19
1 EE105 Microelectronic Devices and Circuits: Basic Semiconductors Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) Excellent Reference for Module 2: Chenming Hu, Modern Semiconductor Devices for Integrated Circuits, 2010 downloadable from: https://people.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html EE 130

EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

  • Upload
    dotuyen

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

1

EE105Microelectronic Devices and Circuits:

Basic Semiconductors

Prof. Ming C. Wu

[email protected]

511 Sutardja Dai Hall (SDH)

Excellent Reference for Module 2:Chenming Hu, Modern Semiconductor Devices for Integrated Circuits, 2010

downloadable from:https://people.eecs.berkeley.edu/~hu/Book-Chapters-and-Lecture-Slides-download.html

EE 130

Page 2: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

2

Silicon: Group IV Element

P-typedopant

N-typedopant

o

088

Page 3: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

3

Resistivity of Typical Materials

• Conductors– Copper: 1.7 x 10-6 Ω-cm (or 1.7 x 10-8 Ω-m)– Aluminum: 2.8 x 10-6 Ω-cm

• Insulators– SiO2: 1018 Ω-cm

• Semiconductor– Silicon: 10-3 to 103 Ω-cm – A wide range of resistivity, – Can be controlled by “doping” of impurities or electrical

bias

o O

1024

106

e

Page 4: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

4

From Atoms to Crystals

Decreasing atomic separation

Ener

gy

p

s

isolated atoms lattice spacing

valenceband

conductionband Pauli exclusion

principle

• Energy states of Si atom (a) expand into energy bands of Si crystal (b).

• The lower bands are filled and higher bands are empty in a semiconductor.

• The highest filled band is the valence band.• The lowest empty band is the conduction band

(a) (b)

datoe

Energy emptys

Bande a

t.IEp hybrids Ps full

A

D

Page 5: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

5

Energy Band Diagram of Various MaterialsBoltzmannDistribution offc EET d

krs BoltzmannConseolton LBT 2GmeVFonducting Iop

0 O Yalene 4 11 14 4 VBsand

BandEg BandgapEnergy e HEY

tongue 1eV 1.6 1019 J

0180 a

ySc Eg Inter

nne EIt e F3z eaonco.ro liquid elects

or

Page 6: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

6

SiliconCrystalline Structure

(Diamond Cubic)Schematic Two-Dimensional

Representation

At 0 Kelvin, all electrons are “locked” in covalent bondsà Behave like insulator

Simplifiedz dillustration

Sony

4 0 0 00

Topofte

Page 7: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

7

Electrons and Holes

• At room temperature, thermal energy breaks some covalent bonds, creating free electrons and “holes”

• Hole: empty space left by electron– Hole “moves” as

adjacent electron move into its space

– Treat hole like a positively charged particle

f

O

P OO E tfBound

ThermalEnergy hrs1 26MeV

keeptrack of free electrons

free hole

Page 8: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

8

Intrinsic SemiconductorIntrinsic semiconductor n = p = ni n : electron concentration [cm−3]p : hole concentration [cm−3]

ni = BT32e

−Eg

2kT : instrinsic carrier concentration B : material dependent constant T : temperature in Kelvin Eg : bandgap energy (=1.12 eV for Si)

k : Boltzmann's constant = 8.62x10−5 eV/KAt room temperature (T = 300K )ni =1.5×1010 [cm−3]Note: There are 5×1022 atoms/cm−3, so the number of free electrons and holes are very smallIn general, np = ni

2

electronfans conc a hole conc Hand

D00 C

MassAction LawIn semiconductornxp nexn nE

2 1020

Page 9: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

9

N-Type SemiconductorElectron concentration can begreatly increased by replacing some Si atoms with P (phosphorus) or As (Arsenic), which have 5 shell electrons (one more than Si).P or As are called "donors" nn = ND (donor impurtiy concentration)

pn =ni

2

ND

where ni =1.5×1010 [cm−3]

Subscript n refers to n-type semiconductor(n stands for "negative", referring to the charge carried by electrons)In n-type semiconductor, nn >> ni >> pn e.g., ND =1017 cm−3, nn =1017, pn = 2.2×103

Electrons are "majority" carriers, holes are "minority" carriers

eNegativeto

o OGroupseg As.P

nn ND DonorConc

nnxpn ne 2 10 D

pn nI Y Izxw3n n ND

Pn Rn

Page 10: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

10

P-Type SemiconductorHole concentration can begreatly increased by replacing some Si atoms with B (boron), which has 3 shell electrons (one less than Si).B is called "acceptors" pp = NA (acceptor impurtiy concentration)

np =ni

2

NA

where ni =1.5×1010 [cm−3]

The subscript p refers to p-type semiconductor(p stands for "positive", referring to the charge carried by holes)In p-type semiconductor, pp >> ni >> np

e.g., NA =1017 cm−3, pp =1017,np = 2.2×103

Holes are "majority" carriers, electrons are "minority" carriers

TossitiveHole f

D

O

Bubbleg

Page 11: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

11

How Electron (or Hole) Move

No Electric Field

!∗# = %&'

# = %&'!∗ ∝ &

# = )&

) = %'!∗

M kBT 26meV26 153 1,6 151958P Forcetime

mean freetimeE E

T momentum

9 10348 EIFFEL 7vz 5 2012 mass of X

0

104 109 Ot

Es cIT

drifevelocity n

scattering LE mobility

ImpurityThermal electric fieldenergyoff lattice Phonon

Page 12: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

12

Mobility of Common Semiconductors

IT IT

electronhole D

Un Up ftype n typetransistor

InAs

tr

Page 13: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

13

Mobility vs Dopant Concentration

E

mgL

DAIEeor Don or

Page 14: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

14

Current: Movement of Charged Particles (Electrons and Holes)

I _J Areap Ecurrent densityAmp CFJp PEf Vp FVpf_

p Vp dpE

pholevelocity

A Jn nqVnvolume1 1 9 Vn µnE

Page 15: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

15

Current in Semiconductor (1):Drift Current

When an electrical field, E, is applied,holes moves in the direction of E, whileelectrons move opposite to E :vp−drift = µpE, µp : hole mobilityvn−drift = −µnE, µn : electron mobility

"#$

%$

In intrinsic Si, µn =1350 cm2 / V ⋅sµp = 480 cm2 / V ⋅s (Note: µn ≈ 2.5µp )

Current density, J [A/cm2 ]J = qpvp−drift + qnvn−drift = q(pµp + nµn )E =σEwhere σ = q(pµp + nµn ) is conductivity [S/cm]

Resistivity ρ= 1σ

[Ω-cm]

R f deeron 8hole tf

Jn C f n C Mnf

nqMnEI zV E 4 F N type n

P type pt o Ej gt.fr

Page 16: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

16

Resistivity vs Dopant Concentration

Ip I

p D Insulatingconducting f f tung

Page 17: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

17

Current in Semiconductor (2):Diffusion Current - Holes

• If hole distribution is non-uniform, holes will move from high to low concentration areas

• Flux ∝ - [conc. gradient]

• Current flows since holes carry charge:

"#$%&'' = )*# −,- .,.*#: hole diffusion coef. [cm2/s]

• Note: since hole carries positive charge, hole diffusion and hole current are in the same direction

Hole Diffusion

Page 18: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

18

Current in Semiconductor (2):Diffusion Current - Electrons

• Similarly, electron diffusion also causes current to flow, but in opposite direction since electron carries negative charge

!"#$%&& = (−*)," −-. /-/

= *,"-. /-/

,": electron diffusion coef. [cm2/s]

!"#$%&& : [A/cm2]

• In Si, – Dn = 35 cm2/s – Dp = 12 cm2/s

Electron Diffusion

Page 19: EE105 Microelectronic Devices and Circuitsinst.eecs.berkeley.edu/~ee105/sp19/lectures/Module... · Energy Band Diagram of Various Materials BoltzmannDistribution off c EET d krs BoltzmannConse

19

Einstein Relationship

Dn

µn

=Dn

µn

=VT =kTq

VT : Thermal voltageAt room temperature, VT = 26 mV

Proof: Total electron current:

Jn = Jn−drift + Jn−diff = qn(x)µnE + qDndn(x)dx

E = − dφdx

, φ : potential

n(x) = n0e−

(−qφ )kT = n0e

φVT : Boltzmann distribution

In equilibrium, no net current flow

⇒ qn(x)µnE + qDndn(x)dx

= 0

n(x)µnE +Dndn(x)dφ

dφdx

= 0

n(x)µnE +Dn1VTn(x)

#

$%

&

'( −E( ) = 0

Dn

µn

=VT