73
NII Shonan Meeting: Analyzing Large Collections of Time Series Functional Data & Time Series — A Brief Introduction — Alexander Aue [email protected] Department of Statistics & Graduate Group of Applied Mathematics, UC Davis

e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

NII Shonan Meeting: Analyzing Large Collections of Time Series

Functional Data & Time Series

— A Brief Introduction —

Alexander Aue

[email protected]

Department of Statistics & Graduate Group of Applied Mathematics, UC Davis

Page 2: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Outline

A. Functional Data

• What they are and where they show up

• How they are observed

• Adding time series context

Page 3: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Outline

A. Functional Data

• What they are and where they show up

• How they are observed

• Adding time series context

B. Analzying Functional Time Series

• Mean function and (auto)covariance operator

• Functional principal components

• Projections of functional autoregressive and moving average processes

Page 4: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Outline

A. Functional Data

• What they are and where they show up

• How they are observed

• Adding time series context

B. Analzying Functional Time Series

• Mean function and (auto)covariance operator

• Functional principal components

• Projections of functional autoregressive and moving average processes

C. Prediction and Estimation Methodology

• Predictions with functional autoregressive processes

• Estimation with functional moving average processes

• Illustrations with empirical results

Page 5: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Outline

A. Functional Data

• What they are and where they show up

• How they are observed

• Adding time series context

B. Analzying Functional Time Series

• Mean function and (auto)covariance operator

• Functional principal components

• Projections of functional autoregressive and moving average processes

C. Prediction and Estimation Methodology

• Predictions with functional autoregressive processes

• Estimation with functional moving average processes

• Illustrations with empirical results

D. Future Directions

Page 6: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

A. Functional Data

Page 7: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What is a Functional Observation?

A realization of a (typically smooth) random object

that takes values in an abstract function space

They often naturally arise in a times series context

Page 8: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Where They Show Up: Environmental Science

• Particulate matter:

• Daily PM10 curves recorded in Graz, Austria, during a winter season

• Curves are volatile but display on average a diurnal pattern

bullet Importance:

bullet High PM10 concentrations cause adverse health e↵ects

bullet Local and EU regulation sets pollution limits, requires policies

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

valu

e

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

mea

n va

lue

Page 9: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Where They Show Up: Environmental Science

• Particulate matter:

• Daily PM10 curves recorded in Graz, Austria, during a winter season

• Curves are volatile but display on average a diurnal pattern

• Statistical Importance: Prediction problem

• High PM10 concentrations cause adverse health e↵ects (cardiovascular diseases)

• Local and EU regulation sets pollution limits, requires (local) policies to be implemented

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

valu

e

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

mea

n va

lue

Page 10: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Where They Show Up: Civil Engineering

• Tra�c volume:

• Recorded is average velocity per minute on each of three lanes

• Average velocities are averaged over the lanes, weighted by number of vehicles per lane

bullet Importance:

bullet Are intra-day returns predictable?

bullet Notice: Nonstationarity of the daily functions

4060

8010

012

0

06−16(M) 06−17(Tu) 06−18(W) 06−20(F) 06−23(M) 06−24(Tu) 06−25(W) 06−26(Th) 06−27(F) 06−30(M)

Velo

city

(km

/h)

raw data functional data

Page 11: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Where They Show Up: Civil Engineering

• Tra�c volume:

• Recorded is average velocity per minute on each of three lanes

• Average velocities are averaged over the lanes, weighted by number of vehicles per lane

• Importance: Estimation problem

• Input for macroscopic highway tra�c flow model

• Used to determine necessity of speed limits and specifics of their implementation

4060

8010

012

0

06−16(M) 06−17(Tu) 06−18(W) 06−20(F) 06−23(M) 06−24(Tu) 06−25(W) 06−26(Th) 06−27(F) 06−30(M)

Velo

city

(km

/h)

raw data functional data

Page 12: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What They Are

• Stylized facts:

• Data are typically sampled from some continuous “time” process

• The sampled curves are envisioned as smooth [underlying low-dimensional structure?]

• Denote a functional observation by (x(t) : t 2 T )

• Set T = [0, 1]

• Important: T may not be time or univariate:

⇤ x(t) could be the concentration of a pollutant at altitude t

⇤ x(t) could be gray level of an image at spatial location t 2 T ⇢ R2

bullet Definition:

bullet A random element X is a functional variable if it takes values in a function space F

bullet Therefore X = (X(t) : t 2 T )

bullet A realization of X is denoted by x = (x(t) : t 2 T )

Page 13: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What They Are

• Stylized facts:

• Data are typically sampled from some continuous “time” process

• The sampled curves are envisioned as smooth [underlying low-dimensional structure?]

• Denote a functional observation by (x(t) : t 2 T )

• Set T = [0, 1]

• Important: T may not be time or univariate:

⇤ x(t) could be the concentration of a pollutant at altitude t

⇤ x(t) could be gray level of an image at spatial location t 2 T ⇢ R2

• Definition:

• A random element X is a functional variable if it takes values in a function space F

• Therefore X = (X(t) : t 2 T )

• A realization of X is denoted by x = (x(t) : t 2 T )

Page 14: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What They Are

• Examples of (normed) function spaces:

• F = C[0, 1], the continuous functions on the unit interval

• F = L2[0, 1], the square-integrable functions on the unit interval

• F could be a reproducing kernel Hilbert space, RKHS

• F could be a Sobolov space

bullet Convention:

bullet Focus on F = L2[0, 1] = L2

bullet Under this convention, X has values in L2

bullet Formally, there is a probability space (⌦,A, P ) such that

X : ⌦! L2

is A-B-measurable, where B is the Borel �-algebra generated by the open sets in L2

bullet Note: Pointwise interpretation of functions is lost

Page 15: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What They Are

• Examples of (normed) function spaces:

• F = C[0, 1], the continuous functions on the unit interval

• F = L2[0, 1], the square-integrable functions on the unit interval

• F could be a reproducing kernel Hilbert space, RKHS

• F could be a Sobolov space

• Convention for this talk:

• Focus on F = L2[0, 1] = L2

• Under this convention, X has values in L2

• Formally, there is a probability space (⌦,A, P ) such that

X : ⌦! L2

is A-B-measurable, where B is the Borel �-algebra generated by the open sets in L2

• Note: Pointwise interpretation of functions is lost

Page 16: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What They Are

• More stylized facts:

• Typically one has more than one observation

• In many applications, functional observations are not independent

• Often they are sampled in time

• Leads to functional data xj as realization of functional variable Xj, j = 1, . . . , n

• There are two clocks: Xj(t) has calendar time j and intra-day time t

Page 17: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

What They Are

• More stylized facts:

• Typically one has more than one observation

• In many applications, functional observations are not independent

• Often they are sampled in time

• Leads to functional data xj as realization of functional variable Xj, j = 1, . . . , n

• There are two clocks: Xj(t) has calendar time j and intra-day time t

• How they are observed

• There are no continuous measurements

• Any realization x is observed at discrete points only: x(t1), . . . , x(tK) for some K

• Measurements can be exact or contaminated with measurement error

• High sampling frequency scheme leads to dense functional data

• Low sampling frequency scheme leads to sparse functional data

Page 18: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Example: Particulate Matter Data

●●

●●

●●

●●

●●●

●●

●●●●

●●●

01.10.10

dat

●●

●●

●●

●●

●●●●

●●●

●●●

●02.10.10dat

●●●

●●

●●●●●

●●

●●

●●●

●●

03.10.10

dat

●●

●●

●●

●●

●●

●●

●●●●

●●

04.10.10

dat

●●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

05.10.10

01.10.10

02.10.10

03.10.10

04.10.10

05.10.10

Page 19: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Example: Particulate Matter Data

●●

●●

●●

●●

●●●

●●

●●●●

●●●

05.10.10

dat

●●

●●

●●

●●

●●●●

●●●

●●●

●02.10.10dat

●●●

●●

●●●●●

●●

●●

●●●

●●

03.10.10

dat

●●

●●

●●

●●

●●

●●

●●●●

●●

04.10.10

dat

●●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

05.10.10

01.10.10

02.10.10

03.10.10

04.10.10

05.10.10

Page 20: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Example: Particulate Matter Data

●●

●●

●●

●●

●●●

●●

●●●●

●●●

05.10.10

dat

●●

●●

●●

●●

●●●●

●●●

●●●

●05.10.10dat

●●●

●●

●●●●●

●●

●●

●●●

●●

03.10.10

dat

●●

●●

●●

●●

●●

●●

●●●●

●●

04.10.10

dat

●●●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

05.10.10

01.10.10

02.10.10

03.10.10

04.10.10

05.10.10

Page 21: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

The Functional Time Series Context

• Univariate and multivariate linear time series have been studied extensively

• Rather complete picture of strength and weaknesses of ARMA models

• Many extensions available

• Ready-to-use computer packages

Page 22: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

The Functional Time Series Context

• Univariate and multivariate linear time series have been studied extensively

• Rather complete picture of strength and weaknesses of ARMA models

• Many extensions available

• Ready-to-use computer packages

• If observations are functions

• Increased complexity as infinite-dimensional objects enter

• Some theory available

• Much more limited time series tool box

Page 23: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

The Functional Time Series Context

• Univariate and multivariate linear time series have been studied extensively

• Rather complete picture of strength and weaknesses of ARMA models

• Many extensions available

• Ready-to-use computer packages

• If observations are functions

• Increased complexity as infinite-dimensional objects enter

• Some theory available

• Much more limited time series tool box

• Literature

• Focus has often been on special cases

• First-oder functional autoregression dominates

• Many more results are becoming available

Page 24: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

B. Analyzing Functional Time Series

Page 25: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Mean Function and Covariance Operator

Two of the most important objects/summary statistics in multivariate statistics

are the sample mean and sample covariance matrix

How can these objects be defined and analyzed in the functional context?

Page 26: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Mean Function

• How to define sample and population mean functions?

• Forego technical definitions and background

• Natural definition of sample mean function is Xn = 1n

Pni=1Xi

• Definition of population mean function is

µ = E[X ] = ((E[X ])(t) : t 2 [0, 1]) = (E[X(t)] : t 2 [0, 1])

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

valu

e

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

mea

n va

lue

Page 27: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Covariance Operator and Spectral Decomposition

• Definition

• The covariance operator C : L2 ! L2 is defined by

C(y) = E⇥hX � µ, yi(X � µ)

=

Z 1

0c(s, ·)y(s)ds, y 2 H

with covariance kernel c(s, t) = E[{X(s)� µ}{X(t)� µ}]• c(s, t) is symmetric and non-negative definite and describes all cross-covariances of X

Page 28: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Covariance Operator and Spectral Decomposition

• Definition

• The covariance operator C : L2 ! L2 is defined by

C(y) = E⇥hX � µ, yi(X � µ)

=

Z 1

0c(s, ·)y(s)ds, y 2 H

with covariance kernel c(s, t) = E[{X(s)� µ}{X(t)� µ}]• c(s, t) is symmetric and non-negative definite and describes all cross-covariances of X

• Spectral decomposition

• The kernel c(s, t) allows for the spectral decomposition

c(s, t) =1X

`=1

�` e`(s)e`(t),

where (�` : ` 2 N) are the increasing eigenvalues with associated eigenfunctions (e` : ` 2 N)

• Karhunen–Loeve representation:

Xj =1X

`=1

hXj, e`ie`

Page 29: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Covariance Operator and Spectral Decomposition

• Definition

• The sample covariance operator Cn : L2 ! L2 is defined by

Cn(y) =1

n

nX

j=1

hXj � Xn, yi(Xj � Xn) =

Z 1

0cn(s, ·)y(s)ds, y 2 H,

with sample covariance kernel cn(s, t) =1

n

nX

j=1

{Xj(s)� Xn}{Xj(t)� Xn}]

t

s

Page 30: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Covariance Operator and Spectral Decomposition

• Spectral decomposition

• Cn has at most n non-zero eigenvalues �` with associated sample eigenfunctions e`

• Therefore only a limited number of eigenvalues and eigenfunctions can be estimated

• Plots show e↵ect of first three eigenfunctions for particulate matter data on mean function

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mea

n va

lue

Page 31: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Consistency Results

• Theory in Hormann & Kokoszka (2010)

• Results for wide range of stationary functional time series

• Consistency of the mean function:

pnkXn � µk = OP (1)

• Consistency of the covariance operator:

pnkCn � Ck = OP (1)

• Consistency of eigenvalues and eigenfunctions:

pn max

1`d

n

kc`e` � e`k + |�` � �`|o

= OP (1)

• Random signs c` = sign(he`, e`i) needed as e` is unique only up to the sign

• But c` cannot be determined from the sample

• Any estimator or test based on eigenfunctions must not depend on signs

Page 32: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Autocovariance Operators

• Linear dependence

• Important concept in univariate and multivariate time series analysis

• In functional context captured by autocovariance operators

Ch(y) = E[hX0 � µ, yi(Xh � µ)], h 2 Z, y 2 H

• Note: C = C0

Page 33: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Autocovariance Operators

• Linear dependence

• Important concept in univariate and multivariate time series analysis

• In functional context captured by autocovariance operators

Ch(y) = E[hX0 � µ, yi(Xh � µ)], h 2 Z, y 2 H

• Note: C = C0

• Sample autocovariance estimators

• Ch can be estimated by

Ch,n(y) =1

n

n�hX

j=1

hXj � Xn, yi(Xj+h � Xn), h 2 Z, y 2 H

• Here only h = 1 will be used

Page 34: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Projections onto Principal Components

• Functional PCA

• Idea: If complete function is too complicated work with fPC scores

• What happens to linear dependence after projection?

Page 35: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Projections onto Principal Components

• Functional PCA

• Idea: If complete function is too complicated work with fPC scores

• What happens to linear dependence after projection?

• First-order functional autoregression

• Xj = �Xj�1 + "j with

�(x) = a�hx, e1i + hx, e2i

e1 + ahx, e1ie2, x 2 H,

where a 2 (0, 1) and e1, e2 2 H orthonormal

• Assume that E[h"j, e1i2] > 0 but E[h"j, e2i2] = 0

• Then, the first fPC score series satisfies

hXj, e1i = ahXj�1, e1i + a2hXj�2, e1i + h"j, e1i

Page 36: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Projections onto Principal Components

• Functional PCA

• Idea: If complete function is too complicated work with fPC scores

• What happens to linear dependence after projection?

• First-order functional autoregression

• Xj = �Xj�1 + "j with

�(x) = a�hx, e1i + hx, e2i

e1 + ahx, e1ie2, x 2 H,

where a 2 (0, 1) and e1, e2 2 H orthonormal

• Assume that E[h"j, e1i2] > 0 but E[h"j, e2i2] = 0

• Then, the first fPC score series satisfies

hXj, e1i = ahXj�1, e1i + a2hXj�2, e1i + h"j, e1i

• Projection of this FAR(1) process is VAR(2) process

Page 37: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

C. Prediction and Estimation Methodology

Page 38: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

C. Prediction and Estimation Methodology

Page 39: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

A First Example

• First-order functional autoregression

• The most often applied zero-mean functional time series model is

Xj = �Xj�1 + "j, j 2 Z

• ("j : j 2 Z) are centered iid innovations and � a bounded linear operator satisfying k�kL < 1

Page 40: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

A First Example

• First-order functional autoregression

• The most often applied zero-mean functional time series model is

Xj = �Xj�1 + "j, j 2 Z

• ("j : j 2 Z) are centered iid innovations and � a bounded linear operator satisfying k�kL < 1

• Functional Yule–Walker equations; Bosq (2000)

• Apply E[h·, xiXj�1] to the model equations to obtain the functional Yule–Walker equations

E[hXj, xiXj�1]= E[h�(Xj�1), xiXj�1] + E[h"j, xiXj�1]= E[h�(Xj�1), xiXj�1]

• Let �0 be the adjoint operator of �, given by h�(x), yi = hx,�0(y)i• This gives the operator equation C1(x) = C(�0(x)) and therefore

�(x) = C 01C

�1(x)

• Can be estimated by smoothing techniques, gives predictor function Xn+1 = �nXn

Page 41: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Univariate and multivariate prediction methods; Hyndman & Shang (2009)

• This prediction technique avoids estimating operators directly

Page 42: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Univariate and multivariate prediction methods; Hyndman & Shang (2009)

• This prediction technique avoids estimating operators directly

• Step 1: Fix d. Use the data X1, . . . , Xn to compute the vectors

Xej = (xej,1, . . . , x

ej,d)

0,

containing the first d empirical FPC scores xej,` = hXj, e`i

Page 43: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Univariate and multivariate prediction methods; Hyndman & Shang (2009)

• This prediction technique avoids estimating operators directly

• Step 1: Fix d. Use the data X1, . . . , Xn to compute the vectors

Xej = (xej,1, . . . , x

ej,d)

0,

containing the first d empirical FPC scores xej,` = hXj, v`i• Step 2: Fix h. Use Xe

1, . . . ,Xen to determine the h-step ahead prediction

Xe

n+h = (yen+h,1, . . . , yen+h,d)

0

for Xen+h with an appropriate multivariate algorithm

Page 44: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Univariate and multivariate prediction methods; Hyndman & Shang (2009)

• This prediction technique avoids estimating operators directly

• Step 1: Fix d. Use the data X1, . . . , Xn to compute the vectors

Xej = (xej,1, . . . , x

ej,d)

0,

containing the first d empirical FPC scores xej,` = hXj, v`i• Step 2: Fix h. Use Xe

1, . . . ,Xen to determine the h-step ahead prediction

Xe

n+h = (yen+h,1, . . . , yen+h,d)

0

for Xen+h with an appropriate multivariate algorithm

• Step 3: Use the functional object

Xn+h = yen+h,1 v1 + . . . + yen+h,dvd

as h-step ahead prediction for Xn+h

Page 45: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Remarks on algorithm

• Gives best linear prediction (in mean square sense) of the population FPC scores

• It does not assume an FAR(p) structure or any other functional time series specification

• Standard methods such as the Durbin–Levinson and innovations algorithm can be applied

• Alternatives include exponential smoothing and nonparametric prediction algorithms

• Covariates can be incorporated in the prediction process

Page 46: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Remarks on algorithm

• Gives best linear prediction (in mean square sense) of the population FPC scores

• It does not assume an FAR(p) structure or any other functional time series specification

• Standard methods such as the Durbin–Levinson and innovations algorithm can be applied

• Alternatives include exponential smoothing and nonparametric prediction algorithms

• Covariates can be incorporated in the prediction process

• Remarks on numerical implementation

• Is convenient in R

• In Step 1, FPC score matrix and sample eigenfunctions with fda

• In Step 2, forecasting of the FPC scores with vars, in case VAR models are employed

• In Step 3, combine fda and vars to obtain Xn+h

Page 47: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Model selection — 1; A, Dubart Norinho & Hormann (2015)

• Assume Xj = �1Xj�1 + . . .�pXj�p + "j

• ("j) i.i.d. and �1, . . . ,�p Hilbert–Schmidt

• Then

E⇥kXn+1 � Xn+1k2

⇤ �2 + �d, (1)

where

�d =

1 +

pX

j=1

�j;d

�2◆ 1X

`=d+1

�` and �j;d =

✓ 1X

`=d+1

k�j(e`)k2◆1/2

Page 48: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Model selection — 1; A, Dubart Norinho & Hormann (2015)

• Assume Xj = �1Xj�1 + . . .�pXj�p + "j

• ("j) i.i.d. and �1, . . . ,�p Hilbert–Schmidt

• Then

E⇥kXn+1 � Xn+1k2

⇤ �2 + �d, (2)

where

�d =

1 +

pX

j=1

�j;d

�2◆ 1X

`=d+1

�` and �j;d =

✓ 1X

`=d+1

k�j(e`)k2◆1/2

• The constant �d bounds the additional prediction error due to dimension reduction

• Note that �j;d k�jkS for all d � 0 and �2 = E[k"n+1k2]• As a simple consequence, the error in (2) tends to �2 for d ! 1• Needed is a criterion to select order p and dimension d simultaneously

Page 49: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Model selection — 2; A, Dubart Norinho & Hormann (2015)

• Since the eigenfunctions e` are orthogonal and the FPC scores xn,` are uncorrelated, it follows

E⇥kXn+1 � Xn+1k2

= E

"

1X

`=1

xn+1,`e` �d

X

`=1

xn+1,`e`

2#

= E⇥kY n+1 � Y n+1k2

+1X

`=d+1

�`

(For vectors, k · k denotes Euclidean norm)

Page 50: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Methods Based on FPC Scores

• Model selection — 2; A, Dubart Norinho & Hormann (2015)

• Since the eigenfunctions e` are orthogonal and the FPC scores xn,` are uncorrelated, it follows

E⇥kXn+1 � Xn+1k2

= E

"

1X

`=1

xn+1,`e` �d

X

`=1

xn+1,`e`

2#

= E⇥kY n+1 � Y n+1k2

+1X

`=d+1

�`

(For vectors, k · k denotes Euclidean norm)

• To minimize the prediction error, set up the fFPE model selection criterion:

(p, d) = argminp,d

(

n + pd

n� pdtr(⌃) +

1X

`=d+1

�`

)

,

where ⌃ is the covariance matrix of the residuals from a VAR(p) fit to X1, . . . ,Xn

• Note that the multivariate FPE criterion uses the determinant instead of the trace

• To get a fully automatic procedure, replace all population with sample quantities

Page 51: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Functional FPE Criterion

• E↵ect on dimension reduction

• Frequencies of the dimension d chosen by in 100 simulation runs for FAR(1) process

• Plot shows that fFPE adapts to sample size

1 2 3 4 5 6 7 8 9

n=200n=1000

dimension d

frequ

ency

010

2030

4050

60

Page 52: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Predicting Daily Pollution Curves

• 175 PM10 functional observations, mean function and e↵ect of first three fPCs (90% TVE)

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

value

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

0.0 0.2 0.4 0.6 0.8 1.0

45

67

8

time

mean

value

Page 53: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Predicting Daily Pollution Curves

• Temperature di↵erence as important covariate

• High PM10 concentrations are related to temperature inversions

• Temperature di↵erence between Graz (350m) and Kalkleiten (710m)

-100

0

10

20

30

40

50

60

70

80

90

100

110

120

50

100

150

200

250

300

350

400

Ho

eh

e u

eb

er

Gru

nd

[m

]

061

0h

07

00

h

08

00

h

09

00

h

10

00

h

11

00

h

12

00

h

13

00

h

14

00

h

15

10

h

16

00

h

17

00

h

18

00

h

19

00

h

20

15

h

0

Zeit MEZ

PM10 Konzentration [ µg/m³ ] am 17.03.2004in Graz-Gries, Firma Roche

no data

Inversions- obergrenze [ m ]

2

4

6

8

10

12

14

16

18

20

22

24

50

100

150

200

250

300

Ho

eh

e u

eb

er

Gru

nd

[m

]

06

10

h

070

0h

080

0h

090

0h

100

0h

110

0h

120

0h

130

0h

140

0h

151

0h

160

0h

170

0h

180

0h

190

0h

201

5h

0

Zeit MEZ

Temperatur [ °C ] am 17.03.2004in Graz-Gries, Firma Roche

Page 54: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Predicting Daily Pollution Curves

• Including covariates in the prediction algorithm

• Include temperature di↵erence as covariate function

• The first two FPCs describe about 92% of the variance

• Leads to the inclusion of a two-dimensional regressor in the second step of the algorithm

• Fit d-variate VARX(p) model to the data

• Select d and p with covariate-adjusted fFPE criterion

fFPE(p, d) =n + pd + r

n� pd� rtr(⌃Z) +

X

`>d

�` (3)

• r is the dimension of the regressor vector (here, r = 2)

• ⌃Z is the covariance matrix of the residuals when a model of order p and dimension d is fit

Page 55: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Predicting Daily Pollution Curves

• Comparison of three prediction methods

• Subscript a (b, c) corresponds to method FPE (multiple testing, FPEX)

• Choose five blocks of functional observations Xj+1, . . . , Xj+100 for k = 0, 15, 30, 45, 60

• Fit the models for the di↵erent methods

• Make one-step ahead predictions for the functions Xj+100+` and for ` = 1, . . . , 15

• Compare through mean (MSE) and median (MED) of the 15 predictions from each block

• Report values of p and d chosen by the respective methods

k pa pb pc da db dc MSEa MSEb MSEc MEDa MEDb MEDc

0 1 1 2 3 3 3 1.33 1.28 1.32 1.28 1.23 0.88

15 3 1 3 3 3 3 2.69 5.23 2.50 2.38 5.34 1.45

30 4 1 3 3 2 3 2.05 4.05 1.93 1.33 2.56 1.26

45 3 1 3 3 2 3 2.25 2.44 1.83 1.34 1.67 1.14

60 2 1 1 3 2 5 1.22 1.82 1.05 1.12 1.60 0.89

Page 56: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

C. Prediction and Estimation Methodology

Page 57: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Motivation

• What is there

• Estimation can be done for several special cases

• FAR models are covered

⇤ First-order case is thoroughly developed

• Some techniques for first-order FMA models are available; Turbillon et al. (2008)

⇤ Procedures use restrictive assumptions

Page 58: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Motivation

• What is there

• Estimation can be done for several special cases

• FAR models are covered

⇤ First-order case is thoroughly developed

• Some techniques for first-order FMA models are available; Turbillon et al. (2008)

⇤ Procedures use restrictive assumptions

• Extension to more general setting

• Describe a principled way to estimate invertible functional time series

• Would like to use projections but need to take into account their properties

• Look at innovations algorithm for vector time series

• Use concept in functional context, and for estimation

Page 59: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Motivation

• What is there

• Estimation can be done for several special cases

• FAR models are covered

⇤ First-order case is thoroughly developed

• Some techniques for first-order FMA models are available; Turbillon et al. (2008)

⇤ Procedures use restrictive assumptions

• Extension to more general setting

• Describe a principled way to estimate invertible functional time series

• Would like to use projections but need to take into account their properties

• Look at innovations algorithm for vector time series

• Use concept in functional context, and for estimation

• For multivariate time series see Mitchell & Brockwell (1997)

Page 60: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Motivation

• Tra�c volume data: Functional time series point of view

• Raw data organized in days (left) and corresponding functions (right)

• Indicated periodicity in days

• Due to double averaging process, smoothness is generated

Page 61: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Motivation

• Functional PCA

• Works for “approximable” functional time series; Hormann & Kokoszka (2010)

• Know: Have to be careful with description of functional and multivariate dynamics

• Know: Invertibility is preserved under projections; Klepsch & Kluppelberg (2017)

Page 62: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Motivation

• Functional PCA

• Works for “approximable” functional time series; Hormann & Kokoszka (2010)

• Know: Have to be careful with description of functional and multivariate dynamics

• Know: Invertibility is preserved under projections; Klepsch & Kluppelberg (2017)

• Tra�c velocity data

• Registered centered functions (black) and four-term KL-representation (grey)

• Use compressed functions for estimation/prediction, assess error

−20

−10

010

2014−04−14(M) 2014−04−15(Tu) 2014−04−16(W) 2014−04−17(Th) 2014−04−18(F) 2014−04−19(Sa)

Velocity(km/h)

functional truncated

Page 63: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Main Result

• Theorem, technical conditions suppresed; A & Klepsch (2017)

• (Xj : j 2 Z) stationary, causal and invertible functional time series

• Causal representation with operators ( ` : ` 2 N0) given by

Xj =1X

`=1

`✏j�`, j 2 Z

• Invertible representation with operators (⇧` : ` 2 N) given by

Xj =1X

`=1

⇧`Xj�` + "j, j 2 Z

Page 64: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Main Result

• Theorem, technical conditions suppresed; A & Klepsch (2017)

• (Xj : j 2 Z) stationary, causal and invertible functional time series

• Causal representation with operators ( ` : ` 2 N0) given by

Xj =1X

`=1

`✏j�`, j 2 Z

• Invertible representation with operators (⇧` : ` 2 N) given by

Xj =1X

`=1

⇧`Xj�` + "j, j 2 Z

• Recursively determine with the functional innovations algorithm the coe�cients ⇥k,i in

Xn+1,k =k

X

i=1

⇥k,i(Xdk+1�i,n+1�i � Xn+1�i,k�i)

• Then, as k ! 1,

k⇥k,` � `k ! 0

Page 65: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Main Result

• Sample version

• There is a sample version of this result as well

• Operators in both causal and invertible representation are consistently estimable

Page 66: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Main Result

• Sample version

• There is a sample version of this result as well

• Operators in both causal and invertible representation are consistently estimable

• Tra�c velocity data

• One-step predictions obtained from functional innovations algorithm

• Observed functions (black) and predictors from 10-term KL expansion

7080

9010

012

0

06−16(M) 06−17(Tu) 06−18(W) 06−20(F) 06−23(M) 06−24(Tu) 06−25(W) 06−26(Th) 06−27(F) 06−30(M)

Velo

city

(km

/h)

functional data VMA(1) predictor

Page 67: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Model Selection

• Estimating an FMA(3) process

• Left three boxplots are on selection of d

• Right three boxplots on selection of q

Model 1−Slow Model 2−Slow Model 1−Fast Model 2−Fast

2

4

6

8

10

2

4

6

8

10

2

4

6

8

10

N=100

N=500

N=1000

TVE IND FPEd AIC LB FPEq TVE IND FPEd AIC LB FPEq TVE IND FPEd AIC LB FPEq TVE IND FPEd AIC LB FPEq

TVEINDFPEdAICLBFPEq

Page 68: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Traffic velocity data

• Time series structure

• Spectral norm of estimated cross-correlation matrices for lags h = 1, . . . , 5

• Vector model based on principal subspaces of dimension d = 1 to d = 5 (left to right)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Page 69: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Traffic velocity data

• Time series structure

• Spectral norm of estimated cross-correlation matrices for lags h = 1, . . . , 5

• Vector model based on principal subspaces of dimension d = 1 to d = 5 (left to right)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

• Model selection

• Methods choose d between 3 and 5

• Methods choose q = 1

• This seems reasonable given the spectral norm plots

Page 70: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Traffic velocity data

• Estimating the moving average operator

• FMA(1) kernel estimated with three available methods; Turbillon et al. (2008)

• d = 3 (first row) and d = 4 (second row)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.20.4

0.60.8

1.0

0

1

2

3

Proj

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.20.4

0.60.8

1.0

−1

0

1

2

Iter

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.20.4

0.60.8

1.0

−1

0

1

2

Inno

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.20.4

0.60.8

1.0

0

1

2

3

Proj

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.20.4

0.60.8

1.0

−1

0

1

2

Iter

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.20.4

0.60.8

1.0

−1

0

1

2

3

Inno

Page 71: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

D. Future Directions

Page 72: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Future Directions

• Data from single cell biology experiment

• Stimulating cell growth with EGF leads to “pulsing” ERK activity (red)

• Stimulates cell metabolism measured through ATP level (blue)

bullet Functional time series approaches

bullet Warping — di↵erent from the many existing methods

bullet High-dimensional — graphs show one of thousands of cells

bullet Co-integration — groups of cells seem to move together

1

-

“0.5 Hr”

“4.5 Hr”

“1 Hr”

“0 Hr”

“2.5 Hr”

Page 73: e aaue@ucdavis · 2019. 3. 31. · Up: ring • avolume: • lanes • e • e: oblem • adel • tation 40 60 80 100 120 06−16(M) 06−u) 06− 18(W) 06−20(F) 06−23(M) 06−u)

Future Directions

• Data from single cell biology experiment

• Stimulating cell growth with EGF leads to “pulsing” ERK activity (red)

• Stimulates cell metabolism measured through ATP level (blue)

• Functional time series approaches

• High-dimensional — graphs show one of thousands of cells (“signaling pathway”)

• Warping — individual cells have their own clocks

• Co-integration — groups of cells (but not all cells) seem to move together

1

-

“0.5 Hr”

“4.5 Hr”

“1 Hr”

“0 Hr”

“2.5 Hr”