EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

  • Upload
    ahmd

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    1/19

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    2/19

    2/19

    Examples of Solving Differential Equations using LT

     Notice how easy this is!

    -LT converts the differential equation into an algebraic equation

    -We can easily solve an algebraic equation for an output Y (s)

    -We can do partial fraction expansion

    -We can use the LT tableBut, this is where the hard part lies…although it is easy for certain inputs.

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    3/19

    3/19

    Example 6.29: 2nd Order Differential Equation

    Given )(2)(8)(6)(2

    2

    t  xt  ydt t dy

    dt t  yd  =++

    Find the output y(t ) for t ≥ 0 when the input is x(t ) = u(t )

    2)0(1)0(   ==

      −−

     yand  y  &

    1

    )(t  x

    Input “starts” att = 0

    Assume that the system has ICs given by:

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    4/194/19

    Gives: [ ] [ ] )(2)(8)0()(6)0()0()(2 s X sY  yssY  ys ysY s   =+−+−−   −−− &

    Solving for Y (s) algebraically gives:

    )(

    86

    2

    86

    )0(6)0()0()(

    22  s X 

    ssss

     y ys ysY 

    ++

    +

    ++

    ++=

    −−−&

    Using the specific IC’s gives:

    )(86

    286

    8)(22  s X 

    ssss

    ssY  ⎥⎦⎤

    ⎢⎣⎡

    +++⎥⎦

    ⎤⎢⎣⎡

    +++=

    IC part H (s) “Transfer Function” (notice howthis comes directly from the D.E.)

    )(2)(8)(

    6)(

    2

    2

    t  xt  ydt 

    t dy

    dt 

    t  yd =++Applying the LT to this D.E.

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    5/195/19

     Notice how the IC part can be easily found using PFE and an LT table (Forlinear, constant coefficient differential equations it will always be like that!)

    )(

    86

    2

    86

    8)(

    22  s X 

    ssss

    ssY  ⎥

    ⎤⎢

    ++

    +⎥

    ⎤⎢

    ++

    +=

    IC part  H (s) “Transfer Function” (notice howthis comes directly from the D.E.)

     Notice that the input part may not be easy to do PFE/ILT if theinput X (s) is complicated.

    But in control systems and sometimes in electronics we are often interested in howthe system responds to a step function → Called the “step response”

    ss X t ut  x 1)()()( : Note   =↔=

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    6/196/19

    ⎥⎦

    ⎤⎢⎣

    +++⎥⎦

    ⎤⎢⎣

    ++

    +=

    )86(

    2

    86

    8)(

    22sssss

    ssY 

    IC part Input part

    (   )[ ]( )

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    −=

    +−

    −=

    +−

    n

    n

    n

    n

    n

    n

     A

    t ut  Ae

    ζω α 

    ζ ω φ 

    ζ 

    ζω  β 

    φ ζ ω 

    ω α 

    ζω 

    21

    2

    2

    2

    1tan

    11

    :where

    )(1sin

    22

    2 nnss

    s

    ω ζω 

    α  β 

    ++

    +

    First… compare to this:

    Is… 0< | | < 1?

    06.124/62/662

    228

    182

    ===⇒=

    =⇒=

    ==

    nn

    nn

    ω ζ ζω 

    ω ω 

     β α And identify:

     No!!!So… factor!!

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    7/197/19

    ⎤⎢

    +++⎥

    ⎤⎢

    ++

    +=⎥

    ⎤⎢

    +++⎥

    ⎤⎢

    ++

    +=

    )2)(4(

    2

    )2)(4(

    8

    )86(

    2

    86

    8)(

    22

    sssss

    s

    sssss

    ssY 

    Doing PFE:

    >> [R,P,K]=residue([1 8],[1 6 8])R =

    -23

    P =-4-2

    K =[]

    >> [R,P,K]=residue(2,[1 6 8 0])R =0.2500

    -0.50000.2500

    P =-4-20

    K =[]

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ 

    ⎥⎦

    ⎢⎣

    ⎡+

    ⎥⎦

    ⎢⎣

    +

    −+

    ⎥⎦

    ⎢⎣

    +

    +⎟

     ⎠

     ⎞⎜

    ⎝ 

    ⎛ 

    ⎥⎦

    ⎢⎣

    +

    +

    ⎥⎦

    ⎢⎣

    +

    −=

    sssss

    sY 25.0

    2

    5.0

    4

    25.0

    2

    3

    4

    2)(

    IC part Input part IC part Input part

    Factored!!!

    IC part SS partTransient part

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    8/19

    8/19

    0,4/12/14/132)( 2424 ≥+−++−=   −−−− t eeeet  y  t t t t 

    4/14/1 0 =t e

    Specifyingthis means

    we can leaveoff the u(t )’s

    Using the LT table:

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ⎥⎦

    ⎤⎢⎣

    ⎡+⎥⎦

    ⎤⎢⎣

    +

    −+⎥⎦

    ⎤⎢⎣

    ++⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ ⎥⎦

    ⎤⎢⎣

    ++⎥⎦

    ⎤⎢⎣

    +

    −=

    ssssssY 

    25.0

    2

    5.0

    4

    25.0

    2

    3

    4

    2)(

    complexorreal),(   bt ue   bt − complexorreal,1

    bbs +

    IC part SS partTransient part

    IC part SS partTransient part

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    9/19

    9/19

     Note: IC part & Transient part have the same kind of decaying parts:These come from the system’s characteristic polynomial!

      t t  ee24 &   −−

     Note: The book combined Y (s) into one big thing and found y(t ) from that.Same answer…but we cannot see the impact of three parts!

    0,4/12/14/132)( 2424 ≥+−++−=   −−−− t eeeet  y   t t t t 

    IC part SS partTransient part

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    10/19

    10/19

    Plots for ex. 6.29

    Zero state system takes time to respond to step input

    Zero state “transient”

    Eventually the IC’s decay away, the ZS transient diesand the system reaches its “steady-state” response

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    11/19

    11/19

    Now Modify Example 6.29: 2nd Order Differential Equation

    )(2)(8)(

    6)(

    2

    2

    t  xt  ydt 

    t dy

    dt 

    t  yd =++

    )(2)(8)()(

    2

    2

    t  xt  ydt 

    t dy

    dt 

    t  yd =++

    18.024/12/112

    228

    18

    2

    ===⇒=

    =⇒=

    ==

    nn

    nn

    ω ζ ζω 

    ω ω 

     β α 

    And identify:

    Was…

     Now…

    ⎥⎦

    ⎤⎢⎣

    +++⎥⎦

    ⎤⎢⎣

    ++

    +=

    )86(

    2

    86

    8)(

    22sssss

    ssY 

    IC part Input part

    ⎥⎦

    ⎤⎢⎣

    +++⎥⎦

    ⎤⎢⎣

    ++

    +=

    )8(

    2

    8

    8)(

    22 sssss

    ssY 

    IC part Input part

    Is… 0< | 

    | < 1? Yes… Complex Roots… so use oneof the 2nd order LT Pairs

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    12/19

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    13/19

    13/19

    ⎥⎦

    ⎤⎢⎣

    ++

    +−+⎥⎦

    ⎤⎢⎣

    ++

    +=

    8

    125.0

    25.0

    8

    8)(

    22ss

    s

    sss

    ssY 

    )4.178.2sin(25.025.0)36.078.2sin(87.2)( 5.05.0 +−++=   −− t et et  y  t t 

    LTTable

    Zero-InputResponse

    Zero-StateResponse

    TotalResponse

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    14/19

    14/19

    Compare the Two Cases:

    )2)(4(

    2

    86

    2)(

    2 ++=

    ++=

    sssss H 

    )78.25.0)(78.25.0(

    2

    8

    2)(

    2 js jsss

    s H ++−+

    =++

    =

    σ

     jω

    σ

     jω

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    15/19

    15/19

    Ex. 6.38 “RLCLC” Circuit

    In analyzing circuits we often

    -Have zero IC’s

    -Have no specific input signal in mind 

    We only want to find the transfer function and/or the frequency response⇒

    Suppose you must analyze the following circuit to find the current through C 1

    (You might need to do that because in the physical circuit there is a device being

    driven by that current and that device has an input impedance that is modeled as acapacitor)

    )(t  x device )(t  y

    C2

    C1

    Re-Drawn Versionof Fig. 6.13… but

    equivalent!!

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    16/19

    16/19

     Now, replace “device” by its capacitor model and find the transfer function between:

    input = voltage x(t )output = current y(t )&

    Use s-domain impedances Ls

    1/Cs

    And analyze the circuit as if  X (s) is a DC voltage source.

    [ ] 1)()()(

    212

    222113

    2214

    2121

    13

    221

    +++++++

    +=

    sC C  RsC  LC C  Ls LC  RC s L LC C 

    sC s LC C s H 

     Note that there are 6 “adjustable” coefficients but only 5 adjustable componentvalues

    ⇒ Can’t achieve all possible coefficient combinations

    This is the wholeidea behind the LT

    approach!!

    Can find that (see book for details):

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    17/19

    17/19

    ( )[ ] 2121212121

    2212122211

    31

    422

    21

    /1/)(/)()/(

    /1)/1()(

     L LC C s L LC C C C  Rs L LC C C  LC C  Ls L Rs

     LC ss Ls H 

    +++++++

    +=

    A zero “at the origin”forces low frequencies

    to be attenuated 

    A purely-imaginary-rootsterm… puts conjugate zeroson the jω axis… nulls one

    specific frequency

    T h hi i i d l k i f Thi i lid

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    18/19

    18/19

    To see what this circuit can do we look at its frequency response. This is valid because all poles are in the region of convergence. (True for any passive RLCcircuit)

    Get H (ω ) by replacing s→  jω 

    The following plot shows | H (ω )| for two sets of component values

    similarities…

     but differences!! Note

    How do we choose the component values to do what we want?!

    STAY TUNED!!!

  • 8/17/2019 EECE 301 Discussion 10 Laplace Transform Examples_2.pdf

    19/19

    19/19

    Due to a pole

    near the jω axis

    Due to zeros on

    the jω axis

    157 Hz1570 Hz 157 kHz