70
ATLCE - D4 16/04/2016 © 2016 DDC 1 16/04/2016 - 1 ATLCE - D4 - © 2016 DDC Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing filter » Multiplexer » Sample/Hold AY 2015-16

Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

  • Upload
    others

  • View
    38

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 1

16/04/2016 - 1 ATLCE - D4 - © 2016 DDC

Politecnico di TorinoElectronic Eng. Master Degree

Analog and Telecommunication Electronics

D4 - Signal conditioning

» Protection circuits» Amplifiers » Anti-aliasing filter» Multiplexer» Sample/Hold

AY 2015-16

Page 2: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 2

16/04/2016 - 2 ATLCE - D4 - © 2016 DDC

Lesson D4: signal conditioning

• Overall conversion system design • Signal conditioning

– Protection circuits– Anti-aliasing filters (parameters)– Multiplexer– Sample/Hold circuits, – Sampling jitter noise

• Total system error (ENOB)– Other parameters: SFDR, SINAD, THD

• References:– Elettronica per Telecom.: 4.1.7 Filtro anti-Alias; 4.4 Circuiti S/H– Design with Op Amp …: 9.7 S/H amplifiers

Page 3: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 3

16/04/2016 - 3 ATLCE - D4 - © 2016 DDC

A/D/A system block diagram

P

protezione

Conditioning

Protection

Acquisition

DAC chain

ADC chain

Page 4: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 4

16/04/2016 - 4 ATLCE - D4 - © 2016 DDC

Complete ADC chain

• Input protection circuits– Block signals which may damage the other circuits

• Amplifier – Make signal level compatible with ADCF input range– Optimize SNRq

• Anti-alias filter– Makes signal bandwidth compatible with sampling rate

• Multiplexer (for multiple channel systems)• Sample/Hold or Track Hold

– Sampling (discretize in the time axis)

• A/D Converter – Quantization (discretize in the amplitude axis)

Page 5: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 5

16/04/2016 - 5 ATLCE - D4 - © 2016 DDC

Multiple channel system

Control signals

Page 6: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 6

16/04/2016 - 6 ATLCE - D4 - © 2016 DDC

Input protection circuits

• Signal from the field:– Electrostatic charges– EMI, noise– Direct contacts (unplanned)

• Need to limit input voltage within safe limits, to avoid damage to the system

• Input protection circuits– Diode clamp– Special devices (zener diodes, varistor, …)

Page 7: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 7

16/04/2016 - 7 ATLCE - D4 - © 2016 DDC

Input operating range

• The safe (no damage) input range ViMAX - ViMINdepends from the power supply Val.

• With power off, Val = 0 !!

ViMIN

V

ViMAX VAL+

VAL-

Page 8: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 8

16/04/2016 - 8 ATLCE - D4 - © 2016 DDC

Amplitude limiter

• A unit with nonlinear (clipping) transfer function limits input voltage between Vmax and Vmin

V’i

Vi

Vmax

Vmin

Vmax

Vmin

Page 9: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 9

16/04/2016 - 9 ATLCE - D4 - © 2016 DDC

Amplitude limiting circuit

• Clamp towards power supply– VOUT limited between Val+ and Val-

• Zener diodes to GND– VOUT limited to zener voltage

• Specific devices– VOUT limited by V(I) of Z

• In all circuits, the resistance R limits the input currentwhen the protection is active

VAL+

VIN

VAL-

VOUT

VIN

GND

VOUT

VIN

GND

VOUTZ

Page 10: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 10

16/04/2016 - 10 ATLCE - D4 - © 2016 DDC

Test: design of protection circuit

• Design R for a Zener protection circuit with the following specs:

– protection from contacts towards ± 500 V, any duration– maximum zener power dissipation 5 W

• Evaluate value and power of R

VIN

GND

VOUT

Page 11: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 11

16/04/2016 - 11 ATLCE - D4 - © 2016 DDC

Lesson D4: signal conditioning

• Protection circuits

• Differential and instrumentation amplifiers

• Anti-aliasing filters (parameters)

• Multiplexer

• Sample/Hold circuits– Parameters– Basic circuits

• Total system error (ENOB)

Page 12: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 12

16/04/2016 - 12 ATLCE - D4 - © 2016 DDC

ADC input dynamic

• The A/D converter has an input dynamic range

– unipolar: 0 ... S, 0 … 5 V, 0 … 10 V

– bipolar: -S/2 … + S/2 -5 … + 5 V, -10 … +10 V

• To get maximum SNRq the signal must fill all the usable input dynamic range

– amplifier (o attenuator)

– level shifter (bipolar/unipolar)

– Match signal level to system (ADC) dynamic range

Page 13: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 13

16/04/2016 - 13 ATLCE - D4 - © 2016 DDC

Signal types

• The ADC accepts specific signal types– voltage or current (V/I)– single ended or differential (S/D)

• The unit which matches the dynamic range and the signal type is the

conditioning amplifier

• Many configurations:– V→V, V→I, I→I, I→V– S→S, S→D, D→S, D→D

– 16 choices + gain !

Page 14: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 14

16/04/2016 - 14 ATLCE - D4 - © 2016 DDC

Voltage amplifier

• Single-ended voltage amplifier

– Op. Amp. With feedback

– high Zi» Rs does not

affect AV

» low Ru» Rc does not

affect AV

R2

R1

Ad

VI

-

+

VU

Vd

VS

RsRc

VE

1RR

VVA

2

1

I

UV

Page 15: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 15

16/04/2016 - 15 ATLCE - D4 - © 2016 DDC

Transresistance amplifier

• Current-to-voltage converter

A.O.

II-

+VU

RMIM

I-

Vd

MIU RIV

II

Page 16: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 16

16/04/2016 - 16 ATLCE - D4 - © 2016 DDC

Single-ended and differential signals

noise (common mode)

Differentialsignal

Differential signal

single-endedsignal noise

Signal + noise

Page 17: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 17

16/04/2016 - 17 ATLCE - D4 - © 2016 DDC

Differential signals

• Differential signals are protected from common mode noise

• Differential signals do not emit noise

• Some transducers have differential outputs

• Fast A/D converters operate with differential input signals

• To handle differential signals:– Single-ended / differential converters– Differential amplifiers– Instrumentation amplifiers

Page 18: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 18

16/04/2016 - 18 ATLCE - D4 - © 2016 DDC

Common mode rejection

• A differential amplifier must :

– Amplify differential signals by a known amount AD

– Keep common mode signals at a low level: low AC ( 0)

• The key parameter is the AD/AC ratio– AD/AC CMRR (Common Mode Rejection Ratio)– Ideal: CMRR

Page 19: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 19

16/04/2016 - 19 ATLCE - D4 - © 2016 DDC

Differential and common mode signals

• VU = A1 V1 - A2 V2 = ADVD + ACVC

• VU = AD (V1-V2) + AC (V1+V2)/2

• VD = V1 - V2 VC = (V2 + V1)/2

• V1 = VC + VD/2 V2 = VC - VD/2

• VU = (AD + AC/2)V1 - (AD - AC/2)V2

• AD = (A1 + A2)/2

• AC = A1 - A2

• Differential amplifier:AC = 0, therefore A1 = A2

V1

-+

VU

V2

VD/2

VC

VD/2AD, ACA1, A2

Page 20: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 20

16/04/2016 - 20 ATLCE - D4 - © 2016 DDC

Differential amplifier

AC = Vu/VC = 0

Zero common mode gain.

AD = Vu/VD

= -R3/R1

The circuit amplifies only differential signals

CMRR

2R4R

1R3R

R2 AO

V1

-

+

R3

R1

V2R4

VD/2VC

VD/2

VU

AD, ACA1, A2

Page 21: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 21

16/04/2016 - 21 ATLCE - D4 - © 2016 DDC

Effects of source impedance Rs

• Functional specification:– Differential amplifier with high CMRR

• Real-world transducers have equivalent resistance Rs– If Rs1 ≠ Rs2, no symmetry in “classic” differential amplifier– A purely common signal (Vs1 = Vs2) generates a differential

component, which is amplified

Worse CMRR

– Need for high Zi, to remove effects of Rs unbalance – Add voltage followers at both inputs

• Merge VF to get gain, reduce offset, lower noise

– instrumentation amplifier

Page 22: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 22

16/04/2016 - 22 ATLCE - D4 - © 2016 DDC

Standard differential amplifier

R2 AO

V1

-

+

VU

R3R1

V2R4

Rs1

Rs2VS1

VS2

ZI1

ZI2

1R1Rs1RVV

1RZ

1S1

1I

4R2R2Rs4R2RVV

4R2RZ

2S2

2I

If Rs1 ≠ Rs2, gains are no longer balanced

A common mode signal (Vs1 = Vs2) becomes differential (V1≠ V2) and is amplified.

Worse Common Mode Rejection (CMRR)

Page 23: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 23

16/04/2016 - 23 ATLCE - D4 - © 2016 DDC

Symmetric input impedance

• Voltage followers increase input impedance

– A = 1– high Ri– low Ru

– This circuit provides high Zi on both inputs;no partition of Vs with Rs

– Balanced for any value of Rs

DA2R4R

1R3R

R2 AO

V’1-

+

R3

R1

V’2R4

Rs1

VS1

Rs2

VS2

-+

-+

V1

V2

Page 24: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 24

16/04/2016 - 24 ATLCE - D4 - © 2016 DDC

Instrumentation amplifier

• Moving gain into the first stage reduces total noise and offset

2R4R

1R3R

16R5R2)VV(

'V'V

5R7R

12

12

R2 AO

V’1-+

R3

R1

V’2 R4

-+

-+

R6 R5R7

V1

V2

VU

131

65212 R

RRR)VV(VU

Page 25: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 25

16/04/2016 - 25 ATLCE - D4 - © 2016 DDC

From single-ended to differential

• Two amplifiers with the same |Av|

– Inverting: Av = - R2/R1– Noninverting: Av = R3/R4 + 1

– Vu = Vs(R3/R4 +1 -R2/R1)

• Problems:– Different delay in the two paths– Requires many precise R

• Better solution:– Fully differential circuits Op. Amp. with differential output

-+

VU

R2

R3

VS

-+

R1

R4

Page 26: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 26

16/04/2016 - 26 ATLCE - D4 - © 2016 DDC

Fully differential amplifier

• High frequency A/D conversion (RF band 120 MHz)

• From “Op Amps for everyone”, Texas Instruments, SLOD006B

Page 27: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 27

16/04/2016 - 27 ATLCE - D4 - © 2016 DDC

Lesson D4: signal conditioning

• Protection circuits

• Differential and instrumentation amplifiers

• Anti-aliasing filters (parameters)

• Multiplexer

• Sample/Hold circuits– Parameters– Basic circuits

• Total system error (ENOB)

Page 28: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 28

16/04/2016 - 28 ATLCE - D4 - © 2016 DDC

Anti-alias filter

• Every signal has a nominal bandwidth (where usefulninformation is contained), but inludes also outbandcomponents (noise, distortion, …)

• Even sampling within the Nyquist rule (higher than twice the bandwidth), outband signals are folded inside the useful band, and cause

Aliasing noise

• The aliasing noise depends on two parameters:

– Shape of outband spectrum

– Sampling rate

Page 29: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 29

16/04/2016 - 29 ATLCE - D4 - © 2016 DDC

Inband folding of signal spectrum

Out-band signal folded bysampling into the useful band

Quantization noise

Reconstruction filter mask

Page 30: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 30

16/04/2016 - 30 ATLCE - D4 - © 2016 DDC

Aliasing noise

• fB = useful bandwidth (also reconstruction filter bandwidth):

• fS = sampling rate:

– The signal from fB/2 to fB is folded in the useful band

aliasing noise

XS(ω)

Main spectrum (baseband) Secondary

spectra (alias)Aliasing noise: overlap of baseband and aliased spectra

ffSfBfS/2

Page 31: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 31

16/04/2016 - 31 ATLCE - D4 - © 2016 DDC

Example of aliasing noise

• Ideal signal:No outband power No aliasing

• Real signal:Outband power Some aliasing

• Amount of aliasing depends on

– Signal (outband power)

– Filter (outband attenuation)

XS(f)

f

FSFB FS/2

Folded in band noise aliasing noise

XS(f)

f

FSFB FS-FB

Page 32: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 32

16/04/2016 - 32 ATLCE - D4 - © 2016 DDC

Anti-alias filter design - simplified

• Signal/(aliasing noise) SNRA– Level of outband signal: S– Filter: Attenuation SNRA dB at fS- fB ; no attenuation at fB

• From fB to fS - fB frequency ratio R = (fS - fB)/fB– Same attenuation R by a single pole – RP attenuation if P poles (P x R(dB))

• Another approach:– A single pole: _ 6 dB/octave [20 dB/decade]– From fB to fS - fB attenuation Ap

Ap(dB) = 6 * log2 (fS- fB)/fB dB [or = 20 * log10 (fS- fB)/fB ]

• Required number of poles: P = SNRA / Ap

Page 33: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 33

16/04/2016 - 33 ATLCE - D4 - © 2016 DDC

Anti-alias filter design - complete

• Near cutoff, filters can drop faster than 20dB/dec

• The actual attenuation depends also from filter type– Bessel, Butterworth, Chebischeff, Elliptic, …

• The required number of poles can be evaluated using proper design tools

– e.g. FILTERCAD, by Linear Technology, free on website

Page 34: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 34

16/04/2016 - 34 ATLCE - D4 - © 2016 DDC

Reducing aliasing noise

• Lower outband signal level– More steep input filter (more expensive)

• Increase sampling rate Fs (oversampling)– Moves alias spectra away from baseband– Brings also higher sample rate (more expensive)

• Oversampling A/D chain– Anti alias input filter (analog, simple)– High rate sampling– Fast A/D conversion --> high bit rate– Bit rate reduction with digital filter (decimation)

• Move complexity analog digital domains

Page 35: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 35

16/04/2016 - 35 ATLCE - D4 - © 2016 DDC

Lesson D4: signal conditioning

• Protection circuits

• Differential and instrumentation amplifiers

• Anti-aliasing filters (parameters)

• Multiplexer

• Sample/Hold circuits– Parameters– Basic circuits

• Total system error (ENOB)

Page 36: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 36

16/04/2016 - 36 ATLCE - D4 - © 2016 DDC

Multiple channels system

multiplexer

Control signals

Page 37: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 37

16/04/2016 - 37 ATLCE - D4 - © 2016 DDC

Multiplexer

• Allows to use the same functional units (S/H and A/D) for several channels

• Must select one channel among N– Must not modify the selected signal– Must block other channels

• Multiplexer parameters– Equivalent series resistance Ron– Leakage current Ioff– Insulation/feedthrough– Settling time– Input range– …..

Page 38: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 38

16/04/2016 - 38 ATLCE - D4 - © 2016 DDC

Multiplexer structure

• Switches built with MOS (or CMOS) transistors• Decoding and command circuits

VU

SW Select

VIi

Page 39: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 39

16/04/2016 - 39 ATLCE - D4 - © 2016 DDC

Multiplexer error sources

• MOS switch model– ON: resistor Ron– OFF: leakage current Ioff + parallel capacitor Cds

• ON channel– Partition from Vi to Vo caused by Ron

• OFF channels– Offset caused by leakage currents of open switches– Feedthrough from other channels (through Cds)

• Dynamic parameters– Switching delay – Bandwidth (RC low-pass cells)

Page 40: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 40

16/04/2016 - 40 ATLCE - D4 - © 2016 DDC

Ron error

Only one switch is closed (ON) to select the input channel VSconnected to VU ouput.

A ON switch has anequivalent resistance RON.

From VS to VU the gain is < 1, due to the voltage divider made by the load resistance RL.

VS

RON

RL

RS

VS VU

SWRS

VU

Page 41: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 41

16/04/2016 - 41 ATLCE - D4 - © 2016 DDC

Ioff error

VS VU

IOFF

Any OFF switch has a leakage current IOFF.

The sum of all IOFF causes an offset voltage VUOFF at the output.

RON

RL

RS

VUOFF

IOFF

Only one switch is closed (ON) to select the input channel VS connected to VU ouput.All other switches are open (OFF).

Page 42: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 42

16/04/2016 - 42 ATLCE - D4 - © 2016 DDC

Frequency limit

The parasitic capacitance of multiplexer and load limit the transferred signal bandwidth.

The signal path includes the lowpass cell RON / CP .

The Cgd and Cds parasitic capacitances generate respectively pedestal and feedthrough errors (as in S/H circuits).

VU

RON

CP

RS

VS

Page 43: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 43

16/04/2016 - 43 ATLCE - D4 - © 2016 DDC

Where to place the multiplexer

• The multiplexing operation changes the signal spectrum– Example:

two DC signals become squarewave

• The mux must be placed after the filter– S/H and ADC can be used on many channels

(each sampling and conversion is independent from previous values)

– the filter cannot be used on multiple channels (keeps track of previous signal values)

Page 44: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 44

16/04/2016 - 44 ATLCE - D4 - © 2016 DDC

Lesson D4: signal conditioning

• Protection circuits

• Differential and instrumentation amplifiers

• Anti-aliasing filters (parameters)

• Multiplexer

• Sample/Hold circuits– Parameters– Basic circuits

• Total system error (ENOB)

Page 45: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 45

16/04/2016 - 45 ATLCE - D4 - © 2016 DDC

Sample-Hold unit

• Function: sample the input analog signal I(t)– Sampling at t = ts multiply input signal by δ(ts)– Keep the sample value at the output (O) as long as required for

A/D conversion: HOLD operation

t

tS1 tS2

I(t)

O(t)

Page 46: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 46

16/04/2016 - 46 ATLCE - D4 - © 2016 DDC

Track-Hold operation

• Actual circuits behavior– Before the next sampling operation the circuit must acquire the

new value– The complete sequence is

» Tracking: O(t) = I(t)» Sampling: O = I(ts)» Hold: O(t) = I(ts)» New tracking

t

tS1 tS2

I(t)

O(t)

Page 47: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 47

16/04/2016 - 47 ATLCE - D4 - © 2016 DDC

Track-Hold operation sequence

• Track

• Sample

• Hold

• Acquisition

– output = input

– reading the analog signal value– transition from Track to Hold

– constant output, corresponding to sampled value– the ADC operates during this phase

– transition from Hold to Track

tracktrack

hold

hold

samplesampleAcq.

Acq.

Page 48: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 48

16/04/2016 - 48 ATLCE - D4 - © 2016 DDC

Basic Circuit: Track and Hold state

• The Sample/Hold is an analog memory– capacitor – switch

• Track: SW ON

• Hold: SW OFF

T H TT H

Page 49: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 49

16/04/2016 - 49 ATLCE - D4 - © 2016 DDC

Tracking phase

• During tracking Vu = Vi: – The S/H is a unity-gain amplifier (or K-gain)

• Static errors– Gain, offset, – (nonlinearity)

• Dynamic parameters and errors– Bandwidth

» Defines signal which can be tracked– Settling time

» Depends on Slew Rate & required precision» Non-linear behavior

Page 50: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 50

16/04/2016 - 50 ATLCE - D4 - © 2016 DDC

Tracking: gain error

• Partition of Vi between Rg/Ron and RL– Gain error

• Lowpass RC cell – Bandwidth limit– Settling time for transient response– Offset, nonlinearity, …

RON

Page 51: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 51

16/04/2016 - 51 ATLCE - D4 - © 2016 DDC

Tracking: step response

• Step Vi input• Output Vo with II order transient

Settling time

Steady state error

Page 52: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 52

16/04/2016 - 52 ATLCE - D4 - © 2016 DDC

Sampling transient errors

• Time error– Delay in SW opening aperture delay: tA– Delay changes aperture jitter: tJA

– Sampling jitter: ΔVJA = tJA* SRmax

– TH settling time tS

• Amplitude errors:– Pedestal:

charge injectionthrough the SWΔVP = ΔVc Cp/(Cp+Cm)

Track Hold

Settlingtime tS

∆VJA

tJA

tA

< quantizationerror

∆VP

∆VC

ADC can start here

Page 53: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 53

16/04/2016 - 53 ATLCE - D4 - © 2016 DDC

Sampling jitter

• The SH transition occurs after an aperture delay TA

• TA is not constant; is affected by a noise:– TJ sampling jitter

• The sampling jitter causes an amplitude error V = TJ * max slew rate with sine signal: V = TJ ω V = TJ ω S/2

• With full scale sine signal at ω = 2 п FA:

– SNRj = Ps/Pj = (S2/8)/(TJ ω S/2)2/12 [sine/triangle distribution]

– SNRj = 1.5 (TJ п FA)-2 1.76 – 20 log10(TJ п FA) (dB)

Page 54: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 54

16/04/2016 - 54 ATLCE - D4 - © 2016 DDC

Sampling jitter: example

• Sampling jitter is caused by switch command noise and clock jitter

– A critical parameter for digital radio systems– To be evaluated independently from sampling rate

• Numeric example: max TJ to sample 300 MHz signal with SNRj = 82 dB ?

– SNRj = 1.76 – 20 log10(TJ п FA) = 82 dB

– 20 log10(TJ п FA) ≈ -80 dB

– log10(TJ п FA) = -4 TJ п FA = 10-4

– TJ = 10-4 / п 300 MHz

– TJ = 10-4 ns = 0.1 ps (100 fs)

Page 55: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 55

16/04/2016 - 55 ATLCE - D4 - © 2016 DDC

Sampling: pedestal error

• Partition of the Gate command signal between Cc and Cm

– Pedestal error

ΔVp = ΔVc Cc/(Cc+Cm)

CC

Page 56: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 56

16/04/2016 - 56 ATLCE - D4 - © 2016 DDC

Pedestal compensation

• Switch built with complementary MOS devices

Compensation of pedestal errora) Complementary

transistorb) Dummy device

Page 57: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 57

16/04/2016 - 57 ATLCE - D4 - © 2016 DDC

Basic circuit: hold errors

• The charge stored on the capacitor changes– Decay error

• Poor isolation of input signal– Feedthrough error

• Dielectric polarization

– Slow change of stored voltage(long term effect)

DecayIdeal Hold

Decay and feedthrough

Page 58: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 58

16/04/2016 - 58 ATLCE - D4 - © 2016 DDC

Decay error

• Switch OFF: Vo(t) = V’i(ts)

– Output = voltage previously stored on the capacitor

• The capacitor discharges through RL and IOFF (leakage)– Decay error

Page 59: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 59

16/04/2016 - 59 ATLCE - D4 - © 2016 DDC

Feedthrough error

• Switch OFF: Vo(t) = V’i(ts)

– Output = voltage previously stored on the capacitor

• Input signal partitioned between Cp and Cm– Feedthrough error

CP

Page 60: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 60

16/04/2016 - 60 ATLCE - D4 - © 2016 DDC

Acquisition

• The output reaches the input (within the specified precision) after the acquisition time Tacq

• Depends on – bandwidth– slew rate

SH

S H

Acquisition time

Error band

Page 61: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 61

16/04/2016 - 61 ATLCE - D4 - © 2016 DDC

Error handling

• Decay– Increase Cm– Isolate load

• Pedestal – Low parasitics– Increase Cm– Compensate with opposite sign pedestal

• Feedthrough– Low parasitics– Increase Cm

• Gain and offset– Use feedback circuits

Page 62: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 62

16/04/2016 - 62 ATLCE - D4 - © 2016 DDC

Pedestal, feedthrough, Hold capacitor

• Feedthrough: partition of Vi between CDS and Cm

• Pedestal: partition of Vg between CGD and Cm

• Decay: discharge of Cm on the load and for switch leakage

ZL

Page 63: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 63

16/04/2016 - 63 ATLCE - D4 - © 2016 DDC

Selecting the hold capacitor Cm

• General rule to reduce decay, pedestal, feedthrough:– Reduce parasitic capacitance

» selection of MOS switch– Increase the hold capacitor Cm

• Acquisition time depends on the hold capacitor Cm– With increase of Cm

» Errors are reduced» TACQ increases

– Most integrated S/H have basic Cm (low value) inside, with a pin to add external capacitors to increase Cm

» Proper selection to limit dielectric polarization errors(long term memory of the dielectric material)

Page 64: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 64

16/04/2016 - 64 ATLCE - D4 - © 2016 DDC

Input – output isolation

• Two voltage follower isolate input source and load

• Floating switch– Complex command

» Higher feedthrough and pedestal

• To avoid sum of gain and offset errors– Move feedback to get a unique voltage follower

Page 65: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 65

16/04/2016 - 65 ATLCE - D4 - © 2016 DDC

Integrator S/H

• Single feedback loop– Reduced

gain and offset errors

• Switch with one side tied to ground

simpler command

Page 66: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 66

16/04/2016 - 66 ATLCE - D4 - © 2016 DDC

Lesson D4: signal conditioning

• Protection circuits

• Differential and instrumentation amplifiers

• Anti-aliasing filters (parameters)

• Multiplexer

• Sample/Hold circuits– Parameters– Basic circuits

• Total system error (ENOB)

Page 67: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 67

16/04/2016 - 67 ATLCE - D4 - © 2016 DDC

Total error

• An ADC system includes several functional units

• Each unit introduces errors and noise– Amplifier: Gain, offset, nonlinearity, band limits

– Filter: outband signal SNRa– Sample/Hold: sampling jitter SNRj– A/D converter: quantization SNRq– ….

• Actual accuracy depends from all these elements– not just the bit number N of the ADC

• How to define / evaluate the total error?

Page 68: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 68

16/04/2016 - 68 ATLCE - D4 - © 2016 DDC

Total SNR

• Key parameter: total Signal/Noise ratio: SNRt

• SNRt comes from several sources:– Quantization, aliasing, sampling jitter, …– Conditioning chain errors (linear)

• Independent variables– Maximum error/noise voltage add voltages: Vnmax = Vni– Total error/noise power Pnt add power: Pnt = Pni– Compute SNRt

for each term:;PPlog10

PP

SNR1

s

ni

s

nt

t

10SNR

s

nii

10PP

Page 69: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 69

16/04/2016 - 69 ATLCE - D4 - © 2016 DDC

Effective Number of Bits: ENOB

• SNRt can be expressed as Equivalent Number Of Bits (for sine signal)

– Computed from SNRt(depends on signal level; usually measured or evaluated with full-scale sine input signal)

• ENOB = (SNRt - 1,76)/6 = SNRt/6 - 0,3

• Includes all noise/error sources(quantization, aliasing, sampling jitter, …)

• Represents the number of actually useful bits of the A/D conversion system

Page 70: Analog and Telecommunication Electronics · 2016-04-16 · Analog and Telecommunication Electronics D4 - Signal conditioning » Protection circuits » Amplifiers » Anti-aliasing

ATLCE - D4 16/04/2016

© 2016 DDC 70

16/04/2016 - 70 ATLCE - D4 - © 2016 DDC

Lesson D4 – test questions

• Draw a circuit suitable as input protection in a A/D system.

• How can the aliasing noise be reduced?

• Which are the benefits of differential signals?

• Which errors can be introduced by a multiplexer?

• Describe the sequence of states in a Sample/Hold.

• Which is the relation between sampling jitter error and signal frequency?

• Which are the benefits and drawback of increasing the memory capacitor in a S/H circuit?

• Which parameter best describes the actual precision of a A/D conversion system?