17
Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain Smith, Eliver Eid Bou Ghosn, Harikrishna Rallapalli, Jennifer A. Prescher, Timothy Larson, Leonore A. Herzenberg, Sanjiv Sam Gambhir SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.62 NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology 1 © 2014 Macmillan Publishers Limited. All rights reserved

DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour deliveryBryan Ronain Smith, Eliver Eid Bou Ghosn, Harikrishna Rallapalli, Jennifer A. Prescher, Timothy Larson, Leonore A. Herzenberg, Sanjiv Sam Gambhir

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NNANO.2014.62

NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology 1

© 2014 Macmillan Publishers Limited. All rights reserved

Page 2: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Fig.  S1.    Intravital  microscopy  system  used  to  image  monocytes  and  nanoparticles  inside  living  mice.  Call-­‐out:  SCID  mouse  with  dorsal  window  chamber  imaged  via  intravital  microscopy  using  customized  motion  stabilizer.          Supplementary  Fig.  S2  Negative  control  for  hyperspectral  dark-­‐field  microscopy  for  Fig.  1c-­‐d  a.                            b.  

 c.  

   Supplementary  Fig.  S2.  Negative  control  using  darkfield  hyperspectral  microscopy.  a.  White  blood  cell  harvested  from  mouse  without  SWNTs.  We  harvested  blood  from  mice  injected  with  vehicle  (PBS)  but  no  SWNTs.  The  SWNT  hyperspectral  library  (Supp.  Fig.  S2c),  generated  using  a  solution  of  SWNTs  only,  was  overlaid  on  the  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 3: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

image  and  no  SWNTs  were  observed  (thus  the  lack  of  red  pseudocolored  pixels,  as  observed  in  Fig.  1c  when  SWNTs  are  present).  b.  A  screenshot  of  the  pixel-­‐by-­‐pixel  analysis,  with  a  representative  sampling  of  pixels,  showing  that  no  pixel  out  of  the  277,704  pixels  in  the  image  from  Supp.  Fig.  S2a  matched  the  hyperspectral  SWNT  library.  c.  Illustrates  how  the  SWNT  spectral  library  was  generated.  On  the  left  is  a  cluster  of  SWNTs  on  a  slide.  On  the  right  is  a  spectral  library  taken  from  SWNTs  all  over  the  slide.  Each  curve  is  derived  from  a  single  pixel.  Three  of  the  spectra  on  the  right  are  generated  from  the  pixels  to  which  the  red  arrows  point  on  the  left.        

© 2014 Macmillan Publishers Limited. All rights reserved

Page 4: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Fig.  S3  Uptake  of  SWNTs  by  Ly-­‐6Chi  monocytes  does  not  activate  them  by  6h  after  injection    

 

 Supplementary  Fig.  S3.  SWNT  uptake  does  not  activate  monocytes  based  on  surface  marker  expression  analysis.  Plots  represent  expression  levels  of  CD11b  (top)  and  Ly-­‐6C  (bottom)  on  the  surface  of  monocytes  2h  and  6h  after  SWNT  uptake  in  living  mice.  The  FACS  analysis  is  reported  as  histograms  indicating  the  fluorescence  intensity  of  CD11b  and  Ly-­‐6C  surface  expression  on  Ly-­‐6Chi  monocytes.  Monocytes  are  known  to  up-­‐regulate  surface  markers  (e.g.,  CD11b  and  Ly-­‐6C)  within  a  few  hours  of  activation1.  However,  our  data  show  SWNT  uptake  does  not  alter  the  surface  phenotype  of  monocytes  2h  and  6h  after  intravenous  injection,  indicating  a  lack  of  cell  activation  after  monocyte  uptake  of  SWNTs.      

0 10 2 10 3 10 4 10 5

Ly-6C

CD11b

Blood%Ly(6Chi%monocytes

0 10 3 10 4 10 5

% M

ax 2h SWNT

Control naïve

6h SWNT

© 2014 Macmillan Publishers Limited. All rights reserved

Page 5: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Fig.  S4  Monocyte  interaction  with  endothelium  over  time  a  

     b.  Day  1  

 RAD  vs  RGD:  p  =  0.0183                    

1 2 3 4 5 6 7

1

2

3

4

5

6

7x 10−8 Dependence of Peptide on Monocyte Interaction with Endothelium

Time (Days)

Aver

age

num

ber o

f cel

ls p

er u

nit t

ime

RGD

RAD

Cy5.5

Variable((

Baseline(rate(/(

Incidence(rate(ratio(

Roubst(Standard(Error( z( P>|z|(

95%(Con>idence(Interval(

Plain(Baseline(rate( 2.99EB08( 4.17EB09( B123.99( 0.000( 2.27eB08(B(3.93eB08(RAD(vs(Plain(rate(ratio( 1.73461( 0.9750165( 0.98( 0.327( (0.5764337(B(5.219853(RGD(vs(Plain(rate(ratio( 0.340983( 0.1393315( B2.63( 0.008( 0.1530793(B(0.7595358(Overdispersion(param(

(alpha)( 5.610232( 1.082173( (( ((((

((3.844061(B(8.187878(

© 2014 Macmillan Publishers Limited. All rights reserved

Page 6: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Up  to  Day  7  

 RAD  vs  RGD:  p  =  0.0103      Supplementary  Fig.  S4.  The  dependence  of  peptide  (conjugated  to  the  SWNT  surface)  on  monocyte  interaction  with  endothelium  over  time.  a.  Based  on  videos  of  monocytes  in  blood  vessels  in  the  RGD-­‐SWNT,  RAD-­‐SWNT  and  plain  SWNT  conditions,  counts  were  made  of  monocytes  interacting  with  vascular  endothelium,  normalized  by  unit  time  and  by  unit  vascular  volume  and  plotted  here  as  crude  rates.  The  number  of  monocytes  containing  RAD-­‐SWNTs  and  cy5.5-­‐SWNTs  that  interact  with  the  vasculature  rise  over  time,  while  the  number  of  interacting  monocytes  in  the  RGD-­‐SWNT  condition  decreases  slightly  over  a  week.  This  corresponds  with  our  observation  of  increased  numbers  of  RGD-­‐SWNT  laden  monocytes  over  time  in  tumour  interstitium  (Fig.  3b).  Note  also  the  much  lower  overall  number  of  monocytes  laden  with  RGD-­‐SWNTs  compared  with  RAD-­‐SWNT  and  Cy5.5  conditions  over  the  time  range  indicated.  This  may  suggest  that  monocytes  in  the  RGD-­‐SWNT  condition  enter  tumour  interstitium  more  quickly  than  in  the  other  conditions,  perhaps  due  to  RGD  interaction  with  its  integrin  cognate,  based  on  our  data  in  Figure  3.  This  would  explain  our  observation  of  more  monocytes  loaded  with  RGD-­‐SWNTs  in  the  tumour  interstitium,  yet  fewer  monocytes  loaded  with  RGD-­‐SWNTs  on  the  vascular  endothelium  surface  compared  to  controls  RAD-­‐SWNT  and  Cy5.5-­‐SWNT.  Thus  the  idea  that  RGD  on  SWNTs  encourages  interaction  of  monocytes  with  the  tumour  vascular  endothelium  surface  and  supports  increased  deposition  of  monocytes  is  consistent  across  our  intravital  imaging  (e.g.,  Fig.  3  and  Supplementary  Fig.  S4)  and  Raman  imaging  (Supplementary  Fig.  S5)  results.  Nevertheless,  further  validation  experiments  are  necessary.  b.  We  perform  statistics  on  monocytes  interacting  with  endothelium  on  day  1  and  up  to  day  7  (integrated  from  day  2  to  day  7).  We  computed  crude  rates  for  plain  (no  peptide)  SWNTs,  and  computed  the  statistics  for  rate  ratios  between  Plain  vs.  RAD-­‐SWNT  and  Plain  vs.  RGD-­‐SWNT  conditions.  On  day  1,  927  observations  were  made  of  blood  vessels;  up  to  day  7,  1112  observations  were  made.  n=11  mice  were  evaluated.  On  both  day  1  and  up  to  day  7,  p-­‐values  show  that  Plain  and  RAD-­‐SWNTs  are  not  significantly  different,  but  Plain  vs.  RGD-­‐SWNTs  display  a  significant  difference  as  do  RAD-­‐  vs.  RGD-­‐SWNTs.      

Variable(

Baseline(rate(/(

Incidence(rate(ratio(

Robust(Standard(Error( z( P>|z|(

95%(Con>idence(Interval(

Plain(Baseline(rate( 5.33EB08( 8.96EB09( B99.58( 0.000( 3.83eB08(B(7.41eB08(RAD(vs(Plain(rate(ratio( 1.171778( 0.6886785( 0.27( 0.787( .3703195(B(3.707783(RGD(vs(Plain(rate(ratio( 0.1771549( 0.0879957( B3.48( 0.000( 0.0669187(B(0.4689847(Overdispersion(param(

(alpha)( 6.44306( 1.307319( (( (( 4.328929(B(9.58967(

© 2014 Macmillan Publishers Limited. All rights reserved

Page 7: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Fig.  S5  Raman  intensity  of  SWNTs  in  tumour  over  time  

   Supplementary  Fig.  S5.    Raman  intensity  of  SWNTs  in  tumour  over  time  p.i.  The  Raman  signal  in  the  window  of  mice  injected  with  RGD-­‐SWNTs  and  RAD-­‐SWNTs  was  measured  from  day  3  to  day  9  post-­‐injection,  and  the  linear  trendlines  and  data  points  are  shown.  a.  In  the  RAD-­‐SWNT  condition,  the  total  amount  of  SWNTs  is  slightly  increasing  within  the  tumour  over  time,  despite  the  fact  that  increased  numbers  of  SWNTs  can  not  arrive  from  the  vasculature,  since  the  circulation  half-­‐life  is  on  the  order  of  2-­‐3  hours.  Therefore  the  rise  must  be  solely  due  to  monocyte  entry  into  tumour.  Individual  data  points  are  plotted  for  n=4  mice.  b.  The  total  amount  of  RGD-­‐SWNTs  in  tumour  over  the  same  time  period  also  increases.  It  increases  more  rapidly  than  RAD-­‐SWNTs,  with  a  slope  nearly  20-­‐fold  

0"

0.001"

0.002"

0.003"

0.004"

0.005"

0" 2" 4" 6" 8" 10"

Raman

%Intensity

%(arb)%

Day%

Raman%Intensity%of%RGD4SWNTs%

0"

0.001"

0.002"

0.003"

0.004"

0" 2" 4" 6" 8" 10"

Raman

%Intensity

%(arb)%

Day%

Raman%Intensity%of%RAD4SWNTs%

b

a

0"

0.001"

0.002"

0.003"

0.004"

0" 2" 4" 6" 8" 10"Raman

%Intensity

%(Arb)%

Days%(post%RAD4SWNT%injec;on)%

Amount%of%RAD4SWNTs%in%Tumor%

0"

0.001"

0.002"

0.003"

0.004"

0.005"

0" 2" 4" 6" 8" 10"Raman

%Intensity

%(Arb)%

Days%(post%RGD5SWNT%injec<on)%

Amount%of%RGD5SWNTs%in%Tumor%

© 2014 Macmillan Publishers Limited. All rights reserved

Page 8: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

higher.  Combined  with  Supplementary  Fig.  S4  and  Fig.  3,  these  trends  indicate  that  the  RGD  on  the  SWNTs  may  increase  the  affinity  for  RGD-­‐SWNT  laden  monocytes  to  interact  with  vasculature  and  enter  tumour  interstitium.  Individual  data  points  for  RGD-­‐SWNT  injected  mice  comprising  (b)  are  plotted  for  n=6  mice.  Because  the  mice  were  imaged  with  both  intravital  microscopy  and  Raman  microscopy,  at  some  time-­‐points  some  mice  were  sometimes  unavailable  for  Raman  imaging  for  reasons  of  health  maintenance  (e.g.,  due  to  exposure  to  anesthesia).      

© 2014 Macmillan Publishers Limited. All rights reserved

Page 9: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplmentary  Fig.  S6  SWNTs  require  phospholipid-­‐PEG  for  solubilisation  

 

 Supplementary  Fig.  S6.  Top:  Photo  of  SWNTs  either  with  phospholipid-­‐PEG  (left)  or  in  pure  water  without  any  PEG  (right).  In  this  experiment,  SWNTs  were  sonicated  either  with  PL-­‐PEG  (left)  or  without  PL-­‐PEG  (right)  (as  shown)  and  then  centrifuged.  Bottom:  Spectroscopic  data  of  the  supernatant  solutions  from  each  tube  after  centrifugation.  No  signal  is  observed  from  SWNTs  without  PEG.  This  indicates  that  PL-­‐PEG  is  bound  to  the  SWNT  surface.  O.D.  Optical  Density.  

0  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

400   450   500   550   600   650   700   750   800   850   900  

O.D.  

Wavelength  (nm)  

SWNT-­‐PEG  

SWNT-­‐no-­‐PEG  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 10: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Fig.  S7  Cy5.5  is  attached  to  PL-­‐PEG  

   

   Supplementary  Fig.  S7.  Cy5.5  is  attached  to  the  amine  on  PL-­‐PEG  (which  is  attached  to  SWNTs,  based  on  Supplementary  Fig.  S6).  Top:  Spectra  of  SWNT-­‐aminePEG-­‐Cy5.5  and  control  SWNT-­‐methoxy-­‐PEG-­‐Cy5.5  (SWNT-­‐mPEG-­‐Cy5.5)  after  conjugation  to  Cy5.5  and  filtration  via  centrifugal  filter.  Bottom:  SWNT-­‐subtracted  spectra  of  the  same  samples.  This  demonstrates  that  while  there  appears  to  be  some  direct  stacking  of  the  dye  onto  the  nanotube  (no  reaction  should  be  expected  between  dye  and  the  methoxy  group),  the  majority  of  dye  on  the  SWNT  is  attached  via  the  amine  functional  group  on  amine-­‐PEG.  Note  that  the  initial  dye  concentration  was  the  same  for  the  methoxy-­‐  and  amine-­‐PEG  groups.  O.D.  Optical  Density.      

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0.7  

0   200   400   600   800   1000   1200  

O.D.  

Wavelength  (nm)  

SWNT-­‐mPEG-­‐Cy5.5  and  SWNT-­‐aminePEG-­‐Cy5.5  raw  spectra  

methoxy  

amine  

-­‐0.05  

0  

0.05  

0.1  

0.15  

0.2  

0.25  

0.3  

400   500   600   700   800   900  

O.D.  

Wavelength  (nm)  

SWNT-­‐subtracted  spectra  

methoxy  

amine  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 11: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Fig.  S8  TEM  of  SWNTs    

 Supplementary  Fig.  S8.  SWNTs  were  air  dried  onto  a  grid  and  imaged  using  high-­‐resolution  TEM  (FEI  Titan  80-­‐300,  Environmental  TEM).  The  green  arrows  point  to  SWNTs,  while  the  yellow  arrow  designates  a  nanoparticle  catalyst.                  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 12: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  Movie  Captions    Supplementary  Movie  1  SWNTs  at  a  concentration  of  0.068  mg/ml  (400  nM,  based  on  assumptions  of  1.2  nm  SWNT  diameter  and  150  nm  average  length)  are  injected  via  tail  vein  into  the  mouse.  Within  seconds  of  injection,  SWNTs  (grayscale)  rush  into  blood  vessels  (red)  in  the  tumour  (green).    Cells  containing  SWNTs  (larger,  discrete  compartments  in  the  vessels)  are  later  observed  moving  through  the  blood  vessels.    Supplementary  Movie  2  SWNT-­‐loaded  cells  were  collected  from  mouse  blood  and  isolated  using  FACS.  Here  a  live  Ly-­‐6Chi  monocyte  containing  SWNTs  is  shown.  Applying  hyperspectral  imaging,  Figure  1c-­‐d  shows  that  SWNTs  are  contained  within  the  monocytes.    Supplementary  Movie  3  SWNT-­‐loaded  monocytes  (grayscale)  can  be  observed  rapidly  flowing  through  blood  vessels  (red)  and  interacting  with  vascular  endothelium  in  a  tumour  in  a  live  mouse  approximately  5  hours  p.i.  The  tumour  channel  is  removed  from  the  video  for  ease  of  viewing.    Supplementary  Movie  4  In  some  blood  vessels  (red),  RGD-­‐SWNT-­‐loaded  monocytes  (grayscale)  are  observed  moving  rapidly  through  blood  vessels.  The  arrow  designates  an  RGD-­‐SWNT-­‐laden  monocyte  crawling  along  the  surface  of  the  vascular  endothelium  with  subsequent  flattening  along  the  vessel  wall,  as  commonly  observed  in  monocyte  extravasation  into  tissues.        Supplementary  Methods    Dorsal  Skinfold  Chamber     Male  retired  breeder  C.B-­‐17  SCID  mice  (>28g  body  weight)  were  used  for  surgical  implantation  of  dorsal  skinfold  chambers.  Briefly,  for  the  surgery,  mice  were  anesthetized  using  an  IP  injection  of  ketamine  (100  mg/kg  body  weight)  and  xylazine  (10  mg/kg  body  weight).  Two  sides  of  a  titanium  chamber  (APJ  Trading,  Ventura,  CA)  were  used  to  sandwich  the  shaved  dorsal  skin  of  the  anesthetized  mouse.  A  ~12  mm  diameter  circle  of  skin  was  removed  from  one  side  of  the  sandwich  and  a  12  mm  glass  cover  slip  (Ted  Pella,  Redding,  CA)  was  used  to  cover  the  skin.  Animals  were  given  carprofen  at  3  mg/kg  SC  immediately  prior  to  and  2-­‐3  days  post  surgery  to  help  animals  recover  from  surgery.  After  3  days,  a  tumour  was  inoculated  underneath  the  cover  slip.  All  animal  procedures  were  approved  by  the  Stanford  University  Institutional  Animal  Care  and  Use  Committee.        

© 2014 Macmillan Publishers Limited. All rights reserved

Page 13: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

 Tumour  Model     To  image  tumours,  a  stable,  bright  green  cell  line  was  produced.  U87MG,  a  human  glioblastoma  cell  line  (obtained  from  American  Type  Culture  Collection,  ATCC),  was  labeled  with  enhanced  green  fluorescent  protein  (EGFP).  The  stable  EGFP  expressing  cell  lines  were  established  using  a  lentiviral  vector  (pRRLsin18.CMV-­‐EGFP,  a  gift  from  Luigi  Naldini,  HSR-­‐TIGET,  Italy)  with  an  EGFP  transgene  as  described2.  Cells  were  incubated  overnight  in  media  containing  high  titer  virus,  after  which  cells  with  very  high  EGFP  expression  were  selectively  sorted  using  FACS.  Cells  were  grown  in  ATCC-­‐recommended  medium.  C.B-­‐17  SCID  mice  (Charles  River,  Wilmington,  MA)  were  inoculated  with  ~500,000  U87MG  cells  into  the  dorsal  window  in  low  volume.  Mice  were  injected  with  SWNTs  and  tumours  were  imaged   7–10  days  after  tumour  inoculation,  at  which  point  they  were   4–7  mm  in  diameter.    Flow  Cytometry  Staining  

Red  blood  cells  were  lysed  using  ammonium-­‐chloride-­‐potassium  (ACK)  lysing  buffer.  The  remaining  immune  cells  were  resuspended  at  25  x  106  cells/mL  using  custom  RPMI-­‐1640  medium  deficient  in  biotin,  L-­‐glutamine,  phenol  red,  riboflavin,  and  sodium  bicarbonate  (Invitrogen).  Cell  suspensions  were  pre-­‐incubated  with  anti–CD16/CD32  mAb  to  block  FcγRII/III  receptors  and  stained  on  ice  for  30min  with  the  following  fluorochrome-­‐conjugated  mAb  in  an  11-­‐color  staining  combination:  FITC-­‐labeled  anti-­‐Ly-­‐6C  (AL-­‐21);  PE-­‐labeled  anti–I-­‐Ad  (AMS-­‐32.1);  PECy5-­‐labeled  anti-­‐CD5  (53–7.3);  PECy5.5-­‐labeled  anti-­‐CD19  (1D3)  or  CD11c  (N418);  PECy7-­‐labeled  anti–Gr-­‐1  (RB6-­‐8C5);  APC-­‐labeled  anti-­‐CD49b  (DX5);  APCCy7-­‐labeled  anti-­‐CD11b  (M1/70);  Pacific  Blue-­‐labeled  anti-­‐F4/80  (BM8)  and  biotin-­‐labeled  anti-­‐CD11c  (HL3),  CD80  (16-­‐10A1),  or  CD86  (GL-­‐1)  .  The  Cy5.5-­‐labeled  SWNTs  (with  or  without  functional  peptides)  occupy  the  Cy5.5  channel.     Cells  were  then  washed  and  stained  again  on  ice  for  15min  with  streptavidin  Qdot605  (Invitrogen)  to  reveal  biotin-­‐coupled  antibodies.  Antibodies  were  either  purchased  (Invitrogen  and  BD  Pharmingen)  or  conjugated  in  our  laboratory.  After  washing,  stained  cells  were  resuspended  in  10  μg/mL  propidium  iodide  (revealed  in  the  PE-­‐Texas  Red  channel)  to  exclude  dead  cells.  Cells  were  analyzed  on  flow  cytometry  instruments  as  described  in  the  main  text.  To  distinguish  autofluorescent  cells  from  cells  expressing  low  levels  of  individual  surface  markers,  we  established  upper  thresholds  for  autofluorescence  by  staining  samples  with  fluorescence-­‐minus-­‐one  (FMO)  control  stain  sets  in  which  a  reagent  for  a  channel  of  interest  is  omitted3.    Statistical  analysis  of  monocytes  flowing  through  vasculature       To  test  the  interaction  of  SWNT-­‐loaded  monocytes  with  tumour  vascular  endothelium,  we  recorded  videos  of  n=11  mice  in  the  RGD-­‐SWNT,  RAD-­‐SWNT,  or  Cy5.5-­‐SWNT  conditions.  Counts  of  non-­‐interacting  and  interacting  monocytes  (“interaction”  implies  interaction  with  endothelium)  were  made  from  approximately  one  day  up  to  one  week  post-­‐injection  of  SWNTs  using  Olympus  Fluoview  FV300,  version  4.3  (Olympus  Corporation,  Tokyo,  Japan)  software  and  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 14: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

ImageJ  (NIH)  software.  Counts  were  adjusted  by  vessel  volume  (in  cubic  microns)  and  duration  of  observation  period  (in  seconds).  Adjusted  counts  of  each  type  of  interacting  cell  for  the  three  agents  were  compared  by  nonparametric  Kruskal-­‐Wallis  tests  for  overall  differences,  Wilcoxon  tests  for  pairwise  differences,  and  Jonckeere-­‐Terpstra  tests  for  trend  (either  RGD>RAD>Cy5.5  or  RGD<RAD<Cy5.5).  All  tests  were  corrected  for  ties.  For  monocyte  interactions  up  to  one  week  after  injection,  incidence  rate  ratios  among  agents  were  estimated  for  non-­‐interacting  and  interacting  cells  by  negative  binomial  regression,  with  time  from  injection  (expressed  as  log10  days)  as  a  covariate.  Robust  standard  errors  were  calculated  to  adjust  for  clustering  within  animal.  Statistical  analyses  were  done  with  Stata  Release  9.2  (StataCorp  LP,  College  Station,  TX).    Raman  imaging  of  tumours     Mice  were  imaged  using  a  Raman  Microscope  (Renishaw  Inc.,  Gloucestershire,  UK).  The  mouse  dorsal  skinfold  chamber  was  positioned  beneath  the  microscope  objective,  with  the  skin-­‐side  of  the  chamber  facing  up  toward  the  objective4.  The  microscope  has  a  laser  operating  at  785  nm  with  a  power  of  6  mW.  A  computer-­‐controlled  translation  stage  was  used  to  create  a  two-­‐dimensional  map  of  the  SWNT  signal  across  the  entire  tumour  with  a  250  μm  step  size  using  a  12X  open  field  lens.  Quantification  of  the  Raman  images  was  performed  using  the  Nanoplex™  SENSERSee  software  (Oxonica  Inc.),  where  the  mean  Raman  signal  detected  from  the  tumours  was  calculated.    Inductively-­‐Coupled  Plasma     SWNTs  (0.068  mg/ml)  were  heated  in  a  solution  containing  concentrated  nitric  acid  for  16h  and  in  a  solution  containing  concentrated  sulfuric  acid,  nitric  acid,  and  hydrochloric  acid.  We  analyzed  the  solutions  for  iron  content  via  Inductively-­‐Coupled  Plasma-­‐Optical  Emission  Spectrometry  (ICP-­‐OES)  using  a  Thermo  Scientific  ICAP  6300  Duo  View  Spectrometer.    Equipment  and  settings     For  Fig.  1a,  an  Olympus  intravital  microscope  (IV100,  Olympus,  Center  Valley,  PA)  was  used  to  acquire  the  image  with  a  10X  Olympus  objective  lens  (NA  of  0.4)  with  4X  digital  zoom.  The  image  size  was  640  X  640  pixels  at  12  bits/pixel  with  0.359  μm  per  pixel  in  both  x  and  y  directions.  The  full  image  size  was  229.4  μm  X  229.4  μm  and  sampling  speed  was  2.0  μs/pixel.  EGFP  from  tumour  cells  was  excited  with  a  488  nm  laser  line  at  10%  laser  transmissivity  with  emission  collected  around  520  nm  using  an  SDM560  dichroic  mirror.  The  PMT  (photomultiplier  tube)  voltage  was  340  V.  The  nanoparticle  (cy5.5)  channel  was  collected  with  an  excitation  of  633  nm  at  80%  transmissivity  and  used  a  dichroic  mirror  of  SDM750  to  collect  emission  around  693  nm.  The  PMT  voltage  was  600  V.  In  the  third  channel,  Angiosense  750  long-­‐circulating  dye  was  excited  at  748  nm  at  80%  transmissivity.  The  PMT  voltage  was  632  V.  All  PMTs  were  in  analog  detection  mode.  The  LUT  (lookup  table)  for  channel  1  was  linear  and  cut-­‐off  at  a  minimum  of  204  and  maximum  of  3220.  The  LUT  for  channel  2  was  linear  and  cut-­‐off  at  a  minimum  of  204.  The  LUT  for  channel  3  was  linear  and  cut-­‐off  at  a  minimum  of  204  and  a  maximum  of  3400.  The  software  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 15: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

used  for  acquisition  and  manipulation  for  all  intravital  microscopy  was  Olympus  Fluoview  FV300,  version  4.3.  Animals  were  maintained  at  37°C  using  a  temperature-­‐controlled  plate  and  all  images  were  taken  in  air  through  a  dorsal  window  chamber  implanted  on  the  mice.     For  Fig.  3a,  the  IV100  was  used  to  acquire  the  image  with  a  20X  Olympus  objective  lens  (NA  of  0.75).  The  image  size  was  640  X  640  pixels  at  12  bits/pixel  with  0.718  μm/pixel  in  both  x  and  y  dimensions.  The  full  image  size  was  458.8  μm  X  458.8  μm  and  the  sampling  speed  was  2  μs/pixel.  The  image  is  a  depth  projection  of  10  slices  at  5.94  μm/slice.  EGFP  was  excited  with  a  488  nm  laser  line  at  80%  transmissivity  using  an  SDM560  dichroic  mirror.  The  PMT  voltage  was  210  V.  The  nanoparticle  (cy5.5)  channel  was  collected  using  an  excitation  of  633  nm  at  60%  transmissivity  and  a  dichroic  mirror  of  SDM750  to  collect  emission.  The  PMT  voltage  was  584  V.  In  the  third  channel,  Angiosense  750  was  excited  at  748  nm  with  40%  transmissivity.  The  PMT  voltage  was  726  V.  All  PMTs  were  in  analog  detection  mode.  The  LUT  for  channel  1  was  linear  and  cut-­‐off  at  3666  maximum.  The  LUT  for  channel  2  was  cut-­‐off  at  316  minimum,  with  gamma  nearly  linear  at  1.12.  The  LUT  for  channel  3  was  linear  and  covers  the  full  range  of  data.        Supplementary  Discussion       SWNTs  have  been  employed  in  many  studies  over  the  past  several  years,  showing  immense  potential  for  diagnostic  and  therapeutic  purposes.  Insights  into  their  uptake  into  circulating  cells  upon  intravenous  injection  could  substantially  improve  the  use  of  SWNTs  in  medical  applications  and  potentially  engender  novel  uses  for  them.     On  a  side  note,  there  can  often  be  worries  about  contamination,  particularly  bacterial,  in  the  nanoparticle  solutions  that  are  injected  into  animals.  All  aqueous  solutions  that  we  use  are  de-­‐ionized,  ultra-­‐filtered  (or  Milli-­‐Q)  water.  We  sonicate  the  SWNT  solution  for  an  hour,  which  with  SWNTs  creates  a  great  deal  of  local  heat;  this  combination  likely  destroys  a  majority  of  bacteria.  The  sonication  energy  that  helps  to  exfoliate  the  SWNTs  through  cavitation  also  kills  bacteria  around  the  sonication  frequency  we  apply  (significant  antimicrobial  action  has  been  observed  even  after  15  minutes,  while  we  sonicate  for  an  hour)5.  Then  later  filtration  steps,  in  which  the  SWNTs  are  washed  repeatedly,  purge  the  SWNT  solution  of  the  small  molecules,  proteins,  and  endotoxins  released  from  bacteria.    In  agreement  with  this,  in  general  we  do  not  find  acute  toxicity  when  injecting  our  SWNT  solutions  into  mice6.  Molecular  contaminants  within  the  SWNT  solution  are  expected  to  be  predominantly  metal  growth  catalyst  in  the  form  of  small  iron-­‐based  nanoparticles.  Using  ICP-­‐OES,  we  showed  that  iron  was  present  in  our  solutions  at  <20  ppm  (19.8  ppm).  Note  that  iron  is  considered  safe  in  the  body  –  it  has  been  approved  by  regulatory  agencies  for  decades,  for  instance  as  an  MRI  contrast  agent.  Furthermore,  because  the  iron  is  not  functionalized  with  PEG,  it  likely  clears  from  the  bloodstream  to  the  mononuclear  phagocyte  system  (such  as  the  liver  and  spleen)  very  quickly.  

© 2014 Macmillan Publishers Limited. All rights reserved

Page 16: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

  The  goal  of  most  nanoparticle  studies  in  oncology  is  for  the  nanoparticles  to  directly  target  cancer,  and  targeting  ligands  are  meant  to  increase  uptake  or  to  increase  intracellular  localization.  Yet  targeting  cancer  directly  may  not  always  be  the  most  efficient  approach.  One  reason  to  target  immune  cells  instead  (or  additionally)  is  their  innate  homing  ability  to  particular  tissues,  even  cancer  tissues.  However,  the  natural  homing  properties  of  the  cells  may  vary  broadly  by  specific  immune  cell  subset  and  specific  tissue  type  and  site;  it  may  even  be  desirable  to  increase  the  homing  properties  of  certain  immune  cell  subsets.  In  our  case,  monocytes  already  home  to  tumour  tissue  more  than  normal  tissues7.  Yet  further  increasing  the  homing  of  monocytes  to  cancer  may  be  useful,  for  instance  to  increase  the  amount  of  nanoparticles  to  hypoxic  regions  as  delivered  by  hypoxia-­‐attracted  tumour-­‐associated  macrophages  (see  the  discussion  in  the  main  text).  Hypoxic  regions  are  typically  otherwise  inaccessible  to  potentially  therapeutic  nanoparticles8.  We  have  evidence  that,  for  the  first  time,  nanoparticles  that  target  circulating  cells  (monocytes)  can  be  exploited  to  increase  the  number  of  monocytes  (and  nanoparticles)  at  the  tumour  site  (and  because  Ly-­‐6Chi  monocytes  differentiate  into  tumour  associated  macrophages,  they  will  be  attracted  to  hypoxic  tumour  regions).  We  note  that  it  is  possible  that  our  observation  of  peptide-­‐dependent  targeting  of  monocytes  to  tumour  could  also  be  affected  by  the  fact  that  RGD  has  anti-­‐angiogenic  and  tumour  growth  inhibition  properties9,  and  further  study  is  required.  Nevertheless,  our  finding  that  RGD  on  SWNTs  enhances  SWNT-­‐loaded  monocyte  uptake  into  tumour  compared  with  controls  makes  this  phenomenon  a  ligand-­‐mediated  targeting  mechanism.  This  result  may  suggest  that,  if  an  appropriate  “vascular  zip  code”  endothelial  cell  surface  protein  can  be  found  for  a  tissue  of  interest,  an  appropriate  cognate  ligand  attached  to  SWNTs  could  increase  Ly-­‐6Chi  monocytes  in  that  tissue.       In  the  RGD-­‐SWNT  condition,  up  to  25%  of  SWNTs  in  the  tumour  were  due  to  monocyte  uptake  on  Day  1  (Fig.  3,  main  text).  Interestingly,  while  the  amount  of  RGD-­‐SWNTs  that  are  bound  to  tumour  cells  decreases  from  day  1  to  day  7  p.i.4,  a  trend  is  observed  in  which  the  total  amount  of  SWNTs  in  the  tumour  increases  (Supplementary  Fig.  S5)  over  the  same  time  period  based  on  the  intrinsic  signal  of  SWNTs  via  Raman  imaging.  Additionally,  the  number  of  monocytes  in  tumour  containing  RGD-­‐SWNTs  increases  over  the  same  time  period  (Fig.  3b,  main  text).  Therefore,  while  we  did  not  measure  the  fraction  of  SWNT  uptake  due  to  monocytes  on  day  7  p.i.,  these  facts  integrate  to  strongly  suggest  that  the  amount  of  RGD-­‐SWNTs  in  the  tumour  due  to  monocyte  delivery  by  day  7  is  well  above  25%.  Such  a  substantial,  previously  undescribed  targeting  mechanism  may  portend  a  range  of  novel  (immuno-­‐)therapeutic  and  diagnostic  applications  in  oncology.      

© 2014 Macmillan Publishers Limited. All rights reserved

Page 17: DOI: 10.1038/NNANO.2014.62 Selective uptake of single ... · Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery Bryan Ronain

Supplementary  References    1. Etzrodt, M.; Cortez-Retamozo, V.; Newton, A.; Zhao, J.; Ng, A.; Wildgruber, M.; Romero, P.; Wurdinger, T.; Xavier, R.; Geissmann, F.; Meylan, E.; Nahrendorf, M.; Swirski, F. K.; Baltimore, D.; Weissleder, R.; Pittet, M. J. Cell reports 2012, 1, (4), 317-24. 2. Smith, B. R.; Cheng, Z.; De, A.; Koh, A. L.; Sinclair, R.; Gambhir, S. S. Nano Lett. 2008, 8, (9), 2599-606. 3. Ghosn, E. E.; Cassado, A. A.; Govoni, G. R.; Fukuhara, T.; Yang, Y.; Monack, D. M.; Bortoluci, K. R.; Almeida, S. R.; Herzenberg, L. A. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, (6), 2568-73. 4. Smith, B. R.; Zavaleta, C.; Rosenberg, J.; Tong, R.; Ramunas, J.; Liu, Z.; Dai, H.; Gambhir, S. S. Nano Today 2013, 8, (2), 126-137. 5. Joyce, E.; Phull, S. S.; Lorimer, J. P.; Mason, T. J. Ultrason. Sonochem. 2003, 10, (6), 315-8. 6. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S. S. Nature nanotechnology 2008, 3, (4), 216-21. 7. Basel, M. T.; Balivada, S.; Wang, H.; Shrestha, T. B.; Seo, G. M.; Pyle, M.; Abayaweera, G.; Dani, R.; Koper, O. B.; Tamura, M.; Chikan, V.; Bossmann, S. H.; Troyer, D. L. International journal of nanomedicine 2012, 7, 297-306. 8. Choi, M. R.; Stanton-Maxey, K. J.; Stanley, J. K.; Levin, C. S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J. P.; Bashir, R.; Halas, N. J.; Clare, S. E. Nano Lett. 2007, 7, (12), 3759-65. 9. Park, K.; Kim, Y. S.; Lee, G. Y.; Park, R. W.; Kim, I. S.; Kim, S. Y.; Byun, Y. Pharm. Res. 2008, 25, (12), 2786-98.  

© 2014 Macmillan Publishers Limited. All rights reserved