22
Effect of potassium carbonate on electrode materials for advanced combustion MHD generators March 23, 2017 Peter Hsieh National Energy Technology Laboratory

Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

Effect of potassium carbonate on electrode materials for advanced

combustion MHD generators

March 23, 2017

Peter HsiehNational Energy Technology Laboratory

Page 2: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

2

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Disclaimer of Liability or Endorsement

Page 3: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

3

Overview

• MHD electrode materials

• HVOF torch test

• Potassium seed injection

• Refractory metal electrodes

• Oxide ceramic electrodes

• Summary and conclusions

MHD Laboratory, National Energy Technology Laboratory, Albany, Oregon (Photo: NETL, 2017)

Page 4: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

4

MHD Electrode Material RequirementsPushing the limits of material performance

• High operating temperature• High electrical conductivity• Adequate thermal conductivity• Electrochemical corrosion

resistance• High-velocity particle erosion

resistance• Thermal shock resistance• Arcing resistance

S. Petty, A. Demirjian, A. Solbes, Electrode phenomena in slagging MHD channels, in: 16th Symposium on Engineering Aspects of MHD, Pittsburgh, PA, 1977, pp. VIII.1.1‐VIII.1.12.

220 kW MHD channel

Page 5: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

5

• Advantages• High electrical conductivity• Mechanically robust• Resistant to thermal-shock• Ease of fabrication

• Disadvantages• Lower operating temperature

• Higher heat loss• Higher boundary voltage drop • Possibility of seed-induced shorts

• Oxidative evaporation

Metallic ElectrodesCold (arcing) mode operation

L.C. Farrar, J.A. Shields, Tungsten and tungsten‐copper for coal‐fired MHD power generation, JOM‐J Min Met Mat S, 44 (1992) 30‐35.

MHD literature

Tungsten

Molybdenum

Tantalum

Niobium

Copper alloys

Steel alloys

Nickel alloys

Page 6: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

6

• Advantages• Higher operating temperature

• Lower heat loss• Lower boundary voltage drop

• Chemical stability

• Disadvantages• Lower thermal-shock resistance• Ionic charge conduction• Difficult to fabricate

Ceramic ElectrodesHot (diffuse) mode operation

MHD literature

Zirconia-based

Hafnia-based

Chromite-based

Carbide-based

Alumina-based

Ceria-based

MoSi2-based

MetalCeramic Ceramic

Metal

J. Mizusaki, W.R. Cannon, H.K. Bowen, Electrochemical degradation of ceramic electrodes, J Am Ceram Soc, 63 (1980) 391‐397.

Page 7: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

7

High-Velocity Oxy-Fuel Torch Test

• HVOF torch test parameters

• CFD simulation results

• Potassium seed injection

Formation of tungsten oxide and potassium tungstate on tungsten in oxy‐kerosene flame seeded with potassium carbonate (Photo: NETL, 2017)

Page 8: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

8

Typical HVOF Torch Operating Parameters

Length = 6.35 cm (2.5 in)

Diameter = 2.54 cm (1 in)

Holder temperature(K‐type thermocouple)

(top) sample holder temperature measurement(bottom) sample geometry and dimensions

Fuel: kerosene (K-1)Oxidizer: oxygenCarrier: argonSeed: potassium carbonate

Fuel flow rate 16.3 ± 0.2 L/hourOxidizer flow rate 611 ± 4 SLPMCarrier gas flow rate 15.7 ± 0.1 SLPM

Page 9: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

9

CFD Simulation of HVOF Working Fluid

• Estimated temperature is between 1700 to 1900 K

• Gas velocity is between 700 to 800 m/s

Shock diamond structure in HVOF flameR. Woodside, et al. “IPT – Direct Power Extraction,” Crosscutting Technology Research Review Meeting, 2016

Page 10: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

10

Potassium Carbonate Seed Injection

(left) Oxy‐kerosene HVOF flame; (right) with potassium carbonate seed injection Photo: NETL, 2017)

Page 11: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

11

Refractory Metal Electrodes

• Tungsten and tungsten-copper pseudoalloys

• Temperature measurements

• Electrode mass change

• Reaction products

• Surface reactions• Reactive evaporation• Potassium tungstates

Tungsten sample after exposure to potassium carbonate in HVOF test.(Photo: NETL, 2017)

Page 12: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

12

• Tungsten (Tm.p. = 3422 °C)• Rosa (1961)• Zhimerin et al. (1969)• Bitiurin et al. (1969)• Petty et al. (1977)• Natesan et al. (1991)• Farrar and Shields (1992)

• Tungsten-copper pseudoalloy• Heywood et al. (1969)• Petty et al. (1977)• Farrar and Shields (1992)

Tungsten and Tungsten-Copper

S. Petty, A. Demirjian, A. Solbes, Electrode phenomena in slagging MHD channels,  Proceedings of the 16th Symposium on Engineering Aspects of MHD, Pittsburgh, PA (1977) VIII.1.1‐VIII.1.12.

Page 13: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

13

Temperature MeasurementsAs a function of position and time

tungsten

without K2CO3seed injection

with K2CO3seed injection

100W+K2CO3

70W‐30Cu+K2CO3

70W‐30Cu

90W‐10Cu

tungsten

Page 14: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

14

Mass Change Measurements

Tungsten electrodes (Photo: NETL, 2017)

100W+K2CO3

70W‐30Cu

70W‐30Cu+K2CO3

90W‐10Cu

100W

Page 15: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

15

Reaction Product Characterization

1000

800

600

400

200

10080604020

Intensity

(cou

nts)

Scattering angle 2Θ (degrees)

K 2W

2O7(020

)

K 2WO

4 (2̅̅ 01)

K 2WO

4 (1̅01)

K 2WO

4(111

)K 2W

2O7(100

)

K 2WO

4 (3̅11)

K 2WO

4 (3̅12)

K 2WO

4(310

)K 2WO

4 (4̅01)

K 2WO

4 (2̅21)

K 2W

2O7 (10

2)K 2WO

4(022

)

K 2WO

4(312

)

K 2WO

4 (6̅02)

K 2W

2O7 (13

2) K 2WO

4 (3̅14)

K 2WO

4 (3̅3

2)

K 2WO

4 (4̅24)

K 2WO

4 (04

0)

K 2WO

4(332

)

K 2WO

4(800

)

K 2WO

4 (9̅12)

K 2W

2O7 (08

2)

K 2W

2O7 (25

0)

K 2W

2O7 (20

0)21.7% (mass/mass) K2W2O7

78.3% (mass/mass) K2WO4

Powder x‐ray diffraction

Energy‐dispersive x‐ray spectroscopy

WO3 + K2WO418% (mole/mole) W9% (mole/mole) K

Balance O

Image brightness and contrast adjusted.

HW6O215‐(aq) + 3H2O(l) ⇄ 6WO4

2‐(aq) + 7H+(aq)polytungstate ion tungstate ion

M.I. Nave, Y.‐c.K. Chen‐Wiegart, J. Wang, K.G. Kornev, Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X‐ray nanotomography and surface tension isotherms, Phys Chem Chem Phys, 17 (2015) 23121.

Page 16: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

16

High-temperature Surface ReactionsFormation of tungsten(VI) oxide and potassium tungstates

Oxidation of tungsten electrode (Photo: NETL, 2017)

Tungsten mass gain due to oxidation in dry air

S.C. Cifuentes, M.A. Monge, P. Perez, On the oxidation mechanism of pure tungsten in the temperature range 600‐800 °C, Corros Sci, 57 (2012) 114‐121.

2W(s)+ 3O2(g) → 2WO3(s)WO3(s) → WO3(g)

L.L.Y. Chang, S. Sachdev, Alkali tungstates: stability relations in the systems A₂O·WO₃‐WO₃, J Am Ceram Soc, 58 (1975) 267‐270.

K2CO3(?) + WO3(s) → K2WO4(l) + CO2(g)

Page 17: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

17

Oxide Ceramic Electrodes

• Preliminary screening• K2CO3 reactivity• Fabrication testing

• ASTM C987 exposure test

• Impedance spectrometry 2 mm

Reaction layer formed at surface of hafnia‐ceria‐yttria electrodesample after exposure to molten potassium carbonate

R. Woodside, et al. “IPT – Direct Power Extraction,” Crosscutting Technology Research Review Meeting,2016

Page 18: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

18

• Potassium carbonate was combined with candidate oxides and fired at 1600 °C to determine if any new phases are formed

• Tested: MgO, Y2O3, Sc2O3, In2O3, CeO2 • Potential materials: CaO, SrO, La2O3

• Oxide ceramic coupon fabrication• Densified: LaYO3, LaY0.9In0.1O3,

LaYCaO2.96, LaCeYO3.04, Y2Ce2O7• Unable to be densified: La2Zr2O7

Preliminary Screening Tests

(top) Post‐exposure shrinkage of pressed oxide‐potassium carbonate pellets after firing. (bottom) Oxide ceramic coupons (Photo: NETL)

Sc2O3 In2O3 CeO2

Page 19: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

19

• Potential chemical reaction productstungsten → potassium tungstate and polytungstatesscandium(III) oxide → potassium scandium oxide, Hoppe and Sabrowsky (1965)indium(III) oxide → potassium indium oxide, Lulei and Hoppe (1994)cerium(IV) oxide → potassium cerium oxide, Clos et al. (1970)

• Damage mechanisms• New phase formation• Grain boundary diffusion

• Mass loss measurement

Potassium Carbonate Exposure Test

R. Woodside, et al. “IPT – Direct Power Extraction,” Crosscutting Technology Research Review Meeting, 2015 and 2016

Page 20: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

20

Impedance Spectrometry

(top) Tube furnace for high‐temperature measurements up to 1150 °C; (bottom) reference sample photograph and dimensions(Photos: David Cann, Oregon State University, 2016)

W= 3.5 mm

H = 5 mm

L=20 mm

Schematic drawing not to scale.

at 90% theoretical density

LaY0.9In0.1O3

LaYO3

(Photos: Oregon State University)

Page 21: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

21

• Co-Principal Investigator: Rigel Woodside• MHD Team

• Eric Zeuthen (ORISE)• Hyoungkeun Kim (ORISE)• Kyei-Sing Kwong (NETL)• Michael Johnson (ORISE)• David Cann (Oregon State University)

• Additional support• Richard Chinn (NETL, powder x-ray diffraction)• Kyle Rozman (ORISE, scanning electron microscopy)• Rick Krabbe (NETL, ceramics processing)

Acknowledgements

Page 22: Effect of potassium carbonate on electrode materials for … · 2017-03-23 · 4 MHD Electrode Material Requirements Pushing the limits of material performance •High operating temperature

Effect of potassium carbonate on electrode materials for advanced

combustion MHD generators

Public Inquiries Contact541-967-5966541-971-2799

https://www.netl.doe.gov/

March 23, 2017