factor.