80
EDIT 2011 Basic Electronics X.Llopart R.Ballabriga Basic Electronics EDIT2011 1

EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

  • Upload
    others

  • View
    7

  • Download
    1

Embed Size (px)

Citation preview

Page 1: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

EDIT  2011  Basic  Electronics  

X.Llopart  R.Ballabriga  

Basic  Electronics  -­‐  EDIT2011   1  

Page 2: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Outline  

•  Digital  and  Analog  Domains  •  Analog  Circuits  – Analog  electronics  design  tools  – Circuits  with  passive  components  – Circuits  using  acEve  components  

•  DifferenEal  amplifier      

•  Digital  Circuits  

Basic  Electronics  -­‐  EDIT2011   2  

Page 3: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Signals:  Analog  vs  Digital  

t  

f(t)  

t  

g(t)  

•  The  magnitude  of  an  analog  signal  can  take  on  any  value  

•  The  amplitude  of  an  analog  signal  exhibits  a  conEnuous  variaEon  over  its  range  of  acEvity  

•  An  alternaEve  form  of  representaEon  is  that  of  a  sequence  of  numbers,  each  number  represenEng  the  signal  magnitude  at  an  instant  of  Eme  

•  The  resulEng  signal  is  called  digital  signal    

Basic  Electronics  -­‐  EDIT2011   3  

Page 4: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Mixed-­‐mode  circuits:  Analog  and  digital  

•  Although  the  digital  processing  of  signals  is  present  everywhere  there  are  many  signal  -­‐processing  funcEons  that  are  best  performed  by  analog  circuits  

•  Many  electronic  systems  include  both  analog  and  digital  parts:    Mixed-­‐Signal  or  mixed-­‐mode  design  

 

Timepix  pixel  schemaEc  and  layout  (2006)  Basic  Electronics  -­‐  EDIT2011   4  

Page 5: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Analog  Circuits  

t  

f(t)  

Basic  Electronics  -­‐  EDIT2011   5  

Page 6: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

IntroducEon  to  analog  electronics  •  Analog  electronics  design  tools:  

–  Kirchoff’s  current  and  voltage  Law  (KCL  and  KVL)  –  SuperposiEon  Theorem  –  Thevenin  and  Norton  Theorem  –  The  Decibels  –  Frequency  domain  (Fourier  theorem  (jw)  è  Laplace(π)  )    

•  Electronics  analog  circuits  building  components:  –  Passives  components:  

•  Resistors  •  Capacitors  •  Inductors  

–  AcEve  components:  •  Diodes  •  Transistors  •  OperaEonal  Amplifier  

Basic  Electronics  -­‐  EDIT2011   6  

Page 7: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  (Kirchhoff’s  Current  Law)  

At  any  node  (juncEon)  in  an  electrical  circuit,  the  sum  of  currents  flowing  into  that  node  is  equal  to  the  sum  of  currents  flowing  out  of  

that  node.    

i1(t)

i2(t) i4(t)

i5(t)

i3(t)

∑=

=n

jj ti

10)(

Basic  Electronics  -­‐  EDIT2011   7  

Page 8: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KVL  (Kirchhoff’s  Voltage  Law)  

The  directed  sum  of  the  electrical  potenEal  differences  (voltage)  around  any  closed  circuit  is  zero.    

0)(1

=∑=

n

jj tv

v1(t)

+ + –

v2(t) v3(t)

+ –

Basic  Electronics  -­‐  EDIT2011   8  

Page 9: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

+

Vout

1kΩ

1kΩ

1kΩ

V1 V2 + –

+ –

+

V’out

1kΩ

1kΩ

1kΩ

V1 +

V’’out

1kΩ

1kΩ

1kΩ

V2 + + –

+ –

SuperposiEon  Theorem  

Basic  Electronics  -­‐  EDIT2011   9  

Page 10: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

V’out  =  V1/3  V’’out  =  V2/3  

Vout  =  V’out  +  V’’out  =  V1/3  +  V2/3    

+

V’out

1kΩ

1kΩ

1kΩ

V1 +

V’’out

1kΩ

1kΩ

1kΩ

V2 + + –

+ –

How  to  use  the  superposiEon  theorem?  

Basic  Electronics  -­‐  EDIT2011   10  

Page 11: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Thevenin’s  theorem  

•  Thevenin’s  theorem  states  that  any  two-­‐terminal,  resisEve  circuit  can  be  replaced  with  an  equivalent  circuit  formed  by  an  ideal  voltage  (Voc)  source  an  a  serial  resistor  (Rth)  

Circuit  with  independent  sources  

RTh

Voc

Thevenin  equivalent  circuit  

+ –

A   A  

B  B  

Basic  Electronics  -­‐  EDIT2011   11  

Page 12: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Norton’s  theorem  

•  Norton’s  theorem  states  that  any  two-­‐terminal,  resisEve  circuit  can  be  replaced  with  an  equivalent  circuit  formed  by  an  ideal  current  source  (Isc)  and  a  parallel  resistor  (Rth)  

Circuit  with  independent  sources  

Norton  equivalent  circuit  

A  

B  

RTh Isc

Basic  Electronics  -­‐  EDIT2011   12  

Page 13: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  Decibels  (dB)    •  The  decibels  (dB)  is  a  power  (or  voltage)  logarithmic  relaEonship  •  Very  useful  when  we  work  with  signals  of  with  different  order  of  

magnitude  

•  Example:  If  the  transmiing  power  of  a  mobile  phone  staEon  is  80W.  If  a  mobile  phone  receives  0.000  000  002W,  the  power  relaEonship  is  of  106dB  

Basic  Electronics  -­‐  EDIT2011   13  

P1P2 dB

=10 log P1P2 lin

!

"##

$

%&&

V1V2 dB

=10 log V12 'RLOAD

V22 'RLOAD lin

!

"##

$

%&&= 20 log

V1V2 lin

!

"##

$

%&&

Page 14: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Frequency  spectrum  of  signals  Fourier’s  Theorme  

•  An  extremely  useful  characterizaEon  of  a  Signal,  and  for  that  maker  of  any  arbitrary  funcEon  of  Eme,  is  in  terms  of  its  frequency  spectrum  

•  The  Fourier  series  allows  us  to  express  a  given  periodic  funcEon  of  Eme  as  the  sum  of  an  infinite  number  of  sinusoids  whose  frequencies  are  harmonically  related  

•  For  example,  a  periodic  square  wave  in  Eme.  Can  we  represent  it  as  a  sum  of  sinus  and  cosinus?  

Basic  Electronics  -­‐  EDIT2011   14  

Page 15: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Fourier’s  Theorem:    RepresentaEon  of  an  square  signal  (1)  

2 4 6 8 10

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1 Using  3  harmonics  of  the  fundamental  frequncy  

v t( ) = 4V!(sin" ot +

13sin3" ot +

15sin5" ot +...)

Basic  Electronics  -­‐  EDIT2011   15  

Page 16: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

2 4 6 8 10

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Fourier’s  Theorem:    RepresentaEon  of  an  square  signal  (2)  

Using  5  harmonics  of  the  fundamental  frequncy  

v t( ) = 4V!(sin" ot +

13sin3" ot +

15sin5" ot +...)

Basic  Electronics  -­‐  EDIT2011   16  

Page 17: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

2 4 6 8 10

-1

-0.5

0.5

1

Fourier’s  Theorem:    RepresentaEon  of  an  square  signal  (3)  

Using  7  harmonics  of  the  fundamental  frequncy  

v t( ) = 4V!(sin" ot +

13sin3" ot +

15sin5" ot +...)

Basic  Electronics  -­‐  EDIT2011   17  

Page 18: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Frequency  spectrum  of  a  periodic  square  wave  

Basic  Electronics  -­‐  EDIT2011   18  

Page 19: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  Eme  and  frequency  domains  of  a  non-­‐periodic  signal  

Basic  Electronics  -­‐  EDIT2011   19  

Page 20: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Difference  Fourier  vs  Laplace  •  Fourier  is  a  subset  of  Laplace.  Laplace  is  a  more  generalized  transform  

•  Fourier  is  used  primarily  for  steady  state  signal  analysis  

•  Laplace  is  used  for  transient  signal  analysis  

•  Laplace  is  good  at  looking  for  the  response  to  pulses,  step  funcEons,  delta  funcEons,  while  Fourier  is  good  for  conEnuous  signals.  

Basic  Electronics  -­‐  EDIT2011   20  

F(s) = L{ f (t)} = e!s"t f (t)dt0

#

$s =! + jw

Page 21: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Why  the  analysis  in  frequency?    

)()()( tvtHtv inout ∗=

SYSTEM

( ) τττ dtvHtv inout ∫∞

∞−

−= )()(

)()()( tvtHtv inout ∗=

SYSTEM

( ) τττ dtvHtv inout ∫∞

∞−

−= )()(

LL L-1L-1

LAPLACE DOMAIN s

sVin1)( =LAPLACE

DOMAIN ssVin

1)( =)()()( sVsHsV inout ⋅=

sRCsH

+=11)(

)()()( sVsHsV inout ⋅=

sRCsH

+=11)( sRCs

sVout +⋅=111)(

OUTPUT

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4 5 6 7 8

Time [s]

Volta

ge [V

]

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

−RC

out ettv1

1)(1)(

OUTPUT

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4 5 6 7 8

Time [s]

Volta

ge [V

]

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

−RC

out ettv1

1)(1)(

INPUT

TIME DOMAIN

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4 5 6 7 8

Time [s]

Volta

ge [V

]

)(1)( ttvin =

INPUT

TIME DOMAIN

0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4 5 6 7 8

Time [s]

Volta

ge [V

]

)(1)( ttvin =

Much  easier  calculaEon  !!!  

Basic  Electronics  -­‐  EDIT2011   21  

Page 22: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Electronic  Passive  Components  

v t( ) = 1C

i t( )! dt

Impedance: Z = VI=

1j!C

=1sC

[F]

v t( ) = i t( ) !R

Impedance: Z = VI= R ["]

v t( ) = Ldi t( )dt

Impedance: Z = VI= j!L = sL [H]

Basic  Electronics  -­‐  EDIT2011   22  

Page 23: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Why  we  work  using  impedances    •  The  impedance  depends  on  frequency  (w=2πf)  •  The  impedance  is  onen  a  complex  number  •  Working  using  impedances  helps  us  to  work  using  tools  to  

solve  DC  circuits  

Z2

Z1

Vin Vout21

2

ZZZ

VV

in

out

+=

Basic  Electronics  -­‐  EDIT2011   23  

Page 24: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

High-­‐pass  type  Filter  •  The  transfer  funcEon  

•  At  high  frequencies  –  Vout/Vin  ≈1  

•  At  low  frequences  –  Vout/Vin  ≈0  

jRCCj

R

RZZ

ZVV

CR

R

in

out

ωω11

11

−=

+=

+=

jRCCj

R

RZZ

ZVV

CR

R

in

out

ωω11

11

−=

+=

+=

R

C

Vin Vout

jRCCj

R

RZZ

ZVV

CR

R

in

out

ωω11

11

−=

+=

+=

Basic  Electronics  -­‐  EDIT2011   24  

Page 25: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

High-­‐pass  type  Filter  •  Gain  

( )lindB GainGain log20=

RCfc π2

1=

( )211

1

⎟⎠

⎞⎜⎝

⎛+

=

CR

VinVout

ω

ω

21

111

1=

+=

=RC

VinVout

ω

R

C

Vin Vout

Gain  @  -­‐3dB  

Corner  frequency  or  break  frequency  (fc):  

 Frequency  at  which  the  impedance  of  the  Resistor  equals  the  impedance  of  the  Capacitor  (@-­‐3dB)  

Basic  Electronics  -­‐  EDIT2011   25  

Page 26: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

High  pass  filter  Bode  plot  

asymptotes  

Basic  Electronics  -­‐  EDIT2011   26  

Page 27: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

vin(t) vout(t)C

R

A  low  pass-­‐filter    

Basic  Electronics  -­‐  EDIT2011   27  

Page 28: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Singe-­‐Time-­‐constant  networks  

Basic  Electronics  -­‐  EDIT2011   28  

Page 29: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

AcEve  components  →  Op-­‐Amp  •  Diodes  and  transistors  are  the  discrete  building  acEve  components  in  all  

modern  (>1960)  electronic  circuits  •  OperaEonal  Amplifier  (Op  Amps)  are  the  basic  components  used  to  build  

analog  circuits  •  The  name  “operaEonal  amplifier”  comes  from  the  fact  that  they  were  

originally  used  to  perform  mathemaEcal  operaEons  such  as  integraEon  and  differenEaEon.  

•  Integrated  circuit  fabricaEon  techniques  have  made  high-­‐performance  operaEonal  amplifiers  very  inexpensive  in  comparison  to  older  discrete  devices.  

Basic  Electronics  -­‐  EDIT2011   29  

Page 30: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Ideal  OperaEonal  Amplifiers  

Output  (Vout)  

InverBng  input  (V-­‐)  

•  Output  is  proporEonal  to  the  difference  between  the  non-­‐inverEng  and  inverEng  inputs  

•  AcEve  device!  requires  power  to  work,  even  though  power  connecEons  onen  not  shown  

Non-­‐InverBng  input  (V+)  

Basic  Electronics  -­‐  EDIT2011   30  

Vout = A ! (V+ "V" )

Page 31: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Op-­‐Amp  with  power  connecEons  

Output  

InverBng  input  

Non-­‐InverBng  input  

Vsupply+  

Vsupply-­‐  

Basic  Electronics  -­‐  EDIT2011   31  

UA741  (General  purpose  Op-­‐Amp)  

Page 32: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

OperaEonal  amplifier  supply  voltage  rules  

•  Vsupply+  is  the  posiEve  supply.  

•  Vsupply-­‐  is  the  negaEve  supply.  

•  In  a  single  supply  op  amp,  the  negaEve  supply  can  be  ground.  

•  These  voltage  limits  are  also  called  rails.  

•  The  output  of  an  op  amp  can't  go  outside  the  supply  voltages  →  Rail-­‐to-­‐rail  Op-­‐Amp    

•  Single  supply  Op-­‐Amp  are  an  excepEon;  you  usually  can  usually  get  within  a  few  mV  of  the  negaEve  supply  

•  When  an  op  amp  hits  one  of  the  rails,  its  output  can  be  called  saturated,  or  we  can  say  the  op  amp  is  in  saturaEon.  

Basic  Electronics  -­‐  EDIT2011   32  

Page 33: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Amplifier  SaturaEon  

Basic  Electronics  -­‐  EDIT2011   33  

Page 34: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

(leK)  An  amplifier  transfer  characterisEc  that  shows  considerable  nonlinearity  

(right)  To  obtain  linear  operaEon  the  amplifier  is  biased  as  shown,  and  the  signal  amplitude  is  kept  small.  

Non-­‐Linear  Transfer  CharacterisEcs  and  Biasing    

Basic  Electronics  -­‐  EDIT2011   34  

Page 35: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Equivalent  circuit  of  Ideal  Op-­‐Amp  •  Sense  the  difference  between  the  voltages  signals  applied  at  

its  two  input  terminals  and  mulEplies  this  by  A  (open  loop  gain)  

•  Ideally  such  an  amplifier  has:  –  Infinite  input  impedance  (Zin)  –  0  output  impedance  (Zout)  –  Infinite  bandwidth  –  Infinite  open  loop  gain    

Basic  Electronics  -­‐  EDIT2011   35  

Page 36: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Feedback  in  amplifiers  •  Op  amps  are  rarely  used  in  the  open-­‐loop  configuraEon  →  

They  usually  use  negaEve  feedback  •  β  is  called  the  feedback  factor  and  β  (0,1)  •  It  is  the  proporEon  of  the  output  fed  back  into  the  input  •  If  it  goes  into  the  inverEng  input,  it  is  negaEve  feedback  •  If  it  goes  into  the  non-­‐inverEng  input,  it  is  posiEve  feedback  

Basic  Electronics  -­‐  EDIT2011   36  

Page 37: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

General  feedback  structure  

Basic  Electronics  -­‐  EDIT2011   37  

∑ A

β

Source Load+

-

Vs

Vf

Vε Vο A  :  Open  Loop  Gain  

           A  =  Vo  /  Vε    

β  :  feedback  factor                β  =  Vf  /  Vo  

ε

ε

ε

β

β

VAVVVV

VVVVV

o

oS

of

fs

⋅=

⋅−=

⋅=

−=

β

β

β

ββ

1 :Note

1 :feedback ofAmount :Gain Loop

)1

(11

:gain loop Close

=

⋅+

⋅=

+=

+==

∞→ACL

s

oCL

A

AAT

TT

AA

VVA

Page 38: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

But  why  negaEve  feedback  is  important?  

•  If  Aβ  >>  1  then        The  output  depends  only  on  the  feedback,  not  on  the  op  amp  characterisBcs  

•  It    can  be  demonstrated  also  that  negaEve  feedback:  –  Reduce  nonlinear  distorEon  –  Reduce  the  effect  of  noise  –  Control  the  input  and  output  impedance  –  Extend  the  bandwidth  of  the  amplifier  

•  All  of  these  properEes  can  be  achieved  by    trading  off  gain    

ββ1

10 →

+==

AA

xxAs

f

Basic  Electronics  -­‐  EDIT2011   38  

Page 39: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

NegaEve  feedback  in  Ideal  OP-­‐AMPS:  The  InverEng  ConfiguraEon  (ideal  Op-­‐Amp)  

Basic  Electronics  -­‐  EDIT2011   39  

Page 40: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Effect  of  a  Finite  Open-­‐loop  Gain  

ARR

RRVV

in

out

1/211

1/2+

+

−=

ARR

<<+121

Minimizes  the  dependence  of  the  open  loop  gain  (A)  in  the  close  loop  Gain  !  

Basic  Electronics  -­‐  EDIT2011   40  

Page 41: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Basic  OA  configuraEons:  Non-­‐inverEng  configuraEon  

VIN VOUT

R1

R2

VoutVin

=1+ R1R2

Basic  Electronics  -­‐  EDIT2011   41  

Page 42: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Basic  OA  configuraEons:  Voltage  follower  (Analog  buffer)    

•  Since  in  the  voltage-­‐follower  circuit  the  enEre  output  is  fed  back  to  the  inverEng  input,  the  circuit  is  said  to  have  100%  negaEve  feedback  

VIN VOUT Vout

Vin=1

Basic  Electronics  -­‐  EDIT2011   42  

Page 43: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Basic  OA  configuraEons:  A  Weighted  summer  

VIN1

VOUT

Rf R1

VIN2 R2

Vout = !(RfR1Vin1 +

RfR2

Vin2......)

Basic  Electronics  -­‐  EDIT2011   43  

Page 44: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

t  

v  

Analog  signal  Digital  signal  

DAC  

bn-­‐1..b0  

clk  

ref  

n  

out  

Example:  Analog  to  Digital  Converter  

•  A  Digital  to  Analog  Converter  (DAC)  generates  an  analog  output  which  corresponds  to  an  digital  input    

Basic  Electronics  -­‐  EDIT2011   44  

Page 45: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Example:  3-­‐bit  Analog  to  Digital  Converter  (II)  

Bit0

VOUT

R1

R2

Bit1

2R2

Bit2

4R2

Basic  Electronics  -­‐  EDIT2011   45  

Page 46: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Basic  OA  configuraEons:  A  difference  amplifier  

VIN2

VOUT

R2

R1

R3

R4

VIN1

12 :impedanceInput 12

34 if

)(12

21

RZinRR

RR

VVRRV ininout

=

=

−=

Basic  Electronics  -­‐  EDIT2011   46  

Page 47: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  InverEng  Integrator:  temporal  response  

Basic  Electronics  -­‐  EDIT2011   47  

Vc(t) =Vc+ 1C

ic (t)dt0

t

!

Vout (t) = "1RC

Vin (t)dt0

t

! "Vc

VIN

VOUT

C R

+ Vc - Ic

•  This  circuit  provides  an  output  voltage  that  is  proporEonal  to  the  Eme  integral  of  the  input  

•  Vc  is  the  iniEal  condiEon  of  integraEon  and  CR  the  integrator  Bme  constant  

Page 48: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  inverEng  integrator:    Frequency  response  

•  Integrator  operates  as  an  open-­‐loop  amplifier  for  DC  inputs  (w=0)  

Basic  Electronics  -­‐  EDIT2011   48  

Vout( jw)Vin( jw)

= !1

jwRC

Transfert  funcEon  (S  domain)  

Vout(s)Vin(s)

= !1sRC

Transfert  funcEon  (physical  frequencies)  

VoutVin

=1

wRC

Magnitude  

Page 49: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  inverEng  integrator:  finite  DC  response  

•  The  gain  at  DC  is  now  –Rf/R  

Basic  Electronics  -­‐  EDIT2011   49  

VIN

VOUT

C R

Rf

Vout(s)Vin(s)

= !RF / R1+ sCRF

Page 50: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

A  charge  amplifier  

Basic  Electronics  -­‐  EDIT2011   50  

IIN

VOUT

C

Rf

Vout(s)Iin(s)

= !RF

1+ sCRF

Page 51: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

A  charge  amplifier  in  HEP  

Basic  Electronics  -­‐  EDIT2011   51  

Vout(s)Iin(s)

= !RF

1+ sCRF

Page 52: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Summary  •  Analog  signals  are  representaEon  of  physical  quanEEes  

•  Different  mathemaEcal  tools  used  in  analog  circuit  design  have  been  shown  (KVL,KCL,  Fourier/Laplace…)  

•  OperaEonal  Amplifier  (Op  Amps)  are  the  basic  components  used  to  build  analog  circuits  

•  NegaEve  feedback  is  very  useful  in  order  to  desensiEze  the  OA  characterisEcs  to  affect  the  circuit  performance  

Basic  Electronics  -­‐  EDIT2011   52  

Page 53: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

DIGITAL  CIRCUITS  

Basic  Electronics  -­‐  EDIT2011   53  

Page 54: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Digital  Circuits  

•  It  is  an  electronic  subsystem  which  operates  enErely  on  numbers  (using,  for  instance,  binary  representaEon)  

1-­‐bit    Adder  

a  

b  

sum  

carry  

a b sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Basic  Electronics  -­‐  EDIT2011   54  

Page 55: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Encoding  of  Digital  Signals  •  We  use  binary  digits  

–  Two  values:  {0  ,  1}  •  PosiEonal  system  •  Encoded  by  two  voltage  levels  

–   +1.5  V  →  1    ,    0  V  →  0    

 

+1.5  V  

+1.5  V  0  V  

5  →  101  +1.5  V  

0  V  

threshold  

0  

1  

noise  margin  

Basic  Electronics  -­‐  EDIT2011   55  

Page 56: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Why  binary  Digital?  

•  Digital  signals  are  easy  and  cheap  to  store    •  Digital  signals  are  insensible  to  noise  •  Boolean  algebra  can  be  used  to  represent,  manipulate,  minimize  logic  funcEons  

•  Digital  signal  processing  is  easier  and  relaEvely  less  expensive  than  analog  signal  processing  

Basic  Electronics  -­‐  EDIT2011   56  

Page 57: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Digital  RepresentaEon  of  Analog    Signals  

•  Problem:  represent  f(t)  using  a  finite  number  of  binary  digits  

•  Example:  A  key  stroke  using  6  bits  –  Only  64  possible  values,  hence  not  all  values  can  be  represented  

•  QuanEzaEon  error:  due  to  finite  number  of  digits  •  Time  sampling:  Eme  is  conEnuous  but  we  want  a  finite  sequence  of  numbers  

Basic  Electronics  -­‐  EDIT2011   57  

Page 58: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Digital  RepresentaEon  of  Analog  Signals  

t  

f(t)   Dynamic  Range:  [-­‐30,30]  µV  Precision:  5  µV  

t  

Sampling  

0000  0001  0010  0011  0100  0101  0110  0111  1000  1001  1010  1011  1100  

-­‐5µV  -­‐10µV  -­‐15µV  -­‐20µV  -­‐25µV  -­‐30µV  

QuanBzaBon  1011  0100  0101  0110  0001  0010  1001  1100  0100  0011  0010  0011  

Result  

Basic  Electronics  -­‐  EDIT2011   58  

Page 59: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Digital  RepresentaEon  of  Logic  FuncEons  

•  Boolean  Algebra:  – Variables  can  take  values  0  or  1  (true  or  false)  – Operators  on  variables:    

•  a  AND  b                                          a·∙b  •  a  OR  b                                              a+b                      •  NOT    b                                                ~b  

•  Any  logic  expression  can  be  built  using  these  basic  logic  funcEons  

•  Example:  exclusive  OR  

Basic  Electronics  -­‐  EDIT2011   59  

Page 60: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Summary  •  Analog  signals  are  representaEon  of  physical  quanEEes  

•  Digital  signals  are  less  sensible  to  noise  than  analog  signals  

•  Digital  signals  can  represent  analog  signals  with  arbitrary  precision  (at  the  expense  of  digital  circuit  cost)  

•  Boolean  algebra  is  a  powerful  mathemaEcal  tool  for  manipulaEng  digital  circuits  

Basic  Electronics  -­‐  EDIT2011   60  

Page 61: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Recommended  references  

Basic  Electronics  -­‐  EDIT2011   61  

Page 62: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Apendix  

CalculaEon  using  KCL  of  InverEng  OA  

Basic  Electronics  -­‐  EDIT2011   62  

Page 63: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  Basic  InverEng  Amplifier  

Basic  Electronics  -­‐  EDIT2011   63  

–  

+  Vin  +  

–  

Vout  

R1  

R2  

+  –  

Page 64: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Consequences  of  the  Ideal  OA  

•  Infinite  input  resistance  means  the  current  into  the  inverEng  input  is  zero:  

   i-­‐  =  0  

•  Infinite  gain  means  the  difference  between  v+  and  v-­‐  is  zero:  

   v+  -­‐  v-­‐  =  0  

Basic  Electronics  -­‐  EDIT2011   64  

Page 65: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Solving  the  Amplifier  Circuit  

•  Apply  KCL  at  the  inverEng  input:  

•  i1  +  i2  +  i-­‐=0  

Basic  Electronics  -­‐  EDIT2011   65  

–  

R1  

R2  

i1   i-­‐  

i2  

Page 66: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  

Basic  Electronics  -­‐  EDIT2011   66  

0=−i

111 R

vRvvi inin =

−= −

222 R

vRvvi outout =

−= −

Page 67: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Solve  for  vout  

•  Amplifier  gain:  

Basic  Electronics  -­‐  EDIT2011   67  

21 Rv

Rv outin −=

1

2

RR

vv

in

out −=

Page 68: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Recap  

•  The  ideal  op-­‐amp  model  leads  to  the  following  condiEons:  

•  i-­‐  =  0  =  i+  •  v+  =  v-­‐  •  These  condiEons  are  used,  along  with  KCL  and  other  analysis  techniques,  to  solve  for  the  output  voltage  in  terms  of  the  input(s).  

Basic  Electronics  -­‐  EDIT2011   68  

Page 69: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Where  is  the  Feedback?  

Basic  Electronics  -­‐  EDIT2011   69  

–  

+  Vin  +  

–  

Vout  

R1  

R2  

+  –  

Page 70: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Review  

•  To  solve  an  op-­‐amp  circuit,  we  usually  apply  KCL  at  one  or  both  of  the  inputs.  

•  We  then  invoke  the  consequences  of  the  ideal  model.  – The  op  amp  will  provide  whatever  output  voltage  is  necessary  to  make  both  input  voltages  equal.  

•  We  solve  for  the  op-­‐amp  output  voltage.  

Basic  Electronics  -­‐  EDIT2011   70  

Page 71: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

The  Non-­‐InverEng  Amplifier  

Basic  Electronics  -­‐  EDIT2011   71  

+  

–  

vin  

+  

–  

vout  

R1  

R2  

+  –  

Page 72: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  at  the  InverEng  Input  

Basic  Electronics  -­‐  EDIT2011   72  

+  

–  

vin  

+  

–  

vout  

R1  

R2  

i-­‐  

i1   i2  

+  –  

Page 73: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  

Basic  Electronics  -­‐  EDIT2011   73  

0=−i

111 R

vRvi in−

=−

= −

222 R

vvRvvi inoutout −

=−

= −

Page 74: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Solve  for  Vout  

Basic  Electronics  -­‐  EDIT2011   74  

021

=−

+−

Rvv

Rv inoutin

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

1

21RRvv inout

Page 75: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

A  Mixer  Circuit  

Basic  Electronics  -­‐  EDIT2011   75  

–  

+  v2  +  

–  

vout  

R2  

Rf  R1  

v1  

+  –  

+  –  

Page 76: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  at  the  InverEng  Input  

Basic  Electronics  -­‐  EDIT2011   76  

–  

+  v2  +  

–  

vout  

R2  

Rf  R1  

v1  

i1  

i2  

if  

i-­‐  

+  –  

+  –  

Page 77: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  

Basic  Electronics  -­‐  EDIT2011   77  

1

1

1

11 R

vRvvi =

−= −

2

2

2

22 R

vRvvi =

−= −

Page 78: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

KCL  

Basic  Electronics  -­‐  EDIT2011   78  

0=−i

f

out

f

outf R

vRvvi =

−= −

Page 79: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Solve  for  Vout  

Basic  Electronics  -­‐  EDIT2011   79  

02

2

1

1 =++f

out

Rv

Rv

Rv

22

11

vRR

vRR

v ffout −−=

Page 80: EDIT%2011% Basic%Electronics%Outline% • Digital%and%Analog%Domains% • Analog%Circuits% – Analog%electronics%design%tools% – Circuits%with%passive%components%

Basic  Electronics  -­‐  EDIT2011   80