49
ELEN 607 (ESS) SPRING’15 I abc i o - V 1 V 2 g m + Edgar Sánchez-Sinencio Analog and Mixed-Signal Center at Texas A&M University

Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

ELEN 607 (ESS) SPRING’15

Iabc

io

-

V1

V2

gm

+

Edgar Sánchez-Sinencio

Analog and Mixed-Signal Center at Texas A&M University

Page 2: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Voltage Multistage Transconductance Amplifier Topologies

for LV Power Supply.

• Good voltage gain can be obtained using cascode stages. But these stages

are not amenable for LV power supply.

• Under LV conditions, high voltage can be obtained using cascade amplifiers.

That is growing horizontally, rather than vertically.

• Direct Cascade of simple (inverting) stages gives the required voltage gain

without control of poles and zeroes.

• Dynamic behavior for optimal performance requires feedback (and

feedforward) circuits.

Analog & Mixed-Signal Center (AMSC)

Page 3: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

First Approach: Direct Cascade

0V

2mg1mg CL

inV

Symbolic Representation

PC

iV 0V

1M 2MxV

1bI2bI

(a)

iV1M

1bI

2bIPC

2M

xV

(b)

Two Possible Implementations

0201

2m1m

L

02p

p

01p

2

0201

Lp

01

p

02

L

Lp2m1m

in

0

gg

gg)o(H

C

g ,

C

g

at located are poles The

sgg

CC

g

C

g

Cs1

CC/gg

)s(V

)s(V)s(H

21

PC

Analog & Mixed-Signal Center (AMSC)

i.e., 1 MHz and 10 MHz

Page 4: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

How do you bring one pole close to the origin?

-Use feedback, i.e. Miller effect

0V

2mg1mg LC

inV

pC

1mC

Neglect Cp (i.e., Cp<<Cm1)

1mL0201L02L2mpL1mL012

1mL1m2m1m

in

0

CC/ggC/gC/gCC/CCgss

CC/)sCg(g

)s(V

)s(V)s(H

1m

2mz

02012mm1

pp

V1m

01

2m

02

1m

01pL022mp

C

g

gainvoltageDCLargegg/ggH(o)

stabilityfor Good

:

A

1

C

g

g

g

C

gandC/)gg(

1

21

0212

<<

Analog & Mixed-Signal Center (AMSC)

The good news is that:

The poles locations are approximately at:

The bad news is that a zero is at the RHP.

Page 5: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Now we will use a feedforward circuit to cancel the zero at the RHP.

This will impact the complexity and performance of the design.

211211

2

21

1

)(

)()(

oofooLmmmL

mm

in

o

mmf

ggggCgCsCCs

gg

sV

sVsH

ggFor

Analog & Mixed-Signal Center (AMSC)

0V

1mC

1mg 2mg

mfg

inV

LC

No zero

1mL0201L02L2mpL1mL012

1mL1m2m1m

in

0

CC/ggC/gC/gCC/CCgss

CC/)sCg(g

)s(V

)s(V)s(H

Now the corresponding H(s) becomes:

Recall that before applying the feedforward we had:

Page 6: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Assume a dominant pole, then

L

mp

mm

ofoo

pC

g

Cg

ggg2

2

12

21

1 ;

0VinV

Let us consider a higher-order system, i.e. 3rd order.

1

11

21

21 ;)(m

mpvo

ofoo

mmvo

C

gAGB

ggg

ggAoH

Lm

oofoL

mmm

p

pCC

gggC

Cgg

1

12

122

1

2;

'

inVV01

IB

Page 7: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

1mfg

1mg

1mC

iV0V

2mC

2mg 3mg

2mfg

CL

Three-stage amplifier topology with NGCC

21

3

21223

2

132030201

2

211122213210

)(

)()(

mmLmmmmfmmmm

mmmmfmmmfmmmm

i CCCsCCgggsCgsgggg

SCCggCggsgggg

sV

sVsH

2m1mL3

2m1m3m2

1m3m2m030201

3m2m1m

i

0

2mmf21mmf1

CCCsCCgsCgsgggg

ggg

)s(V

)s(V)s(H

,gg and gg makingBy

Analog & Mixed-Signal Center (AMSC)

Nested Gm-C Compensation Amplifier.

Observe the regularity and simplicity of the reduced expression

Page 8: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

30V01

01

132

030201

030201

321

1

1

0

11

i

2

3232

2

22

1

11

020301

2310

32

2

21

0

0

rd

2A

1 P

at located is poledominant that theNote

f ; f ,

f and

f

s1 1

A-H(s)

as written becan poledominant a assuming H(s)order 3 This

Vmmmmmmm

m

m

mi

mi

Lm

mm

m

m

m

mmmm

AC

g

Cgg

ggg

ggg

ggg

C

g

A

f

C

g

CC

ggf

C

gf

C

gGB

ggg

gggA

ff

s

f

As

Analog & Mixed-Signal Center (AMSC)

Page 9: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

1 2 3

1 2 3

1mC

2mC

3mC

1mg 2mg 3mg

mfg

4mg

iV0V

1mC

2mC

3mC0ViV

1mg 2mg 3mg

mfg

4mg

iV 0V

1mg 2mg

mfg

1mC

(a) Multipath nested miller compensation topology.

FF : NMC

(b) An abstract model for the amplifier proposed by

Castello, et.al.

(c ) The amplifier with multipath miller zero

cancellation.

Multipath Nested Miller Compensation Technology

Potential Feedforward Schemes: An Amplifier Topologies Re-Visit.

Analog & Mixed-Signal Center (AMSC)

Page 10: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

iV 0V

1mg 2mg

3mfg

1mC

3mg 4mg

2mfg

1mfg

2mC

3mC

CL

Four stage amplifier topology with NGCC (Fan You et al)

Let Us Now Compare Several Four-Order Topologies

mi

mi

i3m2m

3m2m

32

4323

322

21

01

33

221

1

0

g

C

f

1 ,

gg

CC

ff

1

fff

1a ,

ff

1a ,

f

1a

A

GBP

sasasa1 P

s1

A)s(H

ly.respective factors,ion normalizatfrequency andcurrent are f and I

, , 1VP

)(VP :n ComsumptioPower

/1

f ,

nn

ii

1

1

DD

1

dd

32

24

14321

L

mii

L

min

i n

iinss

n

iss

C

gf

C

C

f

fIV

IV

ff

ff

GBffff

<<

Page 11: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Comparison of Several Topologies.

00

1143210

mi

mii

oi

mii

33

2211

33

221

0i

0

A

GB

A

fP , kkkkA

Where

C

gf and 1,3i ,

g

gk

, )sasasa)(1P/s1(

sbsbsb1A

)s(V

)s(V

Comparison of Polynomial Coefficients for Four Stage NMC and NGCC Amplifier.

Ph(s)

NMC

NGCC

NMC

NGCC

Z(s)

a1 a2 a3

b1 b2 b3

4m2m

3m2m2m4m

gg

CgCg

4m3m2m

3m2m3m2m4m

ggg

CCggg

2m

2m

g

C

3m2m

3m2m

gg

CC

4m3m2m

L3m2m

ggg

CCC

4m3m2m

L3m2m

ggg

CCC

4m

3m

g

C

0 0 0

4m3m

3m2m

gg

CC

4m3m2m

3m2m1m

ggg

CCC

Design

Complex

Simple

Analog & Mixed-Signal Center (AMSC)

Page 12: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

iV 0V

1mg 2mg

mfng

1mC

mng 1gmn

n Level

2 Level2mfg

1mfg 1 Level

2mC

mnC

1mfg

1mg )s(A

1mC

iV 0V

Conceptual multistage amplifier topology with NGCC.

Abstract model.

Nested Gm-C Compensation (NGCC) Nth-Order

Analog & Mixed-Signal Center (AMSC)

Page 13: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

iV 0V

1mG 2mG

1mfG

1mC

iV

outV

ddV

ssV1mg

1bV

2bV

2mg12M

22M

21M

1Mf

1mfg

13M

14M

11M

(a) Representation

(b) Transistor Level

How to Implement a Positive Gm?

M22. toparallelin

r transistoPMOS a add and M21 Remove , G If

current. additional provide toM21

add then ,current Mf1current M22 , G If

1

g , 2221

g , 1411

1m2

1m2

1

2mM222

1mM111

mf

mf

mf

mm

mm

G

G

MfG

gMMG

gMMG

<

Analog & Mixed-Signal Center (AMSC)

Page 14: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

ddV

ssV1mg 2mg 3mg

3M 5M4M

V V1mC

2mC 3mC outV

4mg

2mfg

3mfg

3bV

2bV

1bV

1mfg

Four stage operational amplifier with NGCC topology

Design Example of a Four-Stage Amplifier

Analog & Mixed-Signal Center (AMSC)

• The dominant pole f1 is determined by GB

• Phase margin (m) is mainly determined by the high frequency poles

Page 15: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

• The location of higher-order poles not only influence on the m, but also in settling time

and power consumption.

• For specification requiring Ao > 80 dB, a four-stage (n = 4) is usually required

• Stability considerations for n = 4 impose

4,1,1

11)(

)()(

;/1

432

3

32

2

2

4321

1

31

24

<<

ig

C

f

fff

s

ff

s

f

ss

GB

A

A

sV

sVsH

ffff

GBfff

ff

mi

mi

i

o

o

in

o

Page 16: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Design Approach

Step 1. Determine f1 based on GB

f1 = GB

Step 2. Determine f2 based on Phase Margin

Example:

f2 = 2 GB, f3 > f2, f4 > f2 m 60o

However, this does not guarantee small settling time

2

1

32

2

43

2

2

1 tan90/1

/1tan90

f

GB

ffGB

ffGB

f

GB oo

m

Page 17: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Design Approach

Step 3. Determine f3, f4 based on settling time and power

a. Sweep f3 and f4 Ts? (settling time)

Numerical Analysis (e.g. MATLAB)

b. Select a set of (f3, f4) with desired power and settling

time

432

3

32

2

21

11

)(

fff

s

ff

s

f

s

f

sA

AsH

o

o

3

4

f4

f3

Page 18: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 80

20

40

60

80

Phase MarginTs*GB

f4/GB

___

-----

phase

Ts

The phase margin and normalized settling time (TsGB) of an

NGCC amplifier vs. f4/GB.

Analog & Mixed-Signal Center (AMSC)

What is the effect of f4 /GB?

How far should one push f4?

• Trade-off between phase margin versus setting time.

Page 19: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

*

*

*

*

*

**

* * * *

+

+

+

+

++

+ + +

0.5 1 1.5 2 2.5 3

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

NMC

NGCC

Ts*GB

Norm

ali

zed

Pow

er

The normalized power consumption of the NGCC and the NMC amplifiers as

a function of the normalized settling time.

Analog & Mixed-Signal Center (AMSC)

How do the Two Topologies Compare for Power Consumption?

Page 20: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Analog & Mixed-Signal Center (AMSC)

More Experimental Results.

Page 21: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Measured Performance of the 4-Stage NGCC Op Amp.

22

oo

0.22mm 0.22mm Area

//20pF10k 20//10k Condition Load

1.0V 1.0V Supply Power

5.0V S2.5V/ Rate Slew

5.2mV 5.2mV Offset Input

58 60 Margin Phase

1.0MHz 610kHz Bandwidth Gain

100dB 100dB Gain DC

1.40mW 0.68mW n ConsumptioPower

pF

Analog & Mixed-Signal Center (AMSC)

Page 22: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

OPTIMAL DESIGN OF LOW POWER

NESTED GM-C COMPENSATION

AMPLIFIERS USING A CURRENT-BASED

MOS TRANSISTOR MODEL

X. Xie, M. C. Schneider, S. H. K. Embabi, E. Sánchez-Sinencio

Department of Electrical Engineering

Texas A&M University

College Station, Texas 77843-3128, USA

Page 23: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Low Power Operational Amplifiers

• Applications: mobile communication & portable devices

• Major concerns: power, stability, area and speed.

• Design approach:

– Low voltage — multistage cascading.

Techniques for solving stability problem:

• Nested Miller Compensation (NMC)

• Nested Gm-C Compensation (NGCC)

– Low operating current — weak or moderate inversion.

• Optimal design in moderate inversion

• Continuous MOSFET model

Page 24: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Topology of Three-stage NGCC Amplifier

• feedforward path gmf1 and gmf2 to cancel

RHP zeros.

• Transfer function:

Making gmf1 = gm1 and gmf2 = gm2 gives:

Rewritten as:

Phase margin:

32

2

21

321

321

11)(

)()(

ff

s

f

s

f

kkks

kkk

sV

sVsH

i

o

+ + -

-

-

Vi

gm1

Cm2

gm2gm3

gmf2

gmf1

CL

(Cm3)

Vo

Cm1

21

3

21223

2

132321

2111

2

2221321

)(

)()(

)(

)(

mmLmmmmfmmmmooo

mmmmfmmmfmmmm

i

o

CCCsCCgggsCgsgggg

CCggsCggsgggg

sV

sV

oi

mii

g

gk

mi

mii

C

gf

)(

1tan90

3

2

1

f

GB

GB

fPM o

21

3

213

2

132321

321

)(

)(

mmLmmmmmmooo

mmm

i

o

CCCsCCgsCgsgggg

ggg

sV

sV

We define:

— unity gain frequency

— dc gain1

11

m

m

C

gf

321 kkkAo

Page 25: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Topology of Four-stage NGCC Amplifier

Compared to three-stage NGCC:

• easier to obtain high dc gain,

• more complicated design,

• potentially more power

consumption.

• Transfer function:

• Phase margin:

• Transfer function of an n-stage

NGCC amplifier:

432

3

32

2

21

0

0

11fff

s

ff

s

f

s

f

sA

A

sV

sV

i

o

2

1

42

2

43

2

2

1

tan90

1

1tan90

f

GB

ffGB

ffGB

f

GBPM

o

o

n

ii

ni

o

f

s

ff

s

f

s

f

sA

A

sV

sV

2

1

32

2

21

0

0

...11

gmf1--

+

Vi

gm1

+ + -

-

-

gm2gm3

gm4

gmf2

gmf3

Cm1

Cm2Cm3

CL

(Cm4)

Vo

Page 26: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Modification on Low Power Three-stage NGCC

Significant parasitic effect:

— very large transistors forweak inversion design,

— long channel transistors used for high dc gain.

Cm1

gm1

+ + -

-

-

Vi

Cm2

gm2 gm3

gmf2

gmf1

CL

Vo

C1C2 C3

• Modified transfer function:

• where

32

2

21

0

2

210

11

)(

ff

s

f

s

f

As

sasaAsH

3

2

2

32

221

12

)(

o

m

oo

m

g

Ck

gg

CCCka

3

3

2

211k

g

Ckka

o

• Ci — parasitic capacitance at each output node,

• — phase delay due to the current mirror at second stage.

Page 27: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

21

2

1

1

2

23

2

2

13

2

3

3

21

2

2

33

21

3

3

2

3

2

21

22

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

)1)(1(1

1

L

m

LLL

m

m

m

o

m

o

m

m

C

g

C

C

C

C

C

C

g

g

g

gf

ff

g

gf

g

gff

111 mCC 222 m

CC

Modification on Low Power Three-stage NGCC

(cont.)

Moderate inversion:

— good stability,

— optimization of power, speed & area.

with and

11ff

Ex: f1 = GB, f2 = 2GB, f3 = 4GB, Cm1 = Cm2 = 8 pF, CL = 20 pF,

then gm1 = 50 S, gm2=100 S, gm3=500 S,

For go3=100 S (RL), C1=1 pF, C2=3 pF, C3= 6 pF

Assume = 0,

Then and 2266.0 ff

3367.0 ff

Page 28: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Current-Based Transistor Model

• Features of ACM model:

– physics-based model,

– universal and continuous expression for any inversion,

– independent of technology, temperature, geometry and gate voltage,

– same model for analysis, characterization and design.

• Main design equations: (design parameters: I, gm, if)

2

11 f

mt

i

ng

I

1122 2

ft

T iL

f

11

1

ftox

m

iC

g

L

W

411 f

t

DSAT iV

12ng

IC

g

L

W

mt

tox

m

I drain current in transistorgm transconductance in saturation

n slope factor

t thermal voltage

if inversion level of the transistor defined as

, where

is the normalization current.

if << 1 weak inversion,

if >> 1 strong inversion.

sf IIi L

WnCI t

oxs2

2

Page 29: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Specifications and Design Procedure

• Specifications:

– load 10 k/20 pF

– gain bandwidth GB=1 MHz

– dc gain A0 > 100 dB

– phase margin PM > 60o

– 0.2% settling time < 1S

– power consumption: minimum

• Other Specs can be included

( if determined by gm, I, and if ):

– noise,

– slew rate,

– common mode rejection.

Specs. (gain, power, PM,

GB, settling time, etc.)

Determine fi

Given Cmi,

Determine gm

Choose either if or I,

calculate the other and

W/L, select a length L.

Hspice simulation, all

specs satisfied? (YES/NO)

Layout, extraction, simulation

and check specs? (YES/NO)

NO

YES

NO

Fabrication

YES

Page 30: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Implementation of Three-Stage NGCC Amplifier

Remarks:

• Ideally, f1 = GB, f2 = 2GB, f3 = 4GB,

Choose f2=3GB, f3=5GB to

compensate large parasitic effect.

• Long channel to obtain adequate gain

— cause large parasitic effect.

Vdd=2V

M0

MP3 MP1 MP2 MP0 MP4 MP5

MP6

M3

MIN1 MIN2

M1 M2 M4

Cm1

M5 M6

M7M8

Cm2V- V+

gmf1

Vb1 Vb1

IB=5A

gm1 gm2 gm3 gmf2

Vo

M9

RL CL

Transistor NO. W(m) L(m) if

M1 M4 118 4.2 20

M0, M5 218 4.2 20

M6, M7, M9 618 4.2 20

M8 2518 4.2 20

MIN1, MIN2 2018 4.2 4

MP0 MP3 218 4.2 80

MP4, MP5 618 4.2 80

MP6 3318 4.2 80

Page 31: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Implementation of Four-Stage NGCC Amplifier

Remarks:

• f1=GB, f2=2GB, f3=5GB, f4=6GB

• shorter length — small parasitic effect

• lower inversion level than 3-stage one.

• Same implementation and same fi for

reference opamp (low-voltage strong

inversion 4-stage)

MP3 MP1 MP2 MP0 MP4 MP5 MP6 MP7

MP8

MIN1 MIN2V- V+

Vb

M1 M2 M3 M4 M5 M6

M7 M8

M9

M10

M11 M12Vb

Vb

Ib=6ACm1 Cm2 Cm3

CL

RL

Vout

gm1 gmf1 gm2 gm3 gm4 gmf2 gmf3

Vdd=2V

M0

Transistor NO. W(m) L(m) if

M1 M4 410.8 1.8 6

M0, M5 810.8 1.8 6

M6, M7, M11 810.8 1.8 6

M8, M9, M12 2010.8 1.8 6

M10 6010.8 1.8 6

MIN1, MIN2 818 1.8 6

MP0 MP3 218 1.8 30

MP4, MP5 218 1.8 30

MP6, MP7 518 1.8 30

MP8 2418 1.8 30

Page 32: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Specifications Three-Stage Four-Stage Four-Stage(ref.)

Power Consumption Minimum 0.28 mW 0.30 mW 0.93 mW

DC Gain 100 dB ~ 100 dB ~ 105 dB ~ 110 dB

Gain Bandwidth 1.0 MHz 1.08 MHz 1.03 MHz 1.09 MHz

Phase Margin > 60o

59.5o

62.7o

61.2o

0.2% Settling Time (100 mV) < 1 S 0.77 S 0.55 S 0.53 S

THD (1kHz 1VP-P) - 84.8 dB - 88 dB - 55.8 dB

1% THD Input (1kHz) 1.36V 1.38V 1.26V

Active Area (relative area) 0.01mm2 (1.75) 0.0052 mm

2 (0.91) 0.0057 mm

2 (1)

min if , max if 4 , 80 6 , 30 100 , 130

Simulation Results of NGCC Amplifiers

(VDD = 2 V, ZLOAD = 10 k/20 pF)

* 1.2 m AMI n-well CMOS technology

* BSIM (HSPICE level 13) simulation

Page 33: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Experimental Results

* The output stage of the reference op amp is realized with a

PMOS transistor for reduction of power.

Specifications Three-Stage Four-Stage Four-Stage(ref.)

Power Consumption Minimum 0.26 mW 0.28 mW 0.63 mW

DC Gain 100 dB ~ 96 dB ~ 105 dB ~ 100 dB

Gain Bandwidth 1.0 MHz 1.10 MHz 1.05 MHz 900 kHz

Phase Margin > 60o

56.7o

62.0o

63.6o

THD (1kHz 1VP-P) - 67.7 dB - 67.5 dB - 28.5 dB

1% THD Input (1kHz) 1.13 V 1.11 V 0.94 V

Active Area(Relative Area)

0.01mm2

(1.49)0.0052 mm

2

(0.78)0.0067 mm

2

(1)

Page 34: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Frequency Response

3-stage NGCC amplifier 4-stage NGCC amplifer

Page 35: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Response to 100 kHz 1Vp-p sine wave

3-stage NGCC amplifier 4-stage NGCC amplifier

2 S/DIV 2 S/DIV

Page 36: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Step Response with 100 kHz 100 mV Input

3-stage NGCC amplifier 4-stage NGCC amplifier

2 S/DIV2 S/DIV

Page 37: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Step Response with Large Signal (1 kHz 1V)

200 S/DIV200 S/DIV

3-stage NGCC amplifier 4-stage NGCC amplifier

Page 38: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Conclusions

• Using a new MOSFET model, NGCC amplifiers can

be designed in moderate inversion yielding optimal

trade-off design.

• With same or better performance, low power

amplifiers consume 65% less power than low voltage

(strong inversion) design.

• Four-stage op amp has better overall performance with

much less area and without dissipating evidently more

power.

• Three-stage one benefits for the reduction of design

complexity.

Page 39: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

ELEN 607 (ESS) SPRING’06

Page 40: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

V i

-A V1

Cm

Cp CL

Vo

(a)

-A V2

1/sCp

1/sCm

R2

1/sCL

Vo

-A2Vi

R1

-A1Vi

Vi Vg

21))(())2111(21(1

)22(12 RRCLCpCmCpCLsRRARCmCLRCpRs

sCmRAA

Vi

Vo

21

2

1

1)(ppp ww

s

w

ssD .

CmA

go

CmARRRRACmCLRCpRwp

2

1

21

1

)2112(21

11

CL

gm

CLCp

gm

CLCpCmCpCL

goCmAwp

22

)(

222

Cm

gm

CmR

Awz

2

2

21

Review: Cascade with Miller effect

Page 41: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

-AV2vi vo

Cp CL

(b)

-AV1

Cm R

-A1Vi

R1

1/sCp

1/sCm

R2

1/sCL

Vo

Vi

-A2Vi

R

Vg

CLR2CpR1)R2CpR1)CLR2R1CpR1Rf(Cm(CLR2RfsCmCLR2CpR1Rf(s

R2)-A2Rfs(A1(A223

sCm

Vi

Vo

1CpR1)CLR2CmR2CmR1A2CmR1RfCm(

1

s

CmARRRRACmCLRCpRwp

21

1

)2112(21

11

CLCp

gm

CLCpCmCpCL

goCmAwp

2

)(

222

)2/1(

1

)2/2(

11

RgmCmRARCmwz

Pole splitting via RC feedback branch

Page 42: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

vi-A V1 -AV2

Cm

Cp

v

(c)

AVf1

1/sCL-A1Vi

Vi Vo

Rf

R2

1/sCm

R

1

-A2Vg

Vg

AfVi

Transfer Function

RfCmR1)RfCpR1(CmR2RfCpR1CLR2RfCmR11(CLR2RfCpRs

R2AfCmR1))-CmR2RfA1s(CpR1R2Af-A1RfA2-(-R2Af-2

sVo

Vi

R2RfRfA2CmR1)R2CmR1R2CpR1CmR2RfCLR2Rf(

1

s

CLCmsCmgmsgogo

gmfgmsCmgmgm

Vi

Vo2221

)1(21

12

1

122

11

CmRACmRRgmwp

CL

gmwp

22

)11(

211

gmfgmCm

gmgmwz

Review: Feedforward compensation

Page 43: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

vi-AV1 -AV3 vo

(d)

AVf1

CmCL

-AV2

1/sCL

Vi

1/sCm

V1Vo

Rf

R3

-A3V1

AfVi

-A1Vi

R1

-A2V1

R2

V2

Cm

gw gmgmp

2

02|

gm2)CmR2(gm1

gm1-211

CmRw RRfp

3

2|

CmRfR3

R3)(Rf-32

gm3R2)gm3R1R1gmfgm2R2gm1Cm(R1gmfR2

gm3R1gmfgm11

zw

Creating and internal zero cancellation DFCFC

Damping factor frequency controlled compensation (DFCFC)

Page 44: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Amplifier Comparisons

4 stage NGCC Amplifier.

3 stage DFCFC Amplifier

Page 45: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

Parameters NGCC DFCFC

Av (dB) 100.3 100.4

GBW (MHz) 8.21 8.23

Phase Margin(`) 70 75

0.2% Settling Time(ns) 373 398

Slew Rate(+) (V/us) 11.2 8.2

Slew Rate(-) (V/us) -7.1 -6.7

CMR (V) 1.25 0.97

CMRR (dB) 63.02 28.55

PSRR+ (dB) 49.62 24.05

PSRR- (dB) 29.1 20.48

Input Referred Offset (v) 290n -4.13u

Active Area (um2) 233.4 228.88

Power Consumption (mW) 1.2 0.4

Page 46: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

M4M5

M6 M7 M10M11

M14M15

M18 M20

M21

M22

M19

M3M8

M9 M12 M13 M16 M17

Vi+Vi-

Cm1

Cm2Cm3

Vb1

Vb2Vb3

Vdd

Vss

Vout

M1 M2

4 stage NGCC Amplifier.

# M1 M2 M3 M4 M5 M6 M7 M8

Size 49/.4 46/.4 36/.4 10/.4 10/.4 38/.4 6.5/.4 38/.4

# M9 M10 M11 M12 M13 M14 M15 M16

Size 38/.4 6.5/.4 22/.4 22/.4 22/.4 10/.4 20/.4 30/.4

# M17 M18 M19 M20 M21 M22

Size 30/.4 20/.4 70/.4 20/.4 23/.4 44/.4

Design Summary

Page 47: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

M3

Vdd

Vss

M1 M2Vi- Vi+

M16M4 M5

M6

M7

M8

M9Vb

Va

Vc

M11M10 M13 M14

M12

M15

Cm1

Cm2

M17

M19

M18

Vout

M20

3 stage DFCFC Amplifier

.

# M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Size 38/.4 38/.4 48/.4 1.2/.4 1.2/.4 1.2/.4 1.2/.4 1.2/.4 1.2/.4 18/.4

# M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

Size 18/.4 30/.4 22/.4 45/.4 45/.4 9/.4 3/.4 31/.4 95/.4 53/.4

Page 48: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

References

S. Pernici, “A CMOS Low-Distortion Fully Differential Power Amplifier with Double Nested

Miller Compensation,” IEEE J. Solid-State Circuits, Vol. 28, No. 7, pp. 758-763, July 1993.

F. You, S.H.K. Embabi and E. Sánchez-Sinencio, “Multistage Amplifier Topologies with

Nested Gm-C Compensation,” IEEE J. of Solid-State Circuits, Vol. 32, No. 12, pp. 2000-2011,

December 1997.

X. Xie, M.C. Schneider, E. Sánchez-Sinencio and S.H.K. Embabi, “ Sound Design of low power nested

transconconductance-capacitance compensation amplifiers” Electronics Letters, Vol. 35, No. 12, pp956-

958, June 1999

K.N. Leung, P.K. T. Mok, W.-H. Ki, and J. K. O. Sin, “ Three-Stage Large Capacitive Load

Amplifier with Damping Factor-Control Frequency Compensation, “IEEE J. of Solid-State

Circuits, Vol. 35, No. 2, pp. 221-230, February 2000

B.K. Thandri, , and J. Silva-Martinez, “ A Feedforward Compensation Scheme for Multi-Stage Amplifiers

with No-Miller Capacitors”, IEEE J. Solid State Circuits, Vol. 38, pp. 237-243, Feb. 2003.

Analog & Mixed-Signal Center (AMSC)

Page 49: Edgar Sánchez-Sinencio ELEN 607 (ESS) SPRING’15s-sanchez/607 Lect2-2015-Nested Gm-C Amps.pdf · sgg C S V V s H s L m1 m2 3 m3 m1 m2 2 01 02 03 m2 m3 m1 m1 m2 m3 i 0 mf1 m1 mf2

References

Analog & Mixed-Signal Center (AMSC)

Author(s): Cherry Edward M.

Universal basis for ranking small-signal aspects of compensation techniques for

operational amplifiers INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND

APPLICATIONS Volume: 39 Issue: 11 Pages: 1105-1144 DOI: 10.1002/cta.689

Published: NOV 2011

Author(s): Peng Xiaohong; Sansen Willy; Hou Ligang; et al.

Impedance Adapting Compensation for Low-Power Multistage Amplifiers

Source: IEEE JOURNAL OF SOLID-STATE CIRCUITS Volume: 46 Issue: 2 Pages: 445-

451 DOI: 10.1109/JSSC.2010.2090088 Published: FEB 2011

Author(s): Ito Rui; Itakura Tetsuro

Title: Phase Compensation Techniques for Low-Power Operational Amplifiers

Source: IEICE TRANSACTIONS ON ELECTRONICS Volume: E93C Issue: 6

Pages: 730-740 DOI: 10.1587/transele.E93.C.730 Published: JUN 2010

Reading Material