33
DNA Repair and Mutagenesis of Reactive Oxygen Species-Generated Lesions Masaaki (Maki) Moriya SUNY at Stony Brook

DNA Repair and Mutagenesis of Reactive Oxygen Species

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DNA Repair and Mutagenesis of Reactive Oxygen Species

DNA Repair and Mutagenesis of Reactive Oxygen Species-Generated Lesions

Masaaki (Maki) MoriyaSUNY at Stony Brook

Page 2: DNA Repair and Mutagenesis of Reactive Oxygen Species

ContributorsSUNYI.-Y. Yang, X. Liu, K. Hashimoto, R.L. Revine, S. Stein G. Pandya, G. ChanS. Attaluri, R. Rieger, M. C. Torres, S. Khullar, Y. Huang, F. JohnsonT. Zaliznyak, C. de los SantosH. Miller, A. Grollman

UMN Y. Lao, S. Hecht

OthersJ.E. Cleaver, M. Cordeiro-Stone, F. Hanaoka, J.H.J. Hoeijmakers, H. Ohmori, Z. Wang, R. Woodgate

Page 3: DNA Repair and Mutagenesis of Reactive Oxygen Species

Generation of DNA Adducts by Reactive Oxygen Species

Reactive oxygen species

DNA

Oxidized bases8-Oxo dG, dA2-OH dAThymine glycol5-OH-methyl dCetc

Lipid peroxidationEnals

Epoxides

Exocyclic propano and propeno adducts

α and γ-OH-propano dGsM1G, etc

Etheno adductsεdA, εdC, εdGSubstituted εdNetc

DNA DNA

Page 4: DNA Repair and Mutagenesis of Reactive Oxygen Species

dG in DNA

+

Bifunctional aldehyde(acrolein, crotonaldehyde)

+

F. Johnson, S. Khullar, Y. Huang(SUNY) S. Hecht, Y. Lao (UMN)

dRH

O

N

NN N

NOH

HO

HHN

N

N N

NO

OH

H dR

N

N

N N

NO

H dR

HO

γ-OH-PdG α-OH-PdG

R

OH

C

dR P

N

N N

NC

PdR

N

N

NN

N N

dR

HO

H

dR

R

R

CH3

Page 5: DNA Repair and Mutagenesis of Reactive Oxygen Species

Site-specific Procedure

1. Synthesis and purification of modified oligonucleotides

2. Incorporation into a vector

3. Introduction into a host cell

4. Recovery of progeny

5. Analysis for mutagenic and repair events

Page 6: DNA Repair and Mutagenesis of Reactive Oxygen Species

Obstacles to mutation studies

• DNA Repair• DNA synthesis block

Preferential replication of undamaged strand = Labor-intensive analysis for TLS events

Formation of DSBs→ NHEJ →Deletion mutants• Determination of targeted events

Page 7: DNA Repair and Mutagenesis of Reactive Oxygen Species

Site-specific mutagenesis approach

G

T

A

C

I.-Y. Yang, K. Hashimoto, X. Liu, R.L. Revine, S. Stein, G. Pandya (SUNY)

C. Lawrence

pMS2 pBT

C. Lawrence

Page 8: DNA Repair and Mutagenesis of Reactive Oxygen Species

Site-specific mutagenesis strategy

TACGTAATAXCT

TATNGAATAXCT

TACGTAATGCAT

TAC GTAATG CAT

SnaB I

Page 9: DNA Repair and Mutagenesis of Reactive Oxygen Species

-GGACTTTGTAGGATACCCTCGCTTT--GGACTTTGTGGGATACCCTCGCTTT-

AACACCCTATGGGA-32P

G A G A G A G A G A

Hybridization temp. = 4(G+C) + 2(A+T) - 4

K. Itakura, 1979

Page 10: DNA Repair and Mutagenesis of Reactive Oxygen Species

Site-specific mutagenesis approach

G

T

A

C

G

Hybridization

C A

T

I.-Y. Yang, K. Hashimoto, X. Liu, R.L. Revine, S. Stein, G. Pandya (SUNY)

C. Lawrence

pMS2 pBT

C. Lawrence

Page 11: DNA Repair and Mutagenesis of Reactive Oxygen Species

Oligonucleotide Probe hybridization

A

C

G

T

Page 12: DNA Repair and Mutagenesis of Reactive Oxygen Species

dG in DNA

+

Bifunctional aldehyde(acrolein, crotonaldehyde)

+

F. Johnson, S. Khullar, Y. Huang (SUNY), S. Hecht, Y. Lao (UMN)

dRH

O

N

NN N

NOH

HO

HHN

N

N N

NO

OH

H dR

N

N

N N

NO

H dR

HO

γ-OH-PdG α-OH-PdG

R

OH

C

dR P

N

N N

NC

PdR

N

N

NN

N N

dR

HO

H

dR

R

R

Page 13: DNA Repair and Mutagenesis of Reactive Oxygen Species

Efficiency of translesion synthesis across monoadducts in human XPA cells

0

10

20

30

40

50

60

dG -OH-PdG -OH-PdG R Sγα

% o

f pro

g eny

f ro m

m

odi f i

ed s

t ran

d

α

Methyl- γ- OH-PdG

I.-Y. Yang, S. Stein (SUNY)

Page 14: DNA Repair and Mutagenesis of Reactive Oxygen Species

Mutagenicity of PdG adducts

T > C, A-----

11< 0.4

α-OH-PdGγ-OH-PdG

S isomerR isomer

Adduct

T > C, AT > A, C

105

HumanXPA cell

Miscoding Specificity

Miscoding Frequency (%)

Host

I.-Y. Yang, S. Stein (SUNY)

Page 15: DNA Repair and Mutagenesis of Reactive Oxygen Species

Genotoxic (point mutations) potency

= TLS efficiency x Fidelity

CH3- γ -OH (S) > CH3- γ -OH (R), α-OH >> γ – OH-PdG

Page 16: DNA Repair and Mutagenesis of Reactive Oxygen Species

HO

dRH

O

N

N

N N

N

N

N

N N

NOOH

H dR

γ(8)-OH-PdGα(6)-OH-PdG

S. Khullar, Y. Huang, F. Johnson (SUNY)

Page 17: DNA Repair and Mutagenesis of Reactive Oxygen Species

NN

dRO

NHH

H +N

N

NN

N O

dR

H

HO

α -OH-PdG(syn) dC+(anti)

HO

H

dR

O

N

N

NN

N

+H

HH N

dRNN N

N

dA+(anti)α -OH-PdG(syn)

H

O

H

O

OHH

dRN

NN

N

N HH N

O dR

NN

H

dC(anti)γ -OH-PdG(anti)

Non-mutagenic and mutagenic pairing

T. Zaliznyak, C. de los Santos (SUNY)

Page 18: DNA Repair and Mutagenesis of Reactive Oxygen Species

Extension from C terminus opposite adducts

5’ P-ATC3’ -TAXCTCCTCGTC

dG PdG α-OH-PdGγ-OH-PdGX =

←Xpol

Exo- Klenow

I.-Y. Yang, H. Miller (SUNY)

Page 19: DNA Repair and Mutagenesis of Reactive Oxygen Species

Incorporation of dNTP opposite a DNA adduct

dG PdG γ-OH-PdG α-OH-PdG

dNTP = A C G T A C G T A C G T A C G T

AXC

dNTP32P

X

Exo- Klenow

I.-Y. Yang, H. Miller (SUNY)

Page 20: DNA Repair and Mutagenesis of Reactive Oxygen Species

Sister chromatid cohesionXPol σ

DSB repair, BER?XPol λ

NHEJXPol µ

DNA cross-link repair APol θ

Translesion synthesisYREV 1Translesion synthesisBPol ζ

Translesion synthesisYPol ι

Translesion synthesisYPol κ

Translesion synthesisYPol η

DNA replication/repairBPol ε

DNA replication/repairBPol δ

mtDNA replication/repairAPol γ

Base excision repairXPol β

Priming DNA synthesisBPol α

Function(s)Pol familyName

Eukaryotic DNA polymerases

Page 21: DNA Repair and Mutagenesis of Reactive Oxygen Species

1.1022371XPV (CTag)

6.8*2417316XPV- mXPV

< 0.5000232XPV (XP30RO)

10.47417242XPA

MF(%)CATG

Host

Pol η contributes to α-OH-PdG→T mutations

* P < 0.001

α-OH-PdG →G, T, A, C

I.- Y. Yang (SUNY)

Page 22: DNA Repair and Mutagenesis of Reactive Oxygen Species

A C G T

A C G TN = A C G T

Incorporation

Extension

pol η

Y = A C G T

A C G T

pol ι REV1

A C G TA C G T

A C G T

pol ζ

A C G T

A C G T

XC

32 PY

4 dNTPs

XC

dNTP32 P

pol κ

In vitro translesion synthesis catalyzed by specialized polymerases

I.-Y. Yang, H. Miller (SUNY)

Page 23: DNA Repair and Mutagenesis of Reactive Oxygen Species

dG in DNA

+

Bifunctional aldehyde(acrolein, crotonaldehyde)

+F. Johnson, S.Khullar, Y. Huang (SUNY) S. Hecht, Y. Lao (UMN)

Model ICL

dRH

O

N

NN N

NOH

HO

HHN

N

N N

NO

OH

H dR

N

N

N N

NO

H dR

HO

γ-OH-PdG α-OH-PdG

R

OH

C

dR P

N

N N

NC

PdR

N

N

NN

N N

dR

HO

H

dR

R

R

Page 24: DNA Repair and Mutagenesis of Reactive Oxygen Species

X. Liu, I.-Y. Yang (SUNY)

Page 25: DNA Repair and Mutagenesis of Reactive Oxygen Species

C G1

G2 C

XPA, NER+: 2~3% T

NER+: ~0.7% T

Repair events in human cells

X. Liu (SUNY)

Page 26: DNA Repair and Mutagenesis of Reactive Oxygen Species

5’5’ C(G1)

(G2)C

C(G1)(G2)C

(G2)C(G1) G C/A

(G2)C(G1)

C(G1)(G2)C

Replication block

Incision

C(G1)(G2)C

TLS

TLS

NER

Replication-dependent and -independent ICL repair

Page 27: DNA Repair and Mutagenesis of Reactive Oxygen Species

Limitation of human cells as a host for mechanistic studies• Lack of various mutant cell lines

Use of RNAi or gene KO mouse cells as a host

Page 28: DNA Repair and Mutagenesis of Reactive Oxygen Species

X. Liu (SUNY)

CGGC

Mutants

ERCC1 +/+

ERCC1 -/-

CGGC

Mutants

Page 29: DNA Repair and Mutagenesis of Reactive Oxygen Species

ColE1ampbsd f1SV40Polyoma TPoly

Location and size of deletionX. Liu (SUNY)

Plasmid map

Original size

Page 30: DNA Repair and Mutagenesis of Reactive Oxygen Species
Page 31: DNA Repair and Mutagenesis of Reactive Oxygen Species

5’5’ C(G1)

(G2)C

C(G1)(G2)C

C(G1)(G2)C

C(G1)(G2)C

C(G1)

Mus81/Eme1

(G2)C

C(G1)(G2)C

XPF/Ercc1

Deletions

X

Page 32: DNA Repair and Mutagenesis of Reactive Oxygen Species

Site-specific approach

Characterization of genotoxicity of DNA adducts

Clear relationship between cause and effect

Quite labor-intensive

Page 33: DNA Repair and Mutagenesis of Reactive Oxygen Species

Effects of sequence context on B[a]P-dG-induced G → T mutations

0

10

20

30

40

50

G1 G2

E. coliMonkey

5’ CTG1G2CC 3’

Freq

uenc

y of

G to

T, %

Moriya (SUNY)