26
September 2013 Doc ID 7767 Rev 6 1/26 1 VND920 Double channel high-side solid-state relay Features CMOS compatible input Proportional load current sense Shorted load protection Undervoltage and overvoltage shutdown Overvoltage clamp Thermal shutdown Current limitation Protection against loss of ground and loss of V CC Very low standby power dissipation Reverse battery protected Description The VND920 is a double chip device designed in STMicroelectronics™ VIPower™ M0-3 technology. The VND920 is intended for driving any type of load with one side connected to ground. The active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device integrates an analog current sense output which delivers a current proportional to the load current. The device automatically turns off in the case where the ground pin becomes disconnected. Type R DS(on ) I OUT V CC VND920 16 mΩ 35 A (1) 1. Per channel with all the output pins connected to the PCB. 36 V SO-28 (double island) Table 1. Device summary Package Order codes Tube Tape and reel SO-28 VND920 VND92013TR www.st.com Obsolete Product(s) - Obsolete Product(s)

DS(on)I OUT VCC VND920 16 mΩ Obsolete Product(s

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

September 2013 Doc ID 7767 Rev 6 1/26

1

VND920

Double channel high-side solid-state relay

Features

■ CMOS compatible input

■ Proportional load current sense

■ Shorted load protection

■ Undervoltage and overvoltage shutdown

■ Overvoltage clamp

■ Thermal shutdown

■ Current limitation

■ Protection against loss of ground and loss of VCC

■ Very low standby power dissipation

■ Reverse battery protected

DescriptionThe VND920 is a double chip device designed in STMicroelectronics™ VIPower™ M0-3 technology. The VND920 is intended for driving any type of load with one side connected to ground. The active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload.

The device integrates an analog current sense output which delivers a current proportional to the load current. The device automatically turns off in the case where the ground pin becomes disconnected.

Type RDS(on) IOUT VCC

VND920 16 mΩ 35 A(1)

1. Per channel with all the output pins connected to the PCB.

36 V

SO-28 (double island)

Table 1. Device summary

PackageOrder codes

Tube Tape and reel

SO-28 VND920 VND92013TR

www.st.com

O

bsolete Product(

s) - O

bsolete Product(

s)

Contents VND920

2/26 Doc ID 7767 Rev 6

Contents

1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 17

3.1.1 Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 17

3.1.2 Solution 2: diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . 18

3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . 19

4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 SO-28 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 SO-28 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 List of tables

Doc ID 7767 Rev 6 3/26

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 4. Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 5. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 6. Switching (VCC = 13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 7. VCC output diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 8. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 9. Current sense (9 V £ VCC £ 16 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 10. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 11. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 12. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 13. Thermal calculation according to the PCB heatsink area . . . . . . . . . . . . . . . . . . . . . . . . . . 20Table 14. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Table 15. SO-28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Table 16. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

O

bsolete Product(

s) - O

bsolete Product(

s)

List of figures VND920

4/26 Doc ID 7767 Rev 6

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 4. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 5. IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 7. Off-state output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 8. High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 10. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 11. Over-voltage shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 12. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 13. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 14. On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 15. Input high-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 16. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 17. On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 18. Input low-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 19. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 20. Maximum turn-off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 21. SO-28 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 22. Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 21Figure 23. Thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 24. Thermal fitting model of a double channel HSD in SO-28 . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 25. SO-28 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 26. SO-28 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 27. SO-28 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Block diagram and pin description

Doc ID 7767 Rev 6 5/26

1 Block diagram and pin description

Figure 1. Block diagram

UNDERVOLTAGE

OVERTEMPERATURE

VCC 1

GND 1

INPUT 1OUTPUT 1

OVERVOLTAGE

CURRENT LIMITER

LOGIC

DRIVER

Power CLAMP

VCCCLAMP

VDS LIMITER

DETECTION

DETECTION

DETECTION

KIOUT CURRENT

SENSE 1

UNDERVOLTAGE

OVERTEMPERATURE

VCC 2

GND 2

INPUT 2OUTPUT 2

OVERVOLTAGE

CURRENT LIMITER

LOGIC

DRIVER

Power CLAMP

VCCCLAMP

VDS LIMITER

DETECTION

DETECTION

DETECTION

KIOUT CURRENT

SENSE 2

O

bsolete Product(

s) - O

bsolete Product(

s)

Block diagram and pin description VND920

6/26 Doc ID 7767 Rev 6

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin Current Sense N.C. Output Input

Floating X X X

To groundThrough 1KΩ

resistorX

Through 10KΩ resistor

VCC 1

GND 1

INPUT 1

CURRENT SENSE 1

NC

VCC 1

VCC 2

GND 2

INPUT 2

CURRENT SENSE 2

VCC 2 VCC 2OUTPUT 2OUTPUT 2

OUTPUT 2

OUTPUT 2

OUTPUT 1OUTPUT 1OUTPUT 1

OUTPUT 1

VCC1

OUTPUT 2OUTPUT 2

OUTPUT 1OUTPUT 1

NC

NCNC

1

14 15

28

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Electrical specifications

Doc ID 7767 Rev 6 7/26

2 Electrical specifications

Figure 3. Current and voltage conventions

Note: VFn = VCCn - VOUTn during reverse battery condition.

2.1 Absolute maximum ratingsStressing the device above the rating listed in the “Absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality document.

IS2

IGND2

OUTPUT2

VCC2

IOUT2

VCC2

VSENSE2

CURRENT SENSE 1ISENSE1

VOUT2

OUTPUT1IOUT1

CURRENT SENSE 2ISENSE2

VSENSE1

VOUT1

INPUT2IIN2

INPUT1

IIN1

VIN2

VIN1

GROUND2

IS1

VCC1VCC1

IGND1

GROUND1

VF1 (*)

Table 3. Absolute maximum ratings

Symbol Parameter Value Unit

VCC DC supply voltage 41 V

-VCC Reverse DC supply voltage - 0.3 V

-Ignd DC reverse ground pin current - 200 mA

IOUT DC output current Internally limited A

-IOUT Reverse DC output current - 21 A

IIN DC input current +/- 10 mA

VCSENSE Current sense maximum voltage- 3

+ 15VV

VESD

Electrostatic discharge (human body model: R = 1.5 KΩ; C = 100 pF)

– INPUT– CURRENT SENSE– OUTPUT

– VCC

400020005000

5000

VVV

V

O

bsolete Product(

s) - O

bsolete Product(

s)

Electrical specifications VND920

8/26 Doc ID 7767 Rev 6

2.2 Thermal data

EMAX

Maximum switching energy(L = 0.25 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C; IL = 45 A)

355 mJ

Ptot Power dissipation TC ≤ 25 °C 6.25 W

Tj Junction operating temperature Internally limited °C

Tc Case operating temperature - 40 to 150 °C

Tstg Storage temperature - 55 to 150 °C

Table 3. Absolute maximum ratings (continued)

Symbol Parameter Value Unit

Table 4. Thermal data (per island)

Symbol Parameter Value Unit

Rthj-lead Thermal resistance junction-lead 20 °C/W

Rthj-amb Thermal resistance junction-ambient (one chip ON) 60(1)

1. When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at least 35 µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.

45(2)

2. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35 µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.

°C/W

Rthj-amb Thermal resistance junction-ambient (two chips ON) 46(1) 32(2) °C/W

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Electrical specifications

Doc ID 7767 Rev 6 9/26

2.3 Electrical characteristicsValues specified in this section are for 8 V < VCC < 36 V; -40 °C < Tj < 150 °C, unless otherwise stated.

Note: VCLAMP and VOV are correlated. Typical difference is 5V.

Table 5. Power

Symbol Parameter Test conditions Min. Typ. Max. Unit

VCC Operating supply voltage 5.5 13 36 V

VUSD Undervoltage shutdown 3 4 5.5 V

VOV Overvoltage shutdown 36 V

RON On-state resistance

IOUT = 10 A; Tj = 25 °C; 16 mΩ

IOUT = 10 A; 32 mΩ

IOUT = 3 A; VCC = 6 V 55 mΩ

VCLAMP Clamp voltage ICC = 20 mA 41 48 55 V

IS Supply current

Off-state; VCC = 13 V; VIN = VOUT = 0 V

10 25 µA

Off-state; VCC = 13 V; VIN = VOUT = 0 V; Tj = 25 °C

10 20 µA

On-state; VCC = 13 V; VIN = 5 V; IOUT = 0 A; RSENSE = 3.9 kΩ 5 mA

IL(off1) Off-state output current VIN = VOUT = 0 V 0 50 µA

IL(off2) Off-state output current VIN = 0 V; VOUT = 3.5 V -75 0 µA

IL(off3) Off-state output currentVIN = VOUT = 0 V; VCC = 13 V; Tj = 125 °C

5 µA

IL(off4) Off-state output currentVIN = VOUT = 0 V; VCC = 13 V; Tj = 25 °C

3 µA

Table 6. Switching (VCC = 13 V)

Symbol Parameter Test conditions Min. Typ. Max. Unit

td(on) Turn-on delay time RL = 1.3 Ω (see Figure 4) 50 µs

td(off) Turn-off delay time RL = 1.3 Ω (see Figure 4) 50 µs

dVOUT/dt(on) Turn-on voltage slope RL = 1.3 Ω (see Figure 4) See Figure 10 V/µs

dVOUT/dt(off) Turn-off voltage slope RL = 1.3 Ω (see Figure 4) See Figure 12 V/µs

Table 7. VCC output diode

Symbol Parameter Test conditions Min. Typ. Max. Unit

VF Forward on voltage -IOUT = 5 A; Tj = 150 °C 0.6 V

O

bsolete Product(

s) - O

bsolete Product(

s)

Electrical specifications VND920

10/26 Doc ID 7767 Rev 6

Table 8. Logic inputs

Symbol Parameter Test conditions Min. Typ. Max. Unit

VIL Input low-level voltage 1.25 V

IIL Low-level input current VIN = 1.25 V 1 µA

VIH Input high-level voltage 3.25 V

IIH High-level input current VIN = 3.25 V 10 µA

VI(hyst) Input hysteresis voltage 0.5 V

VICL Input clamp voltageIIN = 1 mA 6 6.8 8 V

IIN = -1 mA -0.7 V

Table 9. Current sense (9 V ≤ VCC ≤ 16 V)

Symbol Parameter Test conditions Min. Typ. Max. Unit

K1 IOUT/ISENSEIOUT = 1 A; VSENSE = 0.5 V;Tj = -40 °C...150 °C

3300 4400 6000

dK1/K1Current sense ratio drift

IOUT = 1 A; VSENSE = 0.5 V; Tj = -40 °C...150 °C

-10 +10 %

K2 IOUT/ISENSE

IOUT = 10 A; VSENSE = 4 V; Tj = -40 °C;Tj= 25°C...150°C

42004400

49004900

60005750

dK2/K2Current sense ratio drift

IOUT = 10A; VSENSE = 4V; Tj = -40 °C...150 °C

-8 +8 %

K3 IOUT/ISENSE

IOUT = 30 A; VSENSE = 4 V;Tj = -40 °CTj = 25 °C...150 °C

42004400

49004900

55005250

dK3/K3Current sense ratio drift

IOUT = 30 A; VSENSE = 4 V; Tj = -40 °C...150 °C

-6 +6 %

ISENSE0Analog sense current

VCC = 6...16 V; IOUT = 0 A; VSENSE = 0 V;

Tj = -40 °C...150 °C

0 10 µA

VSENSE

Max analog sense output voltage

VCC = 5.5 V; IOUT = 5 A;

RSENSE = 10 kΩ2 V

VCC > 8 V, IOUT = 10 A;

RSENSE = 10 kΩ4 V

VSENSEH

Sense voltage in overtemperature condition

VCC = 13 V; RSENSE = 3.9 kΩ 5.5 V

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Electrical specifications

Doc ID 7767 Rev 6 11/26

RVSENSEH

Analog sense output impedance in overtemperature condition

VCC = 13 V; Tj > TTSD; output open 400 Ω

tDSENSECurrent sense delay response

To 90% ISENSE(1) 500 µs

1. Current sense signal delay after positive input slope.

Table 10. Protections(1)

1. To ensure long term reliability under heavy over-load or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.

Symbol Parameter Test conditions Min. Typ. Max. Unit

TTSD Shutdown temperature 150 175 200 °C

TR Reset temperature 135 °C

Thyst Thermal hysteresis 7 15 °C

Ilim Current limitationVCC = 13 V 30 45 75 A

5 V < VCC < 36 V 75 A

VdemagTurn-off output clamp voltage

IOUT = 2 A; VIN = 0 V; L = 6 mH

VCC - 41 VCC - 48 VCC - 55 V

VONOutput voltage drop limitation

IOUT = 1 A; Tj = -40 °C...150 °C

50 mV

Table 11. Truth table

Conditions Input Output Sense

Normal operationLH

LH

0Nominal

Over-temperatureLH

LL

0VSENSEH

Under-voltageLH

LL

00

Over-voltageLH

LL

00

Short circuit to GNDLH

H

LL

L

0(Tj < TTSD) 0

(Tj > TTSD) VSENSEH

Short circuit to VCCL

H

H

H

0

< Nominal

Negative output voltage clamp L L 0

Table 9. Current sense (9 V ≤ VCC ≤ 16 V) (continued)

Symbol Parameter Test conditions Min. Typ. Max. Unit

O

bsolete Product(

s) - O

bsolete Product(

s)

Electrical specifications VND920

12/26 Doc ID 7767 Rev 6

Figure 4. Switching characteristics

Table 12. Electrical transient requirements

ISO T/R

7637/1

Test pulse

Test level

I II III IV Delays and impedance

1 - 25V(1)

1. All functions of the device are performed as designed after exposure to disturbance.

- 50V(1) - 75V(1) - 100V(1) 2ms, 10Ω

2 + 25V(1) + 50V(1) + 75V(1) + 100V(1) 0.2ms, 10Ω

3a - 25V(1) - 50V(1) - 100V(1) - 150V(1) 0.1µs, 50Ω

3b + 25V(1) + 50V(1) + 75V(1) + 100V(1) 0.1µs, 50Ω

4 - 4V(1) - 5V(1) - 6V(1) - 7V(1) 100ms, 0.01Ω

5 + 26.5V(1) + 46.5V(2)

2. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

+ 66.5V(2) + 86.5V(2) 400ms, 2Ω

VOUT

dVOUT/dt(on)

tr

80%

10% tf

dVOUT/dt(off)

ISENSE

t

t

90%

td(off)

INPUT

t

90%

td(on)

tDSENSE

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Electrical specifications

Doc ID 7767 Rev 6 13/26

Figure 5. IOUT/ISENSE versus IOUT

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 323000

3500

4000

4500

5000

5500

6000

6500

min.Tj=-40°C

max.Tj=-40°C

min.Tj=25...150°C

max.Tj=25...150°C

typical value

IOUT (A)

IOUT/ISENSE

6500

6000

5500

5000

4500

4000

3500

3000

O

bsolete Product(

s) - O

bsolete Product(

s)

Electrical specifications VND920

14/26 Doc ID 7767 Rev 6

Figure 6. Waveforms

SENSE

INPUT

NORMAL OPERATION

UNDERVOLTAGE

VCC

VUSD

VUSDhyst

INPUT

OVERVOLTAGE

VCC

SENSE

INPUT

SENSE

LOAD CURRENT

LOAD CURRENT

LOAD CURRENT

VOV

VOVhystVCC > VUSD

SHORT TO GROUND

INPUT

LOAD CURRENT

SENSE

LOAD VOLTAGE

INPUT

LOAD VOLTAGE

SENSE

LOAD CURRENT

<Nominal <Nominal

SHORT TO VCC

OVERTEMPERATURE

INPUT

SENSE

TTSD

TRTj

LOAD CURRENT

ISENSE=RSENSE

VSENSEH

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Electrical specifications

Doc ID 7767 Rev 6 15/26

2.4 Electrical characteristics curves

Figure 7. Off-state output current Figure 8. High-level input current

Figure 9. Input clamp voltage Figure 10. Turn-on voltage slope

Figure 11. Over-voltage shutdown Figure 12. Turn-off voltage slope

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

1

2

3

4

5

6

7

8

9

IL(off1) (uA)

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iih (uA)

Vin=3.25V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Vicl (V)

Iin=1mA

-50 -25 0 25 50 75 100 125 150 175

Tc (ºC)

250

300

350

400

450

500

550

600

650

700

dVout/dt(on) (V/ms)

Vcc=13VRl=1.3Ohm

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

30

32

34

36

38

40

42

44

46

48

50

Vov (V)

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

50

100

150

200

250

300

350

400

450

500

550

dVout/dt(off) (V/ms)

Vcc=13VRl=1.3Ohm

O

bsolete Product(

s) - O

bsolete Product(

s)

Electrical specifications VND920

16/26 Doc ID 7767 Rev 6

Figure 13. ILIM vs Tcase Figure 14. On-state resistance vs VCC

Figure 15. Input high-level Figure 16. Input hysteresis voltage

Figure 17. On-state resistance vs Tcase Figure 18. Input low-level

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

10

20

30

40

50

60

70

80

90

100

Ilim (A)

Vcc=13V

5 10 15 20 25 30 35 40

Vcc (V)

0

5

10

15

20

25

30

35

40

45

50

Ron (mOhm)

Tc= - 40ºC

Tc= 25ºC

Tc= 150ºC

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Vih (V)

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Vhyst (V)

-50 -25 0 25 50 75 100 125 150 175

Tc (ºC)

0

5

10

15

20

25

30

35

40

45

50

Ron (mOhm)

Iout=10AVcc=8V; 36V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Vil (V)

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Application information

Doc ID 7767 Rev 6 17/26

3 Application information

Figure 19. Application schematic

3.1 GND protection network against reverse battery

3.1.1 Solution 1: resistor in the ground line (RGND only)

This can be used with any type of load.

The following is an indication on how to dimension the RGND resistor.

1. RGND ≤ 600 mV / (IS(on)max).

2. RGND ≥ (-VCC) / (-IGND)

where - IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power Dissipation in RGND (when VCC < 0: during reverse battery situations) is:

PD = (-VCC)2/ RGND

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high-side drivers sharing the same RGND.

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see below).

VCC1

OUTPUT2

C. SENSE 1

Dld

+5V

Rprot

OUTPUT1

RSENSE1,2

INPUT1

C. SENSE 2

INPUT2

μC

Rprot

Rprot

Rprot

DGND

RGND

VGND

GND1 GND2

VCC2

O

bsolete Product(

s) - O

bsolete Product(

s)

Application information VND920

18/26 Doc ID 7767 Rev 6

3.1.2 Solution 2: diode (DGND) in the ground line

A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the VCC max DC rating. The same applies if the device is subject to transients on the VCC line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

3.3 MCU I/Os protectionIf a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the microcontroller I/O pins to latch-up.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax

Calculation example:

For VCCpeak = -100V and Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V

5 kΩ ≤ Rprot ≤ 65 kΩ.

Recommended values: Rprot = 10 kΩ .

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Application information

Doc ID 7767 Rev 6 19/26

3.4 Maximum demagnetization energy (VCC = 13.5V)

Figure 20. Maximum turn-off current versus inductance

Note: Values are generated with RL =0 Ω.In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

1

10

100

0.01 0.1 1 10 100L(mH)

ILMAX (A)

A

BC

C: Tjstart = 125°C repetitive pulse

A: Tjstart = 150°C single pulse

B: Tjstart = 100°C repetitive pulse

O

bsolete Product(

s) - O

bsolete Product(

s)

Package and PCB thermal data VND920

20/26 Doc ID 7767 Rev 6

4 Package and PCB thermal data

4.1 SO-28 thermal data

Figure 21. SO-28 PC board

Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 2 mm, Cu thickness = 35 µm, Copper areas: 0.5 cm2, 3 cm2, 6 cm2).

RthA = Thermal resistance Junction to Ambient with one chip ON

RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1 = Pdchip2

RthC = Mutual thermal resistance

Table 13. Thermal calculation according to the PCB heatsink area

Chip 1 Chip 2 Tjchip1 Tjchip2 Note

ON OFF RthA x Pdchip1 + Tamb RthC x Pdchip1 + Tamb

OFF ON RthC x Pdchip2 + Tamb RthA x Pdchip2 + Tamb

ON ON RthB x (Pdchip1 + Pdchip2) + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1 = Pdchip2

ON ON (RthA x Pdchip1) + RthC x Pdchip2 + Tamb (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1 ≠ Pdchip2

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Package and PCB thermal data

Doc ID 7767 Rev 6 21/26

Figure 22. Rthj-amb vs PCB copper area in open box free air condition

Figure 23. Thermal impedance junction ambient single pulse

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7PCB Cu heatsink area (cm^2)/island

RTHj_amb (°C/W)

RthC

RthB

RthA

0.01

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100 1000time(s)

Zth(°C/W)

One channel ON

Tw o channels ON

6 cm ^2/is land

3 cm ^2/is land

0,5 cm ^2/is land

O

bsolete Product(

s) - O

bsolete Product(

s)

Package and PCB thermal data VND920

22/26 Doc ID 7767 Rev 6

Equation 1pulse calculation formula

Figure 24. Thermal fitting model of a double channel HSD in SO-28

Table 14. Thermal parameters

Area/island (cm2) 0.5 6

R1 (°C/W) 0.02

R2 (°C/W) 0.1

R3 (°C/W) 2.2

R4 (°C/W) 11

R5 (°C/W) 15

R6 (°C/W) 30 13

C1 (W.s/°C) 0.0015

C2 (W.s/°C) 7.00E - 03

C3 (W.s/°C) 1.50E - 02

C4 (W.s/°C) 0.2

C5 (W.s/°C) 1.5

C6 (W.s/°C) 5 8

ZTHδ RTH δ ZTHtp 1 δ–( )+⋅=

where δ tp T⁄=

T_amb

Pd1

C1

R4

C3 C4

R3R1 R6R5R2

C5 C6C2

Pd2

R2

C1 C2

R1

Tj_1

Tj_2

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Package and packing information

Doc ID 7767 Rev 6 23/26

5 Package and packing information

5.1 ECOPACK® packagesIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 25. SO-28 package dimensions

Table 15. SO-28 mechanical data

SymbolMillimeters

Min. Typ. Max.

A 2.65

a1 0.10 0.30

b 0.35 0.49

b1 0.23 0.32

C 0.50

c1 45° (typ.)

D 17.7 18.1

E 10.00 10.65

e 1.27

e3 16.51

F 7.40 7.60

L 0.40 1.27

S 8° (max.)

O

bsolete Product(

s) - O

bsolete Product(

s)

Package and packing information VND920

24/26 Doc ID 7767 Rev 6

5.2 SO-28 packing information

Figure 26. SO-28 tube shipment (no suffix)

Figure 27. SO-28 tape and reel shipment (suffix “TR”)

All dimensions are in mm.

Base Q.ty 28Bulk Q.ty 700Tube length (± 0.5) 532A 3.5B 13.8C (± 0.1) 0.6

A

CB

Base Q.ty 1000

Bulk Q.ty 1000A (max) 330B (min) 1.5

C (± 0.2) 13F 20.2G (+ 2 / -0) 16.4

N (min) 60T (max) 22.4

Tape dimensionsAccording to Electronic Industries Association(EIA) Standard 481 rev. A, Feb. 1986

All dimensions are in mm.

Tape width W 16

Tape Hole Spacing P0 (± 0.1) 4Component Spacing P 12Hole Diameter D (± 0.1/-0) 1.5

Hole Diameter D1 (min) 1.5Hole Position F (± 0.05) 7.5Compartment Depth K (max) 6.5

Hole Spacing P1 (± 0.1) 2

Top

cover

tape

End

Start

No componentsNo components Components

500mm min

500mm minEmpty components pocketssaled with cover tape.

User direction of feed

Reel dimensions

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920 Revision history

Doc ID 7767 Rev 6 25/26

6 Revision history

Table 16. Document revision history

Date Revision Changes

07-Jul-2004 1 Initial release.

09-Sep-2004 2

Minor changes.Current and voltage convention update (page 2).Configuration diagram (top view) and suggested connections for unused and n.c. pins insertion (page 2).6 cm2 Cu condition insertion in thermal data table (page 3).

VCC - output diode section update (page 4).Revision history table insertion (page 34).Disclaimers update (page 35).

03-May-2006 3 Suggested connections for unused and n.c.pins correction.

17-Dec-2008 4Document reformatted and restructured.Added content, list of figures and tables.Added ECOPACK® packages information.

28-Feb-2011 5

Updated following figures:– Figure 13: ILIM vs Tcase

– Figure 22: Rthj-amb vs PCB copper area in open box free air condition

19-Sep-2013 6 Updated Disclaimer.

O

bsolete Product(

s) - O

bsolete Product(

s)

VND920

26/26 Doc ID 7767 Rev 6

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

O

bsolete Product(

s) - O

bsolete Product(

s)