1
0 20 40 60 80 0 50 100 150 200 Displacement [ µ m] Time [ µ s ] 1 10 50 100 µs µs µs µs Response speed : < 16 µ s Evaluation of response speed 0 40 80 120 160 200 0 20 40 60 80 100 120 Sorting width [ µ m] Rising time [ µ s ] 100 90 80 V V V Sorting width : > 100 µ m Evaluation of sorting width Vertical sheath inlet Horizontal sheath inlet Sample inlet Fixation hole Interest port Priming port Attachment Glass membrane Piezoelectric actuator On - chip dual membrane pump On - chip cell sorting by high - speed local - flow control using dual membrane pumps Shinya Sakuma, Yusuke Kasai, Takeshi Hayakawa, Fumihito Arai Nagoya University Micro - Nano Mechanical Science and Engineering Corresponding author: Shinya Sakuma E-mail: [email protected], URL: http://www.biorobotics.mech.nagoya-u.ac.jp/ 464-8601 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, Japan Micro-Nano Mechanical Science and Engineering, Arai lab. TEL: +81-52-789-5220, FAX : +81-52-789-5027 Acknowledgement: This study was supported by a Grant-in-Aid from the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT). References[1] S. Sakuma et al., On-chip cell sorting by high-speed local-flow control using dual membrane pumps, Lab on a Chip, 2017, DOI:10.1039/c7lc00536a [2] Nitta et al., Intelligent Image-Activated Cell Sorting, Cell (2018), https://doi.org/10.1016/j.cell.2018.08.028 On - chip dual membrane pumps with high - rigidity chip High - rigidity chip e.g.) CTC (Circulating Tumor Cell) http://bradyurology.blogspot.jp/2014/05/ circulating - tumor - cells - for - prostate .html e.g.) Euglena http://www.goda.chem.s.utokyo.ac.jp/researc h_japanese.html Rare cells in massive cells Highly specific cells in a group Biofuel Nutritional food Cosmetic product Diagnosis Prognosis Drag development http://www.jst.go.jp/impact/serendipity/concept.html http://www.jst.go.jp/impact/serendipity/concept.html Background : Cell sorting cell sorting cultivation cell sorting Size of target cell/particle/droplet [ µ m] Equivalent throughput [Hz] 10 0 0 50 100 150 10 1 10 2 10 3 10 4 10 5 Y. Chen, Small, 2014 S. H. Cho, Lab Chip, 2010 Z. Cao, Lab Chip, 2013 T. D. Perroud , Anal. Chem., 2008 R. W. Applegate Jr., Lab Chip, 2006 L. Ren, Lab Chip, 2015 L. Rao, Sens. Act. B, 2015 Y. Chen, Analyst, 2013 Z. Cao, Lab chip, 2013 S. Li, Anal. Chem., 2013 S. W. Lim, PLOS ONE , 2015 E. gracilis GCIY - EGFP A. Sciambi , Lab Chip, 2015 Main - flow Local - flow Local - flow Pump A Pump B Pump A Pump B Pump A Pump B Local - flow Local - flow Pump A Pump A Pump B Pump B Pump A Pump B Sorting principle Non-sorting state Sorting state t = 0 μ s t = 80 μ s t = 40 μ s t = 120 μ s t = 200 μ s t = 160 μ s 100 μ m t = 0 μ s t = 40 μ s t = 80 μ s t = 120 μ s t = 160 μ s t = 200 μ s (v) Patterning of etching mask for sand blasting (vi) Sandblasting Glass SU-8 Si OFPR Cr Au SCM250 (iii) Patterning of etching mask after anodic bonding (i) Patterning of etching mask (ii) HF etching and cleaning (iv) DRIE (vii) Anodic bonding Packaging Base/Cover layer Cover layer Channel layer Fabrication process Sorting experiments Target: E. gracilis Target: GCIY - EGFP = 100 µ s = 33 µ m = 1 µ s Evaluation of flow control Borosilicate glass Silicon Borosilicate glass 31 kHz High-speed camera Chip Stage Laser (488 nm) Photomultiplier (PMT) Half Mirror Halogen lamp White light Mirror Polarizer Dichroic mirror Notch filter High-voltage amplifier Detection circuit PZT1 PZT2 Analyzer Waste port Sorting system

E. gracilis GCIY-EGFP with high - rigidity chip€¦ · SCM250 (iii) Patterning of etching mask. after anodic bonding (i) Patterning of etching mask (ii) HF etching and cleaning (iv)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 𝑑𝑑

    0

    20

    40

    60

    80

    0 50 100 150 200

    Dis

    plac

    emen

    t 𝑑𝑑[µ

    m]

    Time [µs]

    11050

    100

    𝜏𝜏: µsµsµsµs

    Response speed :< 16 µs

    Evaluation of response speed

    0

    40

    80

    120

    160

    200

    0 20 40 60 80 100 120Sorti

    ng w

    idth

    𝑤𝑤[µ

    m]

    Rising time 𝜏𝜏 [µs]

    1009080

    ∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚: VVV

    Sorting width :> 100 µm

    Evaluation of sorting width

    Vertical sheath inletHorizontal sheath

    inletSample inlet

    Fixation hole

    Interestport

    Primingport

    AttachmentGlass membrane

    Piezoelectric actuatorOn-chip dual membrane pump

    On-chip cell sorting by high-speed local-flow controlusing dual membrane pumps

    Shinya Sakuma, Yusuke Kasai, Takeshi Hayakawa, Fumihito AraiNagoya University Micro-Nano Mechanical Science and Engineering

    Corresponding author: Shinya SakumaE-mail: [email protected],URL: http://www.biorobotics.mech.nagoya-u.ac.jp/〒464-8601 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, JapanMicro-Nano Mechanical Science and Engineering, Arai lab.TEL: +81-52-789-5220, FAX : +81-52-789-5027

    Acknowledgement:This study was supported by a Grant-in-Aid from the ImpulsingParadigm Change through Disruptive Technologies Program (ImPACT).References:[1] S. Sakuma et al., On-chip cell sorting by high-speed local-flow control using dual membrane pumps, Lab on a Chip, 2017, DOI:10.1039/c7lc00536a[2] Nitta et al., Intelligent Image-Activated Cell Sorting, Cell (2018), https://doi.org/10.1016/j.cell.2018.08.028

    On - chip dual membrane pumpswith high - rigidity chip

    High-rigidity chip

    e.g.) CTC(Circulating Tumor Cell)

    http://bradyurology.blogspot.jp/2014/05/circulating-tumor-cells-for-prostate.html

    e.g.) Euglena

    http://www.goda.chem.s.utokyo.ac.jp/research_japanese.html

    Rare cells in massive cells

    Highly specific cellsin a group

    ・Biofuel・Nutritional food・Cosmetic product

    ・Diagnosis・Prognosis・Drag development

    http://www.jst.go.jp/impact/serendipity/concept.html

    http://www.jst.go.jp/impact/serendipity/concept.html

    Background : Cell sortingcell sorting

    cultivation

    cell sorting

    Size of target cell/particle/droplet [µm]

    Equi

    vale

    nt th

    roug

    hput

    [Hz]

    100 0 50 100 150

    101

    102

    103

    104

    105

    Y. Chen, Small, 2014

    S. H. Cho, Lab Chip, 2010

    Z. Cao, Lab Chip, 2013T. D. Perroud, Anal. Chem., 2008

    R. W. Applegate Jr., Lab Chip, 2006

    L. Ren, Lab Chip, 2015

    L. Rao, Sens. Act. B, 2015

    Y. Chen, Analyst, 2013

    Z. Cao, Lab chip, 2013

    S. Li, Anal. Chem., 2013

    S. W. Lim, PLOS ONE , 2015

    E. gracilisGCIY-EGFPA. Sciambi, Lab Chip, 2015

    Main-flow Local-flow

    Local-flow

    Pump A

    Pump B

    Pump A

    Pump B

    Pump A

    Pump B

    Local-flow

    Local-flow

    Pump A Pump A Pump BPump BPump A Pump B

    Sorting principleNon-sorting

    stateSorting state

    t = 0 μs

    t = 80 μs

    t = 40 μs

    t = 120 μs

    t = 200 μs

    t = 160 μs

    100 μm

    t = 0 μs

    t = 40 μs

    t = 80 μs

    t = 120 μs

    t = 160 μs

    t = 200 μs

    (v) Patterning of etching mask for sand blasting

    (vi) Sandblasting

    Glass

    SU-8Si

    OFPRCr Au

    SCM250

    (iii) Patterning of etching maskafter anodic bonding

    (i) Patterning of etching mask

    (ii) HF etching and cleaning

    (iv) DRIE

    (vii) Anodic bonding

    Packaging

    Base/Cover layer Cover layer

    Channel layer

    Fabrication process

    Sorting experimentsTarget: E. gracilis Target: GCIY-EGFP

    𝜏𝜏 = 100 µs𝑑𝑑 = 33 µm

    𝑤𝑤 𝑤𝑤

    𝜏𝜏 = 1 µsEvaluation of flow control

    Borosilicate glass

    SiliconBorosilicate glass

    31 kHz

    High-speedcamera

    Chip Stage

    Laser(488 nm)

    Photomultiplier(PMT)

    Half Mirror

    Halogen lamp

    White light

    Mirror

    Polarizer

    Dichroicmirror

    Notch filter

    High-voltageamplifier

    Detectioncircuit

    PZT1 PZT2

    Analyzer

    Wasteport

    Sorting system

    スライド番号 1