17
1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26: Bipolar Junction Transistor Amplifiers – Frequency Response 2 Lecture Material Last lecture BJT amplifiers This lecture Emitter-degenerated CE Amplifier Frequency response of BJT Amplifiers Designing complex amplifiers

EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

  • Upload
    dokhanh

  • View
    230

  • Download
    5

Embed Size (px)

Citation preview

Page 1: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

1

EE105 - Fall 2006Microelectronic Devices and Circuits

Prof. Jan M. Rabaey (jan@eecs)

Lecture 26: Bipolar Junction TransistorAmplifiers – Frequency Response

2

Lecture Material

Last lecture– BJT amplifiers

This lecture– Emitter-degenerated CE Amplifier

– Frequency response of BJT Amplifiers

– Designing complex amplifiers

Page 2: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

2

3

Administrativia

Lab 8 this week

Lab 9 next week (no written report – just oral at end of lab session)

Last homework will be posted this weekNo lecture on Tu Dec 5 – Make-up lecture scheduled tentatively for December 11 at 2pm (203 McLaughlin)

Final: We December 13, 12:30-3:30pm, 105 North Gate

4

Schedule for the rest of the semester

Tu 11/27: BJT Amplifiers (continued) – Complex amplifiers (start)

Th 11/29: Complex amplifiers; Advanced topics (start)

Th Dec 7: Advanced topics (cntd)

Mo Dec 11: Semester overview and review session

Page 3: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

3

5

One Last Exercise: Common-Collector Voltage Gain

KCL at the output node: note vπ = vt - vout

6

Summary of Two-Port Parameters for CE/CS, CB/CG, CC/CD

Page 4: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

4

7

Frequency Response of Common-Emitter

8

Frequency Response of Common-Emitter

Page 5: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

5

9

Assuming Rsig to be small

10

BJT Biasing (Discrete)

Page 6: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

6

11

BJT Biasing (2)

12

Common-Emitter with Emitter Degeneration

1. What is it?2. DC Bias3. Small-signal 2-port

model4. Output swing

Page 7: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

7

13

DC Bias for CEdeg

14

CE(degen) Biasing

Page 8: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

8

15

Two-Port Model for CEdeg

Input looks like CC Rin =Output looks like CB (see p. 504 for details) Rout = Transconductance: Gm =

16

Two-Port Model for CEdeg (cont.)

Find Gm

Voltage Gain:

Is it a good voltage amplifier (vs. CE)?

Page 9: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

9

17

Temperature Dependence

Gm of Bipolar strong function of temperature

18

Analyzing Complex Amplifiers

Example: Discrete VHF Amplifier

Page 10: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

10

19

Multi-Stage Voltage Amplifier

20

Cutting Through the Complexity

Two Approaches:

1. Eliminate “background” transistors to reduceclutter

2. Identify the “signal path” between the inputand output

Page 11: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

11

21

First Approach: Find I & V Sources

22

What’s Left?

Voltage at base ofQ2 is set by totempole

Page 12: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

12

23

Second Approach: Find Signal Path

24

Identifying the Stages

First stage (or two stages): CS/CB cascodeSecond stage (or two stages): CD/CC voltage buffer

Why does this make sense for a voltage amplifier?

Page 13: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

13

25

Find Key Two-Port Parameters

Output resistance of cascode:

( ){ }2222/, ||1(|| SmoocCBCSout RrgrrR π+=

( )666 1 Smoupoc RgrRr +==

26

Two-Port Parameters (Cont.)

Page 14: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

14

27

Output Resistance and Voltage Gain

Source resistance of the CC stage is the output resistanceof the CD stage (small)

434

,

4,

1111

mommo

CCS

mCCoutout ggg

R

gRR ≈

β+=

β+==

Open-circuit voltage gain Av (last two stages have nearly unity gain):

( )( )76621 1|| omooomv rgrrgA +β−=

28

Output Swing: VOUT,MIN

Minimum output voltage: M10, M3 , and Q2 are “suspects”

M10 goes into triode when VOUT = 0.5 V

M3 goes into triode when VSD3 = 0.5 V VOUT = 0.5 V – 0.7 V = -0.2 V

Q2 goes into saturation when VCE2 = 0.1 Vor VBC2 = 0.6 VVOUT = VB2 – VBC2 + VSG3 – VBE4

= 2 V – 0.6 V + 1.5 V – 0.7 VVOUT = 2.2 V

Page 15: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

15

29

Output Swing: VOUT,MAX

Maximum output voltage: Q4, M5, and M6 are “suspects”

Q4 goes into saturation when VCE4 = 0.1 V VOUT = 4. 9 V

M5 goes triode when VSD5 = 0.5 V VOUT = 3.8 V

M6 goes triode when VSD6 = 0.5 V VOUT = VS6 – 0.5 V + VSG3 – VBE4

= 3.5 – 0.5 + 1.5 – 0.7 V = 3.8 V

30

Insight into the Frequency Response

Page 16: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

16

31

Qualitative Insight

Could always do “brute force” open-circuit time constants

CS*-CB is a wideband stage … so is the CD-CC buffer

Look for large RTxCx products: high-impedance nodesare likely candidates

32

Node X

“High impedance node” is node X … look at RTxCx

Capacitance:

Cx = Cgd6 + Cμ2 + Cgd3 + CM3

Miller for CDstage (M3)

Page 17: EE105 - Fall 2006 Microelectronic Devices and Circuitsee105/fa06/lectures/F06...1 EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 26:

17

33

Finding the Miller Capacitance CM3

Gain across Cgs3: 33

33 /1 Lm

LgsvC Rg

RA

+=

CD

X

Cgs3

RL3

RL3 = Rin4 =

34

Dominant Pole of Voltage Amplifier

CDinCBoutinoutTx RRRRR ,,32 |||| ==

ooomoSmoocTx rrgrRrgrrR β+≅+= π 27662222 ||)1())||(1(||

Thévenin resistance for CX:

Dominant pole: xTxCR≈ω −11