Dry triboelectrostatic beneficiation of fly ash.pdf

Embed Size (px)

Citation preview

  • 8/11/2019 Dry triboelectrostatic beneficiation of fly ash.pdf

    1/5

    E L S E V I E R

    PIh S0016-2361 97)00045-8

    uel

    Vol, 76, No. 8, pp. 801-805, 1997

    1997 E lsev ier Science L td . A l l r igh ts r eserved

    Printed in Great Britain

    0016-2361/97 17.00+0.00

    r y t r i b o e le c t r o s t a t ic b e n e f ic i a tio n

    of f ly ash

    He n g Ba n T i a n X . Li J a m e s C . Ho we r J o h n L . S c h a e f e r a n d

    J o h n M. S t e n c e l

    Center for App l ied E nergy R esearch, Universi ty o f Kentucky, 3572 Iron W orks Pike, Lexington,

    KY 40571-8433, USA

    Received 1 February 1996; revised 10 Jan uary 1997)

    A laboratory-scale triboelectrostatic separation system in conjunction w ith analytical techniques was used to study

    fly ash beneficiation. Fly ash samples were characterized by size analysis and carbon content an d then subjected to

    dry triboelectrostatic separation. Due to differences in the surface physical and chemical properties of the carbon

    and ash, particles of unburnt carbon and fly ash were triboelectrically charged to opposite polarity and then

    separated by passing them through a static electric field. Ash fractions deposited on the positive and negative

    electrodes were collected, analysed for carbon content and subjected to SEM and petrographic analyses. The

    results indicate that the physical and chemical properties of the ash dictate the m aximu m carb on-a sh separation

    that would be possible. In addition, the potential of dry separation technology for removing unburnt carbon from

    coal ash was demonstrated.

    1 9 9 7 E l s e v i e r S c i e n c e L t d .

    ( K e y w o r d s : f ly a s h ; b e n e f i c i a t io n ; t r i b o e l e c t r o s t a t i c s e p a r a t i o n )

    M o s t c o a l c o m b u s t i o n a s h p r o d u c e d i n t h e U S A i s

    lan d f i l l ed , th e co s t o f w h ich in so me s ta tes h as r i s en to

    m o r e th an 3 0 / to n . Th is f in an c ia l b u r d en , in c r eased in te r es t

    i n i m p r o v i n g t h e e n v i r o n m e n t a l a n d s o c i a l i m p a c t s o f c o a l

    u t i l i za t io n , an d th e p o ss ib i l i ty o f reco v er in g co n s t i tu en ts o f

    f ly ash an d /o r u s in g i t f o r in d u s t r ia l ap p l ica t io n s ( e . g .

    cemen t , s t r u c tu r a l an d p a in t /p las t i c f i l l e r s , cen o sp h er es ,

    mag n e t i t e an d sp ec ia l ty ca r b o n s ) p o in t to i t s f u tu r e p o ten t ia l

    as an imp o r tan t in d u s t r ia l c o m m o d i t y ~.

    A n im p o r tan t p r o p er ty o f f ly ash w h ich l imi t s i t s u se is th e

    c a r b o n c o n t e n t . H o w e v e r , r e d u c i n g t h e c a r b o n c o n t e n t t o

    m e e t C l a s s F o f t h e A S T M C 6 1 8 - 8 9 a a n d C 3 1 1 - 9 0

    sp ec i f ica t io n s 2 f o r u se o f a sh as a min er a l ad m ix tu r e in

    P o r t l a n d c e m e n t c o n c r e t e i s n o t a n e a s y t a s k . F o r e x a m p l e ,

    t h e i n f o r m a t i o n g i v e n i n

    T a b l e 1

    sh o w s th a t , ev en f o r h ig h

    c a r b o n c o n v e r s i o n e f f i c ie n c i e s d u r i n g c o a l c o m b u s t i o n , t h e

    ca r b o n co n ten t o f f ly ash i s d i f f i cu l t to r ed u ce b e lo w th e

    6 w t% LO I ( lo s s o n ig n i t io n ) C6 1 8 c las s i f i ca t io n s tan d ar d . I t

    m a y b e p o s s i b l e t o r e d u c e t h e c a r b o n c o n t e n t e f f i ci e n t l y b y

    u s e o f b e n e f i c i at i o n t e c h n o l o g i e s. B e c a u s e > 9 0 % o f t h e f l y

    ash in th e U SA i s h an d led in th e d r y s ta te , d r y b en ef ic ia -

    t i o n - - o r t r ib o e le c t ro s ta t i c s e p a r a t i o n - - h a s b e e n t h e re c e n t

    f o c u s o f r e se a r c h a t C A E R , s o m e o f w h i c h i s d i s c u ss e d i n

    th i s p ap er .

    D r y t r i b o e l e c t r o s t a t i c s e p a r a t i o n t e c h n o l o g y i s j u s t

    b e g i n n i n g t o b e a p p l i e d t o r e c o v e r p u r i f i e d a s h f r o m f l y

    a s h s t r e a m s w h i c h c o n t a i n h i g h c o n c e n t r a t i o n s o f c a r b o n .

    D u e t o d i f f e r e n c e s i n t h e s u r f a c e p h y s i c a l a n d c h e m i c a l

    p r o p e r t i e s o f t h e c a r b o n a n d a s h , t h e y c a n b e e l e c t r i c a ll y

    c h a r g e d t o o p p o s i t e p o l a r i t y b y p a r t i c l e - t o - p a r t i c l e o r b y

    p a r t i c l e - t o - s u r f a c e c o n t a c t . B y m a n i p u l a t i n g t h e p o l a r i t y

    a n d m a g n i t u d e o f t h i s c h a r g e , t h e c a r b o n a n d a s h c a n b e

    s e p a r a t e d b y p a s s i n g t h e m t h r o u g h a n e x t e r n a l e l e c t r i c

    field: see F i g u r e 1 . T h e s u c c e s s f u l a p p l ic a t i o n o f d r y

    sep ar a t io n tech n o lo g y to ash p u r i f i ca t io n w o u ld b e s ig -

    n i f ic a n t b e c a u s e i t w o u l d e n a b l e e x p a n d e d u t i li z a t io n o f a

    min e r a l r e so u r ce w h ich o th e r w ise i s lan d f i l l ed o r n o t u sed to

    i ts fu l l po ten tial .

    A n u m b e r o f d r y t r i b o e l e c t r o s t a t i c s e p a r a t i o n s y s t e m s

    h a v e b e e n d e s i g n e d f o r a p p l i c a t i o n t o p a r ti c l e s e g r e g a t i o n ,

    o n e o f th em su b m i t ted f o r p a ten t in g as ea r ly as 1 9 04 3 ,4

    5 9 10 1 1 12 14

    C i c c u e t a l . - I n cu le t , F in se th e t a l . a n d B a n e t a l . -

    e x a m i n e d t h e u s e o f t ri b o e l e c tr o s t a ti c s e p a r a t i o n t o p u r i f y

    m i n e r a l s a n d t o s e p a r a t e m i n e r a l m a t t e r f r o m c o a l . T h e s e

    1 5

    e f f o rt s a n d o t h e r s h a v e p r o v i d e d i m p o r t a n t f u n d a m e n t a l

    in s ig h t in to p a r t i c le su r f ace e lec t r ica l p r o p er t i e s an d

    e n g i n e e r i n g p a r a m e t e r s w h i c h a l l o w c h a r g i n g o f p a r ti c l e s

    to o p p o s i te p o la r i t i e s an d th e i r su b seq u en t sep ar a t io n u n d er

    a s ta t i c e lec t r ic f i e ld . Co a l f ly ash co u ld b e co n s id e r ed a

    d i r ec t an a lo g u e to co a l , b ecau se in b o th cases th e g o a l i s to

    s e p a r a t e a m i n o r c o n s t i t u e n t f r o m t h e m a j o r o n e , t h e

    d i f f e re n c e b e i n g t h a t i n c o a l t h e m i n e r a l m a t t e r i s t h e m i n o r

    co n s t i tu en t an d ca r b o n th e majo r , w h er eas in f ly ash th e

    r e v e r s e i s t r u e . A s a c o n s e q u e n c e o f t h e g r o u n d b r e a k i n g

    w o r k b y C i c c u

    e t a l . 5 - 9

    an d F in se th

    e t a l .

    11 there is r ene we d

    in te r es t in th e ap p l ica t io n o f t r ib o e lec t r o s ta t i c s ep ar a t io n

    s y s t e m s . A l r e a d y a r e l a t i v e l y c o m p l e x e l e c t r o s t a t ic s e p a r a -

    16 17

    to r h as b een co n s t r u c ted an d o p er a te d ' a t a s ca le o f

    - 1 8 t h - ~. T h e o p e r a t i n g d i f f e r e n c e s b e t w e e n s u c h u n i t s

    p r i m a r i l y r e l a t e t o t h e m e t h o d b y w h i c h f i n e p a r t i c l e s a r e

    ch ar g ed an d t r an sp o r ted th r o u g h a sep ar a t io n zo n e . F in se th

    e t a l . 1 1

    a n d C i c c u

    e t a l . 5 - 9

    h a v e u s e d p n e u m a t i c t r a n s -

    p o r t a n d c h a r g i n g m e t h o d s , w h e r e a s t h e c o m m e r c i a l

    u n i t 1 6'1 7 u ses mec h an ica l ag i ta t io n f o r t r an sp o r t an d

    F u e l 1 9 97 V o l u m e 7 6 N u m b e r 8 8 1

  • 8/11/2019 Dry triboelectrostatic beneficiation of fly ash.pdf

    2/5

    Dry triboelectrostatic beneficiation of f/y ash: H. Ban

    et al.

    Table Carbon content of fly ash versus carbon burnout and coal

    mineral matter content

    Mineral matter in coal Carbon burnout

    Carbon in ash (wt )

    (wt )

    (wt )

    10

    99

    8.3

    10

    97

    21.2

    20

    99 3.8

    20 97 10.7

    Feeder

    ,? /

    Carrier Gas

    Charger

    IIcII

    Copper

    Plates

    - -15 kV

    Figure The principle of dry triboelectrostatic separation of

    carbon and fly ash

    charging. The research reported in this paper used

    pneumatic transport processing.

    Very little information has been published in which

    physical and chemical properties of fly ash are related to the

    separation purities that can be attained using dry triboelec-

    trostatic separation. Those properties expected to play an

    important role include particle size and size distribution, ash

    mineralogy, extent of liberation between the carbon and ash

    forms, the form of the carbon, and surface segregation of

    elemental species. Hower et ~1. have presented an

    overview of potential forms of carbon and minerals,

    including the glassy phases which dominate as-received

    fly ashes, thi spine1 minerals, magnetite, and the carbons.

    The carbon phases were shown to include inertinite, a coal

    maceral which has been observed to pass through a boiler

    unburnt,

    and the forms which were recognized as isotropic

    and anisotropic coke.

    There is a need to optimize dry fly ash separation

    technologies because of the vast amount of coal ash

    produced in the USA and the growing interest in applying

    superior technologies because of their economic and

    environmental performance. In this paper, the results from

    triboelectrostatic separation of coal fly ashes using a

    laboratory-scale system are presented. The design of the

    triboelectrostatic separation system and the data obtained on

    the ashes in this study will be used in future work to

    optimize ash separation using feed rates typical of industrial

    and utility systems.

    EXPERIMENTAL

    A laboratory-scale

    triboelectrostatic separation system,

    shown in

    Figure 2

    was used in the fly ash beneficiation

    study. The fly ashes were fed to the tribocharging unit by a

    vibratory feeder which was contained in a sealed environ-

    ment tank. Each ash was metered into a pneumatic transport

    tube where it was entrained in N2 carrier gas. The gas-

    particle mixture was then passed through the Cu tribochar-

    ger loop where the fly ash was charged by particle-wall

    (and particle-particle) contacts. The exit of the charger was

    connected to a separation chamber which contained a

    parallel Cu plate configuration, across which was estab-

    lished a high-intensity electric field. A filter was placed at

    the bottom of the separation chamber to retain any particles

    not deflected to the Cu plates. The exit of the separation

    chamber was connected to an induced-draught fan.

    A sample of -10 g of each ash was weighed and loaded

    into the vibratory feeder. The average carrier gas flow

    velocity in the Cu tribocharger was - 15 m s-, The electric

    field strength was maintained at 200 kV m-l.

    Ash samples were acquired from either electrostatic

    precipitator (ESP) hoppers or storage silos at commercial

    pulverized coal boilers. Prior to separation tests, the samples

    were evaluated for particle size and carbon content. After

    the triboelectrostatic separation, samples were collected

    from the separation chamber (see below) and their weight

    and carbon content determined. Representative sample

    fractions were also examined using scanning electron

    microscopy (SEM) and energy-dispersive spectrometry

    (EDS).

    Fly ash fractions were prepared for petrographic analysis

    by mixing 1 g, or less in some cases, of fly ash with an epoxy

    Custom

    Gas Blend

    Izced raft

    Filter

    Figure 2 Schematic of the experimental setup

    802

    Fuel 1997 Volume 76 Number 8

  • 8/11/2019 Dry triboelectrostatic beneficiation of fly ash.pdf

    3/5

    Dry tr iboelectrostatic beneficiation o f fly ash: H Ban et al.

    l a c ed w i t h S u d a n B l a c k d y e . T h e 2 . 5 4 c m d i a m e t e r e p o x y -

    f l y a s h p e l l e ts w e r e p o l i s h e d t o a f in a l p o l i s h o f 0 . 0 5 m .

    P e t r o g r ap h i c e x a m i n a t i o n w a s c o n d u c t e d u s i n g o i l im m e r -

    s i o n o b j e c t i v e s a t 4 0 0 m a g n i f i c a t i o n .

    R E S U L T S A N D D I S C U S SI O N

    D u r i n g o p e r a t i o n o f t h e t r i b o e l e c t r o s ta t i c s e p a r a t o r s y s t e m ,

    t h e c a r b o n - e n r i c h e d c o m p o n e n t w a s d e p o s i t e d o n t h e

    n e g a t i v e e l e c t r o d e a n d t h e a s h - e n r i c h e d c o m p o n e n t w a s

    d e p o s i t e d o n t h e p o s i t i v e e l e ct r o d e . T h e d e p o s i t s w e r e i n t h e

    f o r m o f l o n g , n a r r o w r i b b o n s o f m a t e r i a l , s t ar t i n g f r o m n e a r

    t h e e x i t o f th e t r a n s p o r t i n g t u b e a n d e x t e n d i n g t o t h e e n d o f

    t h e c o p p e r p l a t e s . A n a l y s i s o f u p t o f o u r s e q u e n t i a l a x i a l

    s e c t i o n s o f t h e d e p o s i t e d s a m p l e s s h o w e d t h e c a r b o n c o n t e n t

    t o b e h i g h e s t a t t h e t o p o f t h e n e g a t i v e e l e c t r o d e a n d l o w e s t

    a t th e t o p o f t h e p o s i t i v e e l e c tr o d e . T h e c a r b o n c o n t e n t o n

    t h e p o s i t i v e e l e c t r o d e i n c r e a s e d w i t h d i s t a n c e f r o m t h e i n l e t

    o f t h e e l e c tr o s t a t i c s e p a r a t o r , w h i l e t h e c a r b o n c o n t e n t o n

    t h e n e g a t i v e e l e c t r o d e d e c r e a s e d w i t h d i s t a n c e f r o m t h e

    i n l e t . S i n c e t h e c a r b o n a n d a s h c o n t e n t s o n t h e e l e c t r o d e s

    c o u l d b e r e p r e s e n t e d b y a c o n t i n u o u s d i s t r i b u t i o n , i t w a s

    p o s s i b l e t o m a k e a n a r b i t r a r y s p l i t o f t h e s e p a r a t e d p r o d u c t s

    t h a t s a t i s f i e d d e s i r e d p u r i t y r e q u i r e m e n t s . H o w e v e r , a s i n

    a n y p h y s i c a l s e p a r a t i o n p r o c e s s , h i g h e r - p u r i t y p r o d u c t s a r e

    a c h i e v e d a t t h e e x p e n s e o f l o w e r y i e l d .

    A p r o c e d u r e w a s e s t a b l i s h e d f o r s a m p l e c o l l e c t i o n a n d

    a n a l y s i s . F o r e a c h t e s t , a t o ta l o f 1 2 s a m p l e f r a c t i o n s w e r e

    c o l l e c te d : t e n w e r e f r o m f i v e a x i a l re g i o n s o n e a c h o f th e

    t w o e l e c t r o d e s , o n e w a s f r o m t h e c e n t r e f i l te r a t t h e b o t t o m

    o f t h e s e p a r a t o r , a n d o n e w a s r e m o v e d f r o m t h e P l e x i g l a s s

    w i n d o w s a t th e e d g e s o f th e C u e l e c t r o d e s . T h e s e f r a c t io n s

    a s w e l l a s th e f e e d w e r e w e i g h e d a n d a n a l y s e d f o r c a r b o n

    c o n t e n t , a n d t h e d a t a w e r e p l o t t e d i n a m a n n e r s i m i l a r t o a

    w a s h a b i l i t y o r r e l e a s e a n a l y s i s c u r v e 1 9 , 2 0 , u s i n g t h e a n a l o g y

    of each f r ac t ion a s e i the r a f loa t o r s ink p rodu c t .

    C o n s e q u e n t l y t h e s e d a t a i n c lu d e a n a s s e s s m e n t o f m a s s

    b a l a n c e s , b e c a u s e a s h n o t c o l l e c t e d b y t h e g a s f i lt e r s y s t e m

    w a s a l s o t a k e n i n t o a c c o u n t .

    C a r b o n a n d a s h r e c o v e r y d a t a , a n d p a r t i c l e s i z e a n d

    c a r b o n d i s t r i b u t i o n s , f o r f l y a s h s a m p l e A a r e s h o w n i n

    Figures 3 5. S a m p l e A w a s o b t a i n e d f r o m a u t i l i t y b o i l e r

    b u r n i n g b i t u m i n o u s c o a l h a v i n g a s u l fu r c o n t e n t o f ~ 2 w t % .

    O v e r 6 5 w t % o f th e a s h w a s r e c o v e r e d w i t h a c a r b o n c o n t e n t

    8

    o o I

    o . I

    i

    3 0 :

    20 t---

    1 0 - -

    > 1 5 0 1 5 0 - 7 5 7 5 - 4 5 4 5 - 3 8 3 8 - 2 5 < 2 5

    S iz e m ic r o n s )

    Fig ure 3 Fly ash mass, carbon concentration and carbon mass

    distributions in each size fraction of fly ash samp le A

    >

    ~

    -

    /1

    8 6 o

    o 2 0

    o

    0 1 0 2 0 3 0 4 0 5 0

    C a r b o n %

    F i g u r e 5 Carbon recovery curve of fly ash sample A, showing C

    concentration in carbon-enriched product

    t - -

    / )

    3 5 w t % . T h e p a r t ic l e

    s i z e d is t r ib u t i o n d a t a s h o w e d t h a t a s i g n i f i c a n t a m o u n t o f t h e

    a s h w a s o f s i z e > 1 5 0 / ~ m a n d < 2 5 / ~ m . T h i s w i d e

    d i s t r ibu t ion o f pa r t i c le s i ze p resen t s a s ign i f i can t cha l l enge

    t o d r y s e p a r a t i o n s y s t e m s , d u e t o a n o r d e r - o f - m a g n i t u d e

    r a n g e o f a e r o d y n a m i c d r a g a n d g r a v i t a ti o n a l f o r c e s .

    S e p a r a t i o n r e s u l t s f o r f l y a s h s a m p l e B a r e p r e s e n t e d i n

    Figures 6 a n d 7 . T h i s s a m p l e w a s o b t a i n e d f r o m a u t i l i t y

    F u el 1 99 7 V o l u m e 7 6 N u m b e r 8

    8 0 3

  • 8/11/2019 Dry triboelectrostatic beneficiation of fly ash.pdf

    4/5

    Dry riboelectrostatic beneficiation of fly ash: H Ban

    et al.

    10 20 30 40 50

    Carbon

    Figure 7 Carbon recovery curve of fly ash sample B, showing C

    concentration in carbon-enriched product

    burning bituminous coal having a sulfur content of

    -3.5 wt . The ash recovery data are plotted for one-stage

    and two-stage processing schemes. A one-stage processing

    scheme would not include recycle of material passing

    through the electrostatic chamber, whereas a two-stage

    scheme would recycle such material, i.e. particles not

    reporting to either positive or negative plates. The data show

    that the second-stage separation increased the ash recovery

    by - 15 wt , and hence it may be important to recycle ash

    that is not influenced by the electric field. Overall for sample

    B, nearly 55 wt of the ash was recovered with a carbon

    content of < 3 wt , while > 60 of the carbon was

    recovered with a carbon purity > 40 wt .

    The partitioning of glass, mullite, spinel, quartz and the

    carbon forms for three additional Class F fly ashes2 is shown

    in TabEe 2 All these samples originated at industrial sites

    and represent a broad range of carbon concentrations. In all

    cases, samples collected on the positive electrode had a

    greater concentration of glass than those collected on the

    negative plate; samples collected on the negative plate had a

    greater concentration of the various carbon forms.

    Table 2 Partitioning (vol. ) of mineral and carbon forms for three type F fly ashes

    Plant Producta

    Ash Carbon Glass Mullite

    Spine1 Quartz

    Isotropic C Anisotropic C

    Inertinite

    C feed

    92.2 7.6 86.6

    0.8 3.2

    0.6 3.8 4.6

    0.4

    negative

    74.6 26.8 45.0

    4.0 3.0

    1.0 22.0 21.0

    4.0

    positive

    99.6 0.6 97.6

    0.6 1.0

    0.2 0.4 0.0

    0.2

    centre

    90.4 7.2 72.4

    2.4 3.8

    2.0 8.0 8.4

    3.0

    D feed

    77.0 23.4 69.8

    0.8 1.0

    0.4 10.4 15.2

    2.8

    negative

    49.8 50.2 28.0

    1.0 0.0

    0.0 24.0 43.0

    4.0

    positive

    97.2 3.0 96.6

    0.0 0.0

    0.0 1.2 1.5

    0.6

    centre

    66.2 39.2 40.5

    0.5 0.5

    1.0 24.0 31.0

    2.5

    E feed 55.4 44.4 38.4 2.0 0.4 18.4 11.2 20.0 9.6

    negative

    36.3 60.6 17.0

    1.0 1.0

    2.0 37.0 35.0

    7.0

    positive

    78.8 17.4 86.8

    0.0 0.0

    0.8 6.0 4.4

    2.0

    centre

    60.8 41.2 57.0

    0.5 1.0

    4.0 15.0 20.5

    2.0

    Negative, positive and centre denote material collected from the negative and positive electrodes and bypass filter respectively

    1

    I

    I

    90

    t l

    Isotropic Coke

    B Anisotropic Coke

    20

    10

    0

    Cf C- C+ CO Df D- D+ DO Ef E- E+ EO

    Feed &Separated Fractions

    Figure 8 Distribution of carbon forms based on petrographic

    analysis. Symbols following C, D, E have the following

    connotation: f, original feed ash; +, product collected from posi-

    tive plate; -, product collected from negative plate; 0, product not

    reporting to plates but collected in bypass filter

    The distribution of the carbon forms obtained by

    petrographic analyses is shown in Figure 8 and Table 2

    These data suggest that the efficiency with which carbon

    could be removed may be related to the amount of carbon in

    the feed; however, no mass balances were performed for

    these petrographic samples. Sample C, with 8.8 vol.

    carbon in the feed, had 0.6 vol. carbon in the glass-rich

    positive-plate fraction, while sample E, with > 40 vol.

    carbon in the feed, had > 10 vol. carbon in the glass-rich

    fraction. The results for sample C are similar to the carbon

    removal efficiencies obtained from idealized samples

    containing physical mixtures of spherical glassy carbon

    and silica particles12, from which > 95 removal of carbon

    could be attained. If samples C and E were strictly physical

    mixtures of carbon and ash, and if the forms of the mineral

    and carbon phases did not influence separability, it could be

    expected that the carbon content of the ash-enriched product

    on the positive plate for sample C would be as low as 0.4 ,

    whereas the carbon content of the ash-enriched product for

    sample E would be

    -2 . That these values were not

    attained attests to the possible importance of ash properties

    influencing maximum separation efficiency.

    No clear trends are evident in

    Figure 8

    for mullite, spine1

    and quartz beneficiation. This is possibly a consequence of

    the low quantities of these components and/or the broad size

    804 Fuel 1997 Volume 76 Number 8

  • 8/11/2019 Dry triboelectrostatic beneficiation of fly ash.pdf

    5/5

    D ry t r i b o e le c t ro s ta t i c b e n e f i c i a t i o n o f f l y a s h : H B a n et al

    d i s t r ib u t i o n o f th e c o m p o n e n t s i n th e f e e d . S t u d i e s o f t h e

    s i z e d i st r i b u ti o n o f o t h e r f l y a s h e s h a v e s h o w n t h a t a

    u n i f o r m d i s t ri b u t i o n o f p e t r o g r a p h i c c o m p o n e n t s i s n o t

    c o m m o n f o r a f ly a sh o r f o r s i m i l a r s i z e r a n g e s i n d i f fe r e n t

    f l y a s h e s 18. I s o t r o p i c a n d a n i s o t r o p i c c a r b o n s t e n d t o b e

    c o n c e n t r a t e d i n t h e l a r g e s t s iz e f ra c t i o n s ( > 7 5 m ) a s

    c o m p a r e d w i t h th e m i n e r a l a s h , w h i l e s o m e f ly a s h e s h a v e

    s i g n i fi c a n t a m o u n t s o f c a r b o n e v e n i n t he f i n e s t si z e

    f r a c ti o n s . I n m a n y a s h e s , t h e < 2 5 m f r a c t i o n c a n f o r m

    7 0 - 8 0 w t % o f t h e t o t a l 18.

    I n al l c a s e s , t h e f ly a s h w h i c h r e p o r t e d t o n e i t h e r a

    p o s i t i v e n o r a n e g a t i v e e l e c t r o d e , b u t r a t h e r t o t h e f i l t e r a t

    t h e b o t t o m o f th e s e p a r a t o r , c o n t a i n e d l a r g e r p a r t ic l e s t h a n

    t h a t w h i c h r e p o r t e d t o t h e p o s i t iv e o r n e g a t i v e p l a t e s . T h e s e

    l a r g e r p a r t i c l e s c o m p r i s e d g l a s s , c a r b o n a n d s p i n e l s , t h e

    l a r g e s t b e i n g p r e d o m i n a n t l y s p i n e ls . L a r g e , m a s s i v e p a r ti -

    c l e s te n d t o h a v e s m a l l e r c h a r g e / m a s s r a t io s t h a n s m a l l , li g h t

    p a r t i c l e s b e c a u s e t r i b o c h a r g i n g p r o d u c e s p a r t i c l e s h a v i n g

    n e a r l y c o n s t a n t v a l u e s o f c h a r g e p e r u n i t s u r f a c e a r e a 14.

    T h e r e f o r e , e i t h e r t he e l e c t r i c a l f o r c e ( F = q E , w h e r e q i s t h e

    c h a r g e o n a p a r t i c l e a n d E i s t h e e l e c t r i c f i e l d i n t e n s i t y ) w a s

    n o t s t r o n g e n o u g h t o p u l l th e h e a v y p a r t i c l e s t o a n e l e c t r o d e ,

    o r th e s e p a r t i c l e s w e r e d e f l e c t e d , r e a c h e d a n e l e c t r o d e a n d

    t h e n b o u n c e d o f f a s a c o n s e q u e n c e o f c h a r g e a n d / o r

    m o m e n t u m e x c h a n g e .

    T h e S E M r e s u l ts f o r s a m p l e s c o l l e c t e d o n t h e b y p a s s f i lt e r

    s h o w e d n e a r l y s p h e r i c a l p a r ti c l e s w h i c h a p p e a r e d t o b e

    p a r t l y o x i d i z e d c o k e . A l s o , p a r t i c l e s c o n s i s t in g o f a m i x t u r e

    o f a s h w i t h c a r b o n w e r e o b s e r v e d . T h e c h a r g i n g o f t h e s e

    m i x e d c a r b o n - a s h p a r ti c le s w o u l d b e m i n i m a l b e c a u s e n o

    d o m i n a n t p o l a r i t y s p e c i e s w a s p r e s e n t . A l t h o u g h t h e

    p e t r o g r a p h ic a n a l y s es s h o w e d a s s e m b l a g e s w h i c h c o n s is t e d

    o f c a r b o n m i x e d w i t h a s h , i t i s i m p o r t a n t t o m e n t i o n t h a t t h e

    a c t u a l c o u n t o f s u c h p a r ti c l e s w a s l o w a n d c o u l d b e b i a s e d

    a s a c o n s e q ue n c e o f w h i c h c o m p o n e n t - - a s h o r c a r b o n - -

    w a s o b s e r v e d w i t h i n t h e e y e p i e c e c r o s s - h a i r s .

    C O N C L U S I O N S

    T h i s s t u d y h a s s h o w n t h a t d ry t r ib o e l e c t r o s t a t ic s e p a r a t i o n

    o f f ly a sh h a s t h e p o t e n t i a l t o s e p a r a t e u n b u r n t c a r b o n f r o m

    f l y a s h . L a b o r a t o r y t e s t s o n a s i m p l e p a r a l l e l - f l o w s e p a r a t o r

    s h o w e d t h at 6 0 - 8 0 w t % o f th e a s h c o u l d b e r e c o v e r e d

    h a v i n g a c a r b o n c o n t e n t < 5 w t % , a n d u p to 5 0 % o f t h e

    c a r b o n c o u l d b e r e c o v e r e d a s m a t e r i a l w i t h a c a r b o n c o n t e n t

    > 5 0 w t % . T h e o v e r a l l c o l le c t i o n e f f i c i e n c y a p p e a r s t o b e

    r e l a t e d t o th e a m o u n t o f c a r b o n i n t h e fe e d a n d i s p r o b a b l y

    i n f l u e n c e d b y t h e s i z e d i s t r ib u t i o n o f t h e c o m p o n e n t s a n d

    t h e a m o u n t o f m i x e d p a r t i c le s . A d d i t i o n a l s t u d i e s s h o u l d b e

    i n i ti a t e d t o e v a l u a t e t h e e f f e c t s o f a s h p r o p e r t i e s o n

    s e p a r a t i o n , w i t h t h e g o a l o f o p t i m i z i n g t h e b e n e f i c ia t i o n

    p r o c e s s .

    R E F E R E N C E S

    l M anz , O. E . , i n Tenth Internat ional Ash Use Symposium,

    Proceedings , Volume 2: Ash Use R D and Clean Coal By-

    Products. E l e c t ri c P o w e r R e s e a r c h I n s t i t u te , P a l o A l t o , C A,

    1 9 9 3, p p . 6 4 / 1 - 6 4 / 1 2 .

    2 Am e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e ri a l s, 1990 Annua l

    Book o f AST M S tandar ds, Vo l . 04 .02. P h i l ade lph ia , 1990

    p p . 1 8 6 - 1 9 0 , 2 9 8 - 3 0 0 .

    3 Schnel l , F . O., US Pate nt No . 1 ,071,354, 1913.

    4 Schw e i tze r , E . O. , US Pa ten t No . 2 ,216,254 , 1940 .

    5 Car ta , M. , Fe r ra ra , G. , De l fa , C . and C iccu , R . , US Pa ten t

    No . 3 ,493,109, 1970.

    6 C iccu , R . , Al fano , G. , Ca rb in i , P . , Gh ian i , M . , Passa r in i , N. ,

    Pe re t t i , R . and Zucca , A. , i n Proceedings of the In terna-

    t ional Sym posium on Adva nces in Fine Pa r t ic le Processing.

    Elsev ie r , New York , 1990 .

    7 Al fano , G. , Ca rb in i , P ., Ca r t a , M . , C iccu , R . , De l Fa l , C . ,

    Peret t i , R. and Zucca, A., Journal of Electrostat ics, 1985,

    1 6 315.

    8 C iccu , R . , Gh ian i , M. and Fe r ra ra , G. , Pow der a nd Par t ic les ,

    1993, 11, 5 .

    9 C iccu , R . , Pe re t t i , R . , Se rc i, A. , Tam an in i , M. and Zucca , A. ,

    Jour nal of Electrostatics, 1989, 23, 157.

    10 Incu let , I . I . , in Electrostatics an d its Applications, ed. A. D.

    Mo o r e . W i l e y , Ne w Yo r k , 1 9 7 3 , p p . 8 6 - 1 1 4 .

    11 F inse th , D. , N ew by , T . and E l s t rod t , R . , i n Process ing and

    Uti lization o f High -Sulfur Coals V, C o a l S c i e n c e a n d T e c h -

    n o l o g y , Vo l . 2 1 . E l s e v i e r , Ams t e r d a m, 1 9 9 3 , p p . 9 1 - 9 8 .

    12 Ban , H., Sch aefer , J . L., Sai to , K. and Stencel , J . M ., Fuel ,

    1994, 73, 1108.

    13 Ban , H., Sch aefer , J . L. and Stencel , J . M ., in Pr oc e e d i ngs o f

    the Tenth An nua l International Pit tsburgh Coa l Confer-

    ence-Coal : Energy and the Environment . Un i v e r s i t y o f

    P i t t sbu rgh , 1993 , pp . 138-143 .

    14 Ban , H. , Expe r imen ta l s tudy o f pa r t i cu la te cha rge r e l a t ing to

    d ry coa l c l ean ing . Ph .D. Thes i s , Un ive r s i ty o f Ken tucky ,

    1994.

    15 Ke l ly , E . G. and Spon i swo od , D. J . , Minerals Engineering,

    1989, 2 , 193.

    16 W hi t lock , D. R . , US Pa ten t No . 4 ,839 ,032 , 1989 .

    17 W hi t lock , D. R . , US Pa ten t No . 4 ,874 ,507 , 1989 .

    1 8 Ho w e r , J . C . , R a t h b o n e , R . F . , Gr a h a m , U . M. , Gr o p p o ,

    J . G. , B rooks , S . M. , Rob l , T . L . and Med ina , S . S . , i n

    Pro ceed ings of the Eleve nth International Coa l Test ing

    Conference. 1995, p . 49.

    19 Leonard , J . W. , I I I and Hard inge , B . C . ( ed .) , C oal Pr e par a -

    tion. S o c i e t y o f Mi n i n g , M e t a l lu r g y , a n d E x p l o r a t io n , I n c . ,

    1991.

    20 For re s t , W . R . , Ad e l , G. T . and Yoon , R . H. , C oal

    Preparation, 199 4, 14, 13.

    F u el 1 99 7 V o l u m e 7 6 N u m b e r 8 8 5