35
Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica Buenos Aires, Argentina International Summer School on Quantum Information, MPI PKS Dresden 2005 Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 1 / 21

Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Dissipation and Quantum Operations

Ignacio García-Mata

Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía AtómicaBuenos Aires, Argentina

International Summer School on Quantum Information,MPI PKS Dresden 2005

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 1 / 21

Page 2: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Outline

1 Intro

2 Open Systems

3 Open Systems in Phase Space

4 Dissipative Quantum Operations

5 Examples

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 2 / 21

Page 3: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Outline

1 Intro

2 Open Systems

3 Open Systems in Phase Space

4 Dissipative Quantum Operations

5 Examples

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 3 / 21

Page 4: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Intro.

MotivationsUnderstanding noise and (trying to) control it.Something to say about how the classicalworld emerges from the Quantum.

ToolsQuantum Channels (q. operations,superoperators, QDS’s . . . ) on an Ndimensional Hilbert space, N × N dimensionalphase space (~ = 1/(2πN)), Krausoperators. . .

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 4 / 21

Page 5: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Outline

1 Intro

2 Open Systems

3 Open Systems in Phase Space

4 Dissipative Quantum Operations

5 Examples

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 5 / 21

Page 6: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Open Systems

Markov (local in time) assumption

Lindblad Master equation

ρ = L(ρ) = −i[H, ρ] +12

k

{

[Lkρ, L†k ] + [Lk , ρL†

k ]}

CPTP Quantum Dynamical Semi-group (channel, superoperator,quantum operation,. . . Lindblad (1976), Gorini et al. (1976))

Kraus operator sum form

S(ρ) =∑

k

MkρM†k

where∑

k M†k Mk = I for TP.

We asume discrete time.

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 6 / 21

Page 7: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Outline

1 Intro

2 Open Systems

3 Open Systems in Phase Space

4 Dissipative Quantum Operations

5 Examples

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 7 / 21

Page 8: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Open Systems in Phase Space

Representation in phase space by the Wigner function.

Master eq. → Fokker-Planck eq. for the Wigner function

W (q, p) = [Hamiltonian + non-Hermitian Lk ’s] + diffusion

Phase space contraction associated to∑

k

[Lk , L†k ] −−−→

~→0−2

{Lk (q, p), L∗k (q, p)} =

Dissipation due to non-Hermitian L′k s =⇒ L(I) 6= 0

Non-unital dynamicsS(I) 6= I

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 8 / 21

Page 9: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Open Systems in Phase Space

Representation in phase space by the Wigner function.

Master eq. → Fokker-Planck eq. for the Wigner function

W (q, p) = [Hamiltonian + non-Hermitian Lk ’s] + diffusion

Phase space contraction associated to∑

k

[Lk , L†k ] −−−→

~→0−2

{Lk (q, p), L∗k (q, p)} = div( ~drift) < 0

Dissipation due to non-Hermitian L′k s =⇒ L(I) 6= 0

Non-unital dynamicsS(I) 6= I

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 8 / 21

Page 10: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Outline

1 Intro

2 Open Systems

3 Open Systems in Phase Space

4 Dissipative Quantum Operations

5 Examples

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 9 / 21

Page 11: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Quantum Operations

So we have a map like

ρ′ = S(ρ) =∑

α

cαTαρT †α

with cα ≥ 0

TP if∑

αcαT †

αTα = I Unital if

αcαTαT †

α= I

Unital ≡ Diffusion, Dephasing, pure decoherence . . .

Bistochastic maps usually Random UnitaryProcesses

Non-unital ≡ Dissipation (+ decoherence...)

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21

Page 12: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Quantum Operations

So we have a map like

ρ′ = S(ρ) =∑

α

cαTαρT †α

with cα ≥ 0

TP if∑

αcαT †

αTα = I Unital if

αcαTαT †

α= I

Unital ≡ Diffusion, Dephasing, pure decoherence . . .

Bistochastic maps usually Random UnitaryProcesses

Non-unital ≡ Dissipation (+ decoherence...)

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21

Page 13: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Quantum Operations

So we have a map like

ρ′ = S(ρ) =∑

α

cαTαρT †α

with cα ≥ 0

TP if∑

αcαT †

αTα = I Unital if

αcαTαT †

α= I

Unital ≡ Diffusion, Dephasing, pure decoherence . . .

Bistochastic maps usually Random UnitaryProcessesSee for example Bianucci et al, PRE 2002; Nonnenmacher,

Nonlinearity 2003, IGM et al., PRL 2003; IGM & Saraceno, PRE

2004; Aolita (“boludo”) et al. PRA 2004; MMO

Non-unital ≡ Dissipation (+ decoherence...)

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21

Page 14: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Quantum Operations

So we have a map like

ρ′ = S(ρ) =∑

α

cαTαρT †α

with cα ≥ 0

TP if∑

αcαT †

αTα = I Unital if

αcαTαT †

α= I

Unital ≡ Diffusion, Dephasing, pure decoherence . . .

Bistochastic maps usually Random UnitaryProcesses

Non-unital ≡ Dissipation (+ decoherence...)

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21

Page 15: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Dissipative Quantum Operations

Non-unital ≡ Dissipation (+ decoherence...)

Quantities

η =Tr[

(S(I/N) − I/N)2]

Tr[(I/N)2]non-unitality (“distance”)

=Tr[

(S(I/N))2 − (I/N)2]

Tr[(I/N)2](“∂t ” of purity)

=1N

Tr

[

(∑

k

[Mk , M†k ])2

]

def=

1N

Tr[Γ2]

In the classical limit η is related to the integral over phase space of thePoisson brackets of Lk (q, p)’s −→ global dissipation parameter.

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 11 / 21

Page 16: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Dissipative Quantum Operations

Non-unital ≡ Dissipation (+ decoherence...)

Quantities

η =Tr[

(S(I/N) − I/N)2]

Tr[(I/N)2]non-unitality (“distance”)

=Tr[

(S(I/N))2 − (I/N)2]

Tr[(I/N)2](“∂t ” of purity)

=1N

Tr

[

(∑

k

[Mk , M†k ])2

]

def=

1N

Tr[Γ2]

In the classical limit η is related to the integral over phase space of thePoisson brackets of Lk (q, p)’s −→ global dissipation parameter.

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 11 / 21

Page 17: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Dissipative Quantum Operations

Non-unital ≡ Dissipation (+ decoherence...)

Quantities

η =Tr[

(S(I/N) − I/N)2]

Tr[(I/N)2]non-unitality (“distance”)

=Tr[

(S(I/N))2 − (I/N)2]

Tr[(I/N)2](“∂t ” of purity)

=1N

Tr

[

(∑

k

[Mk , M†k ])2

]

def=

1N

Tr[Γ2]

In the classical limit η is related to the integral over phase space of thePoisson brackets of Lk (q, p)’s −→ global dissipation parameter.

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 11 / 21

Page 18: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Dissipative Quantum Operations

Definition

Γ =∑

k

[Mk , M†k ]

Hermitian and traceless

Representation in phase space (Wigner or Husimi) is real and givespicture of local contraction regions (Γ(q, p) < 0)

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 12 / 21

Page 19: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Dissipative Quantum Operations

Definition

Γ =∑

k

[Mk , M†k ] −−−−→

“~ → 0”∝ div( ~drift)

Hermitian and traceless

Representation in phase space (Wigner or Husimi) is real and givespicture of local contraction regions (Γ(q, p) < 0)

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 12 / 21

Page 20: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Outline

1 Intro

2 Open Systems

3 Open Systems in Phase Space

4 Dissipative Quantum Operations

5 Examples

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 13 / 21

Page 21: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Amplitude damping channel

1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang)

Kraus operators

M0 =

(

1 00

1 − p

)

, M1 =

(

0√

p0 0

)

The density matrix transforms as

SAD(ρ) =

(

ρ00 + pρ11√

1 − p ρ01√

1 − p ρ10 (1 − p)ρ11

)

Non-unital because

SAD(I) =

(

1 + p 00 (1 − p)

)

6= I

SAD(|0〉〈0|) = |0〉〈0| η = p2 Γ = pσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21

Page 22: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Amplitude damping channel

1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang)

Kraus operators

M0 =

(

1 00

1 − p

)

, M1 =

(

0√

p0 0

)

The density matrix transforms as

SAD(ρ) =

(

ρ00 + pρ11√

1 − p ρ01√

1 − p ρ10 (1 − p)ρ11

)

Non-unital because

SAD(I) =

(

1 + p 00 (1 − p)

)

6= I

SAD(|0〉〈0|) = |0〉〈0| η = p2 Γ = pσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21

Page 23: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Amplitude damping channel

1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang)

Kraus operators

M0 =

(

1 00

1 − p

)

, M1 =

(

0√

p0 0

)

The density matrix transforms as

SAD(ρ) =

(

ρ00 + pρ11√

1 − p ρ01√

1 − p ρ10 (1 − p)ρ11

)

Non-unital because

SAD(I) =

(

1 + p 00 (1 − p)

)

6= I

SAD(|0〉〈0|) = |0〉〈0| η = p2 Γ = pσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21

Page 24: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Amplitude damping channel

1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang)

Kraus operators

M0 =

(

1 00

1 − p

)

, M1 =

(

0√

p0 0

)

The density matrix transforms as

SAD(ρ) =

(

ρ00 + pρ11√

1 − p ρ01√

1 − p ρ10 (1 − p)ρ11

)

Non-unital because

SAD(I) =

(

1 + p 00 (1 − p)

)

6= I

SAD(|0〉〈0|) = |0〉〈0| η = p2 Γ = pσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21

Page 25: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Simple Model

Superoperators of the form S2 = (1 − ε)I + εS1

Propose

Sεα(ρ) = (1 − ε)ρ + ε∑

ij

P[αi],i ρP†

[αi],i 0 < α < 1

where Pijdef= |i〉〈j | and i = 0, 1, . . . , N − 1 labels momentum eigenbasis

(pi = i/N) and [αi] = int(αi).

α = 1: Unital, GeneralizedPhase Damping channel(See Aolita et al., PRE 2004).

α < (N − 1)/N Non-Unital(AD channel-like). Invariantstate: S(|0〉〈0|) = |0〉〈0| ∀α

η = ε2(

1 − α

α

)

, Γ = ε(∑

i

|αi〉〈αi | − I)

α ∼ 0 “mimics” classical friction

〈q〉′ = 〈q〉〈p〉′ = (1 − ε)〈p〉

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 15 / 21

Page 26: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

N = 2 case ("1 qubit")

In this case N = 2 and the minimum η is attained for α ≤ 1/2 (= (N − 1)/N)).

Kraus operators

M0 =

( √1 − ε 00

√1 − ε

)

, M1 =

( √ε 0

0 0

)

, M2 =

(

0√

ε0 0

)

The density matrix transforms as

Sε,α(ρ) =

(

ρ00 + ερ11 (1 − ε) ρ01

(1 − ε) ρ10 (1 − ε)ρ11

)

Non-unital because

Sε,α(I) =

(

1 + ε 00 (1 − ε)

)

6= I

Sε,α(|0〉〈0|) = |0〉〈0| η = ε2 Γ = ε(P00 − P11) = εσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 16 / 21

Page 27: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

N = 2 case ("1 qubit")

In this case N = 2 and the minimum η is attained for α ≤ 1/2 (= (N − 1)/N)).

Kraus operators

M0 =

( √1 − ε 00

√1 − ε

)

, M1 =

( √ε 0

0 0

)

, M2 =

(

0√

ε0 0

)

The density matrix transforms as

Sε,α(ρ) =

(

ρ00 + ερ11 (1 − ε) ρ01

(1 − ε) ρ10 (1 − ε)ρ11

)

Non-unital because

Sε,α(I) =

(

1 + ε 00 (1 − ε)

)

6= I

Sε,α(|0〉〈0|) = |0〉〈0| η = ε2 Γ = ε(P00 − P11) = εσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 16 / 21

Page 28: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

N = 2 case ("1 qubit")

In this case N = 2 and the minimum η is attained for α ≤ 1/2 (= (N − 1)/N)).

Kraus operators

M0 =

( √1 − ε 00

√1 − ε

)

, M1 =

( √ε 0

0 0

)

, M2 =

(

0√

ε0 0

)

The density matrix transforms as

Sε,α(ρ) =

(

ρ00 + ερ11 (1 − ε) ρ01

(1 − ε) ρ10 (1 − ε)ρ11

)

Non-unital because

Sε,α(I) =

(

1 + ε 00 (1 − ε)

)

6= I

Sε,α(|0〉〈0|) = |0〉〈0| η = ε2 Γ = ε(P00 − P11) = εσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 16 / 21

Page 29: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

N = 2 case ("1 qubit")

In this case N = 2 and the minimum η is attained for α ≤ 1/2 (= (N − 1)/N)).

Kraus operators

M0 =

( √1 − ε 00

√1 − ε

)

, M1 =

( √ε 0

0 0

)

, M2 =

(

0√

ε0 0

)

The density matrix transforms as

Sε,α(ρ) =

(

ρ00 + ερ11 (1 − ε) ρ01

(1 − ε) ρ10 (1 − ε)ρ11

)

Non-unital because

Sε,α(I) =

(

1 + ε 00 (1 − ε)

)

6= I

Sε,α(|0〉〈0|) = |0〉〈0| η = ε2 Γ = ε(P00 − P11) = εσz

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 16 / 21

Page 30: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Some figures

Γ(q, p) (N dim. system, quantized torus phase space, Husimi rep.. . . )

q

p

Γ(q, p) =

α=0.01 α=0.1 α=0.2 α=0.5 α=0.75

(1−α)

Composition with a unitary map Stot(ρ) = Sεα(UmapρU†map)

α

0.1

0.9843750.656250.3281250.250.015625

0.3

0.5

ε

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 17 / 21

Page 31: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Another figure (α ∼ 0 case)

classical and quantum invariant states

q q

p

classical quantum

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 18 / 21

Page 32: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Summary

Remark differences between unital andnonunital quantum operations.

Independent of master eq. approach.

Give phase space interpretation.

Simple example illustrates main features.

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 19 / 21

Page 33: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Collaboration

Buenos Aires (Quantum Chaos Group, CNEA):Marcos SaracenoMaría Elena Spina

Como, Italy (Universitá degli Studi dell’Insubria):

Gabriel Carlo

Propagandaquant-ph/0508190

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 20 / 21

Page 34: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Collaboration

Buenos Aires (Quantum Chaos Group, CNEA):Marcos SaracenoMaría Elena Spina

Como, Italy (Universitá degli Studi dell’Insubria):

Gabriel Carlo

Propagandaquant-ph/0508190

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 20 / 21

Page 35: Dissipation and Quantum Operationsissqui05/GarciaMata.pdf · Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica

Muchas Gracias

Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 21 / 21