52
ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]

ECE 802-604: Nanoelectronics

  • Upload
    kathy

  • View
    27

  • Download
    0

Embed Size (px)

DESCRIPTION

ECE 802-604: Nanoelectronics. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]. Lecture 14, 15 Oct 13. In Chapters 02 and 03 in Datta: How to correctly measure I = GV Brief discussion: Roukes article Two typo correction HW02 Pr. 2.3 - PowerPoint PPT Presentation

Citation preview

Page 1: ECE 802-604: Nanoelectronics

ECE 802-604:Nanoelectronics

Prof. Virginia AyresElectrical & Computer EngineeringMichigan State [email protected]

Page 2: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 14, 15 Oct 13

In Chapters 02 and 03 in Datta:

How to correctly measure I = GVBrief discussion: Roukes articleTwo typo correction HW02 Pr. 2.3

Add scattering to Landauer-ButtikerCaveat: when Landauer-Buttiker doesn’t workWhen it does: Sections 2.5 and 2.6: motivation: why:

2.5: Probes as scatterers especially at high bias/tempsButtiker approach for dealing with incoherent scatterers

2.6 occupied states as scatterers

3.1 scattering/S matrix

Page 3: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Roukes article:

Page 4: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Roukes article:

Page 5: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Roukes article: TR possibilities:

F = q(v x B) = -|e| (v X B)

rebound directrebound direct

+ seems to be X B

Page 6: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Roukes article: TL possibilities:

F = q(v x B) = -|e| (v X B)

rebounddirect

rebounddirect

Page 7: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Roukes article:

HW01 VA Pr.01: x = 0.4, here it is x = 0.3

HW01 Datta E1.1Find f

HW01 Datta E1.2Find n and

Page 8: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Two typos Pr. 2.3:

Roukes article: TR

rebound direct

Roukes article: TL

rebounddirect

Page 9: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Two typos Pr. 2.3, marked in magenta:

Datta Pr. 2.3, p. 113: TL Datta Pr. 2.3, p. 113: TR

T2

1 X B

Page 10: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 14, 15 Oct 13

In Chapters 02 and 03 in Datta:

How to correctly measure I = GVBrief discussion: Roukes article: HW02 Pr. 2.3:

Add scattering to Landauer-ButtikerCaveat: when Landauer-Buttiker doesn’t workWhen it does: Sections 2.5 and 2.6: motivation: why:

2.5: Probes as scatterers especially at high bias/tempsButtiker approach for dealing with incoherent scatterers

3.1 scattering/S matrix

Page 11: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

In Section 2.5:2-t example: with broadened Fermi f0

Lec13:

Practical example: Roukes

Page 12: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

If T = T’, can get to Landauer-Buttiker but no reason why T should = T’.Especially if energies from probes took e- far from equilibrium.

i as a function of how much energy E/what channel M the e- is in

Lec13:

Page 13: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Can expect T = T’ at equilibrium.Consider: if energies from probes don’t take e- far from equilibrium:

Lec13:

Page 14: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

New useful G:

Lec13:

Page 15: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

E

Ef )(0

Basically I = G^V = G^ (1-2) ethat works when probes hotted things up but not too far from equilibrium

Lec13:

Page 16: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Example: does the figure shown appear to meet the linear (I = G^ V) regime criteria?

Criteria is: 1-2 << kBT

FWHM shown is kBT

Answer: No, they appear to be about the same (red and blue).

However, part of FT(E) is low value. Comparing an ‘effective’ 1-2 (green)

maybe it’s OK.

Lec13:

Page 17: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lec13: If T(E) changes rapidly with energy, the “correlation energy” c is said to be small.

E

T(E)

0.85

0.09

5 eV 5.001 eV

A very minimal change in e- energy and you are getting a different and much worse transmission probability.

Page 18: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

2-DEG

Page 19: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Example: in HW01 Pr. 1.1 you solved for for a 2-DEG in GaAs @ 1 K using the graph shown in Figure 1.3.2 .

Estimate the corresponding correlation energy c

Page 20: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Answer:

Estimate the corresponding correlation energy c

Page 21: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lecture 14, 15 Oct 13

In Chapters 02 and 03 in Datta:

How to correctly measure I = GVBrief discussion: Roukes articleTwo typo correction HW02 Pr. 2.3

Add scattering to Landauer-ButtikerCaveat: when Landauer-Buttiker doesn’t workWhen it does: Sections 2.5 and 2.6: motivation: why:

2.5: Probes as scatterers especially at high bias/temps Buttiker approach for dealing with incoherent scatterers

3.1 scattering/S matrix

Page 22: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lec10: Scattering: Landauer formula for R for 1 coherent scatterer X:

Reflection = resistance

Page 23: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

E > barrier height V0

E < barrier height V0

Lec 10: Coherent scattering means that phases of both transmitted and reflected e- waves are related to the incoming e- wave in a known manner

Page 24: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Lec 10: Transmission probability for 2 scatterers: T => T12:

That’s interesting. That Ratio is additive:

Assuming that the scatterers are identical:

Page 25: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Therefore: Resistance for two coherent scatterers is:

Page 26: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 27: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 28: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 29: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 30: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Resistance is due to partially coherent /partially incoherent transmission

Page 31: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

1 Deg, M = 1

Example:probe

LR

X XO

Page 32: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

probe

LR

1 Deg, M = 1

X XO

Page 33: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Model the phase destroying impurity as two channels attached to an energy reservoir

Page 34: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Influence of the incoherent impurity can be described using a Landauer approach as:

Page 35: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

L R

Page 36: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

L R

Page 37: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

L R

Page 38: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

L R

Page 39: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

L R

Landauer-Buttiker treats all “probes” equally: what is going into “probe” 3:

Page 40: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

L R

Landauer-Buttiker treats all “probes” equally: what is going into “probe” 4:

Page 41: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Outline of the solution:

Goal: V = IR, solve for R

What is V: A – B

What is I: I = I1 = I2

Page 42: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

probe

LR

A B

1 Deg, M = 1

X XO

Page 43: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 44: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 45: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 46: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Condition: net current I3 + I4 = 0

Page 47: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 48: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Condition: net current I3 + I4 = 0

Page 49: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Condition: net current I3 + I4 = 0

Page 50: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 51: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

Page 52: ECE 802-604: Nanoelectronics

VM Ayres, ECE802-604, F13

LR