DinaAplicada Cap 02ppt

Embed Size (px)

Citation preview

  • 8/12/2019 DinaAplicada Cap 02ppt

    1/92

    Mechanical

    VibrationsSingiresu S. Rao

    SI Edition

    Captulo 2Vibracin libre de

    sistemas de ungrado de libertad

  • 8/12/2019 DinaAplicada Cap 02ppt

    2/92

    2005 Pearson Education South Asia Pte Ltd. 2

    2.1 Introduccin

    Vibracin libre se produce cuando un sistema oscilasolamente bajo una perturbacin inicial con ningunafuerza externa

    Vibraciones no amortiguadas resultan cuando la

    amplitud de movimiento permanece constante conel tiempo(e.g. en el vaco) Podran producirse vibraciones amortiguadas

    cuando la amplitud de la vibracin libre disminuye

    gradualmente las horas extras, debido a laresistencia ofrecida por el medio ambiente(e.g. aire)

  • 8/12/2019 DinaAplicada Cap 02ppt

    3/92

    2005 Pearson Education South Asia Pte Ltd. 3

    2.1 Introduccin

    Varios sistemas mecnicos y estructuralespueden ser idealizados como sistemas nicogrado de libertad, por ejemplo, la masa y larigidez de un sistema

  • 8/12/2019 DinaAplicada Cap 02ppt

    4/92

    2005 Pearson Education South Asia Pte Ltd. 4

    Si la masa m es desplazada una distanciacuando acte sobre l una fuerza resultanteen la misma direccin

    2.2 Vibracin libre de un sistematraslacional no amortiguado

    Ecuacin de movimiento usando la segunda leyde Newton del movimiento:)(t x

    )(t F

    dt t xd

    mdt d

    t F )(

    )(

    Si la masa m es constante, esta ecuacin sereduce a:

    (2.1))(

    )( 22

    xmdt

    t xd mt F

  • 8/12/2019 DinaAplicada Cap 02ppt

    5/92

    2005 Pearson Education South Asia Pte Ltd. 5

    2.2 Vibracin libre de un sistematraslacional no amortiguado

    donde 2

    2

    )(dt

    t xd x Es la aceleracin de la masa

    Para un cuerpo rgido sometidos a movimiento

    de rotacin, le da la ley de Newton

    )2.2()( J t M

    donde es el momento resultante que acta enel cuerpo, y son losdesplazamiento angular resultante y laaceleracin angular resultante respectivamente.

    M 22 /)( dt t d

  • 8/12/2019 DinaAplicada Cap 02ppt

    6/92

    2005 Pearson Education South Asia Pte Ltd. 6

    2.2 Vibracin libre de un sistematraslacional no amortiguado

    Para sistemas no amortiguados de un grado delibertad, la aplicacin, Eq. (2.1) a la masa m produce la ecuacin de movimiento :

    )3.2(0

    o

    )(

    kx xm

    xmkxt F

  • 8/12/2019 DinaAplicada Cap 02ppt

    7/92

    2005 Pearson Education South Asia Pte Ltd. 7

    1)Principio de DAlemberts Las ecuaciones de movimiento, Eqs. (2.1) &(2.2) pueden volver a escribirse

    2.2 Vibracin libre de un sistematraslacional no amortiguado

    Ecuacin de movimiento usando otros mtodos:

    (2.4b) 0)(

    )2.4a(0)(

    J t M

    xmt F

    Aplicando el principio de DAlemberts al sistemamostrado de la Fig.(c) se obtiene la ecuacin demovimiento:

    )3.2(0 o 0 kx xm xmkx

  • 8/12/2019 DinaAplicada Cap 02ppt

    8/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    9/92

    2005 Pearson Education South Asia Pte Ltd. 9

    Como el desplazamiento virtual puede tener un

    valor arbitrario, Eq.(2.5) da la ecuacin delmovimiento del sistema masa resorte como

    Cuando el trabajo virtual total de todas las fuerzases igual a cero, obtenemos

    2.2 Vibracin libre de un sistema noamortiguado Traslacional

    x xmW xkxW

    i

    S

    )(inerciadefuerzala porrealizadovirtualTrabajo)(resortedelfuerzala porrealizadovirtualTrabajo

    )5.2(0 xkx x xm

    0 x

    )3.2(0kx xm

  • 8/12/2019 DinaAplicada Cap 02ppt

    10/92

    2005 Pearson Education South Asia Pte Ltd. 10

    3) Principio de conservacin de la energa. Unsistema se dice que es conservadora si ningunaenerga se pierde debido a la friccin o disipacinde energa miembros.

    2.2 Vibracin libre de un sistema noamortiguado Traslacional

    Si no se es trabajar sobre el sistema conservador porfuerzas externas, la energa total del sistemapermanece constante. Por lo tanto el principio deconservacin de la energa puede ser expresado

    como:

    )6.2(0)(

    constante

    U T

    dt

    d

    U T o

  • 8/12/2019 DinaAplicada Cap 02ppt

    11/92

    2005 Pearson Education South Asia Pte Ltd. 11

    2.2 Vibracin libre de un sistema noamortiguado TraslacionalLas energas cinticas y potenciales estn dada

    por:)7.2(

    21 2 xmT

    o)8.2(

    21 2kxU

    La sustitucin de Eqs. (2.7) y (2.8) en la Eq.(2.6) da como resultado la ecuacin

    )3.2(0kx xm

  • 8/12/2019 DinaAplicada Cap 02ppt

    12/92

    2005 Pearson Education South Asia Pte Ltd. 12

    2.2 Vibracin libre de un sistema noamortiguado Traslacional Ecuacin de movimiento de un sistema masa

    resorte en posicin Vertical:

    Considerar laconfiguracin delsistema masaresorte que semuestra en lafigura.

  • 8/12/2019 DinaAplicada Cap 02ppt

    13/92

    2005 Pearson Education South Asia Pte Ltd. 13

    2.2 Free Vibration of an UndampedTranslational System

    Para equilibrio esttico,

    )9.2( st k mg W

    donde W = el peso de la masa m,= deflexin esttica

    g = aceleracin de la gravedad st

    La aplicacin de la segunda ley de Newton delmovimiento de masa m da

    W xk xm st

    )(

    Y como , obtenemosW k st

    )10.2(0kx xm

  • 8/12/2019 DinaAplicada Cap 02ppt

    14/92

    2005 Pearson Education South Asia Pte Ltd. 14

    Esto indica que cuando una masa se mueve en direccinvertical, podemos ignorar su peso, siempre y cuandomedimos x desde su posicin de equilibrio esttico.

    2.2 Vibracin libre de un sistema noamortiguado TraslacionalNote que la Eqs. (2.3) y (2.10) son identicas.

    )15.2()( 21t it i nn eC eC t x

    Por lo tanto, la solucin general de la ecuacin (2.3)puede ser expresada como

    donde C 1 y C

    2 son constantes. Utilizando

    identidades)16.2(sincos)( 21 t At At x nn

    donde A1 y A2 son nuevas constantes .

  • 8/12/2019 DinaAplicada Cap 02ppt

    15/92

    2005 Pearson Education South Asia Pte Ltd. 15

    2.2 Free Vibration of an UndampedTranslational System

    Por consiguiente, . Por lotanto la solucin de la ecuacin (2.3) sujeto a lascondiciones iniciales de EQ (2.17) est dada por

    )17.2()0()0(

    02

    01

    x At x x At x

    n

    n x A x A /y 0201

    )18.2( sincos)(0

    0 t x

    t xt x nn

    n

  • 8/12/2019 DinaAplicada Cap 02ppt

    16/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    17/92

    2005 Pearson Education South Asia Pte Ltd. 17

    2.2 Vibracin libre de un sistema noamortiguado Traslacional

    La naturaleza dela oscilacinarmnica puedeser representadagrficamentecomo se muestraen la figura.

  • 8/12/2019 DinaAplicada Cap 02ppt

    18/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    19/92

    2005 Pearson Education South Asia Pte Ltd. 19

    2.2 Free Vibration of an UndampedTranslational System

    )29.2(21

    2/1

    st n

    g f

    Por lo tanto, la frecuencia natural en ciclos porsegundo:

    y, el perodo natural:

    )30.2(21

    2/1

    g f

    st

    nn

  • 8/12/2019 DinaAplicada Cap 02ppt

    20/92

    2005 Pearson Education South Asia Pte Ltd. 20

    2) La velocidad y la aceleracin de lamasa m en el tiempo t pueden obtenerse como:

    2.2 Vibracin libre de un sistema noamortiguado Traslacional

    )(t x )(t x

    )31.2()cos()cos()()(

    )2

    cos()sin()()(

    222

    2

    t At At dt xd

    t x

    t At At dt dx

    t x

    nnn

    nnnn

    n

    3) Si el desplazamiento inicial es cero, 0 x

    )32.2(sin2cos)(00

    t x

    t x

    t x nnn

    n

    Si la velocidad inicial es cero, 0 x)33.2(cos)( 0 t xt x n

  • 8/12/2019 DinaAplicada Cap 02ppt

    21/92

    2005 Pearson Education South Asia Pte Ltd. 21

    4) La respuesta del sistema de un solo grado delibertad puede ser representada en el plano deespacio o fase de estado:

    2.2 Free Vibration of an UndampedTranslational System

    )35.2()sin(

    )34.2()sin()(

    A y

    A xt

    t At x

    nn

    nn

    n x y /

    o

    donde

    Elevando al cuadrado y sumando las ecuacionesEqs. (2.34) & (2.35)

    )36.2(1

    1)(sin)(cos

    2

    2

    2

    2

    22

    A y

    A x

    t t nn

  • 8/12/2019 DinaAplicada Cap 02ppt

    22/92

    2005 Pearson Education South Asia Pte Ltd. 22

    2.2 Vibracin libre de un sistema noamortiguado Traslacional

    Representacin del plano de un sistema no amortiguado

  • 8/12/2019 DinaAplicada Cap 02ppt

    23/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    24/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    25/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    26/92

    2005 Pearson Education South Asia Pte Ltd. 26

    Example 2.5Natural Frequency of Pulley SystemDetermine the natural frequency of the systemshown in the figure. Assume the pulleys to befrictionless and of negligible mass.

  • 8/12/2019 DinaAplicada Cap 02ppt

    27/92

    2005 Pearson Education South Asia Pte Ltd. 27

    Example 2.5 Solution

    21

    222

    k W

    k W

    The total movement of the mass m (point O) is:

    (E.1))(4

    )(4114

    masstheof ntdisplaceme NetconstantspringEquivalentmasstheof Weight

    21

    21

    21

    21

    21

    k k k k

    k

    k k k k W

    k k W k W

    eq

    eq

    The equivalent spring constant of the system:

  • 8/12/2019 DinaAplicada Cap 02ppt

    28/92

    2005 Pearson Education South Asia Pte Ltd. 28

    Example 2.5 Solution

    (E.2)0 xk xm eq

    (E.3)rad/sec)(

    2/1

    21

    21

    2/1

    k k m

    k k m

    k eqn

    By displacing mass m from the static equilibriumposition by x, the equation of motion of the masscan be written as

    Hence, the natural frequency is given by:

    (E.4)cycles/sec)(4

    12

    2/1

    21

    21

    k k mk k

    f nn

    2 3 F Vib i f U d d

  • 8/12/2019 DinaAplicada Cap 02ppt

    29/92

    2005 Pearson Education South Asia Pte Ltd. 29

    2.3 Free Vibration of an UndampedTorsinal System

    )37.2(0l

    GI M t

    Por la teora de la torsin de ejes (flechas)circulares, tenemos la relacin:

    dondeM t es el par de torsin queproduce la torsin , G esel modulo de cortante , es

    la longitud del eje,I 0 es el momneto polar deinerciade la seccintransversal del eje

    l

    2 3 F Vib i f U d d

  • 8/12/2019 DinaAplicada Cap 02ppt

    30/92

    2005 Pearson Education South Asia Pte Ltd. 30

    2.3 Free Vibration of an UndampedTorsinal System

    )38.2(32

    4

    0d

    I

    Momento de inercia polar:

    Constante de resorte torsional:

    )39.2(32

    40

    l Gd

    l GI M

    k t t

    2 3 F Vib i f U d d

  • 8/12/2019 DinaAplicada Cap 02ppt

    31/92

    2005 Pearson Education South Asia Pte Ltd. 31

    2.3 Free Vibration of an UndampedTorsinal System

    Ecuacin de movimiento:

    )40.2(00 t k J Aplicando la segunda del de Newton,

    Por lo tanto, la frecuencia natural circularnatural:

    )41.2(2/1

    0

    J k t

    n

    El perodo y la frecuencia de la vibracin en ciclos

    por segundo son:

    )43.2(2

    1

    )42.2(2

    2/1

    0

    2/1

    0

    J

    k f

    k J

    t n

    t n

  • 8/12/2019 DinaAplicada Cap 02ppt

    32/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    33/92

    E l 2 6

  • 8/12/2019 DinaAplicada Cap 02ppt

    34/92

    2005 Pearson Education South Asia Pte Ltd. 34

    Example 2.6Natural Frequency of Compound Pendulum Any rigid body pivoted at a point other than itscenter of mass will oscillate about the pivot pointunder its own gravitational force. Such a system isknown as a compound pendulum (shown inFigure). Find the natural frequency of such asystem.

  • 8/12/2019 DinaAplicada Cap 02ppt

    35/92

    2005 Pearson Education South Asia Pte Ltd. 35

    For a displacement , the restoring torque (due tothe weight of the body W ) is ( Wd sin ) and theequation of motion is

    Example 2.6 Solution

    E.1)(0sin0 Wd J

    E.2)(00 Wd J Hence, approximated by linear equation:

    The natural frequency of the compound pendulum:

    (E.3)2/1

    0

    2/1

    0

    J

    mgd J Wd

    n

  • 8/12/2019 DinaAplicada Cap 02ppt

    36/92

    2005 Pearson Education South Asia Pte Ltd. 36

    Comparing with natural frequency, the length ofequivalent simple pendulum:

    Example 2.6 Solution

    E.4)(0md J

    l

    If J 0 is replaced by m k 0 2

    , where k 0 is the radius ofgyration of the body about O,

    (E.6)

    (E.5)

    2

    2/1

    2

    0

    0

    d

    k l

    k

    gd n

  • 8/12/2019 DinaAplicada Cap 02ppt

    37/92

    2005 Pearson Education South Asia Pte Ltd. 37

    If k G denotes the radius of gyration of the bodyabout G, we have:

    Example 2.6 Solution

    (E.8)

    E.7)( 2

    2220

    d d

    k

    l

    d k k

    G

    G

    (E.9)2

    d k GA G

    If the line OG is extended to point A such that

    and

    Eq.(E.8) becomes(E.10)OAd GAl

  • 8/12/2019 DinaAplicada Cap 02ppt

    38/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    39/92

    2005 Pearson Education South Asia Pte Ltd. 39

    2.4 Condiciones de estabilidad

    Consideremos una barra rgida uniforme que es girada en

    un extremo y simtricamente conectada por dos muellesen el otro extremo, como se muestra en la figura. Asumirque la masa de la barra es m y que los resortes son sinestirar cuando la barra est vertical.

  • 8/12/2019 DinaAplicada Cap 02ppt

    40/92

    2005 Pearson Education South Asia Pte Ltd. 40

    2.4 Condiciones de estabilidad

    )47.2(0sin2

    cossin23

    2

    l

    W l kl ml

    )48.2(02312

    02

    23

    2

    2

    22

    ml Wl kl

    l W kl

    ml

    Por lo tanto la ecuacin del movimiento de la barra, para la

    rotacin sobre el punto O, puede ser escrita como:

    Para pequeas oscilaciones, Eq.(2.47) reduce a:

    o

    La solucin para Eq.(2.48) depende de la seal,es como se explica a continuacin:22 2/)312( ml Wl kl

  • 8/12/2019 DinaAplicada Cap 02ppt

    41/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    42/92

    2005 Pearson Education South Asia Pte Ltd. 42

    Caso 3. Cuando , definimos

    2.4 Stability Conditions

    00 )0(y)0( t t

    )52.2()( 00 t t

    02/)312( 22 ml Wl kl

    Para condiciones iniciales lasolucin ser

    2/1

    2

    2

    2123

    ml kl Wl

    y expresamos la solucin Eq. (2.48) como

    )53.2()( 21t t e Be Bt

    donde B1 y B2 son constantes. Para condiciones iniciales, Eq.(2.53) sera00 )0( and )0(

    t t

    )54.2(2

    1)( 0000

    t t eet

  • 8/12/2019 DinaAplicada Cap 02ppt

    43/92

    2005 Pearson Education South Asia Pte Ltd. 43

    El principio de conservacin de la energa, en elcontexto de un sistema vibratorio no amortiguado,puede ser replanteado como

    donde los subndices 1 y 2 denotan dos instantesdistintos de tiempo. Si el sistema es sometido amovimiento armnico, entonces

    2.5 Mtodo de E nerga de Rayleighs

    )55.2(2211 U T U T

    )57.2(maxmax U T

  • 8/12/2019 DinaAplicada Cap 02ppt

    44/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    45/92

    2005 Pearson Education South Asia Pte Ltd. 45

    Example 2.8 Solution

    (E.1)21

    2

    l x y

    dyl

    mdT s s

    The kinetic energy of the spring element of lengthdy is

    where ms is the mass of the spring. The total

    kinetic energy of the system can be expressed as

    (E.2)32

    121

    21

    21

    )(springof energykinetic)(massof energykinetic

    22

    2

    22

    0

    2

    xm

    xm

    l x y

    dyl m

    xm

    T T T

    s

    l

    y

    s

    sm

  • 8/12/2019 DinaAplicada Cap 02ppt

    46/92

    2005 Pearson Education South Asia Pte Ltd. 46

    where X is the maximum displacement of the massand n is the natural frequency, the maximumkinetic and potential energies can be expressed as

    Example 2.8 Solution

    (E.3)21 2kxU

    (E.4)cos)( t X t x n

    The total potential energy of the system is given by

    By assuming a harmonic motion

    (E.6)2

    1

    (E.5)32

    1

    2max

    22max

    kX U

    X m

    mT n s

  • 8/12/2019 DinaAplicada Cap 02ppt

    47/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    48/92

    2005 Pearson Education South Asia Pte Ltd. 48

    donde c = constante de amortiguamiento

    2.6 Free Vibration with Viscous Damping

    Ecuacin de movimiento:)58.2( xc F

    En la figura, la ley de Newton da la ecuacin delmovimiento:

    )59.2(0kx xc xm

    kx xc xm

    or

  • 8/12/2019 DinaAplicada Cap 02ppt

    49/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    50/92

    2005 Pearson Education South Asia Pte Ltd. 50

    2.6 Free Vibration with Viscous Damping

    Por lo tanto la solucin general es:

    )64.2(

    )(22

    21

    22

    2

    22

    1

    21

    t mk

    mc

    mc

    t mk

    mc

    mc

    t st s

    eC eC

    eC eC t x

    donde C 1 y C 2 son constantes arbirtrarias que sondeterminadas por las condiciones iniciales delsistema

  • 8/12/2019 DinaAplicada Cap 02ppt

    51/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    52/92

    2005 Pearson Education South Asia Pte Ltd. 52

    Case1 . Underdamped system

    2.6 Free Vibration with Viscous Damping

    )/2oror1( mk mc/ cc c

    )69.2()(1

    2

    1

    1

    22 t t nneC eC t x

    Thus the general solution for Eq.(2.64) is:

    Assuming that 0 , consider the following 3 cases:

    For this condition, ( 2 -1) is negative and the rootsare:

    nn

    i s

    i s

    2

    2

    21

    1

    1

  • 8/12/2019 DinaAplicada Cap 02ppt

    53/92

    2005 Pearson Education South Asia Pte Ltd. 53

    2.6 Free Vibration with Viscous Damping

    where (C 1,C 2 ), (X, ), and (X 0 , 0 ) are arbitraryconstants to be determined from initial conditions.

    )70.2(1cos1sin

    1sin1cos

    )(

    02

    0

    2

    22

    21

    12

    11

    1

    2

    1

    1

    22

    22

    t e X

    t Xe

    t C t C e

    eC eC e

    eC eC t x

    nt

    nt

    nnt

    t it it

    t it i

    n

    n

    n

    nnn

    nn

    and the solution can be written in different forms:

  • 8/12/2019 DinaAplicada Cap 02ppt

    54/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    55/92

    2005 Pearson Education South Asia Pte Ltd. 55

    2.6 Free Vibration with Viscous Damping

    Underdamped Solution

    The frequency of damped vibration is:

    )76.2(1 2 nd

  • 8/12/2019 DinaAplicada Cap 02ppt

    56/92

    2005 Pearson Education South Asia Pte Ltd. 56

    Due to repeated roots, the solution of Eq.(2.59) isgiven by

    2.6 Free Vibration with Viscous Damping

    )77.2(221 n

    c

    mc

    s s

    )78.2()()( 21t net C C t x

    )79.2( and 00201 x xC xC n

    In this case, the two roots are:

    Case2 . Critically damped system )/2oror1( mk mc/ cc c

    Application of initial conditions gives:

    Thus the solution becomes: )80.2()( 000 t n net x x xt x

  • 8/12/2019 DinaAplicada Cap 02ppt

    57/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    58/92

    2005 Pearson Education South Asia Pte Ltd. 58

    In this case, the solution Eq.(2.69) is given by:

    The roots are real and distinct and are given by:

    2.6 Free Vibration with Viscous Damping

    0101

    22

    21

    n

    n

    s

    s

    )81.2()(1

    2

    1

    1

    22 t t nneC eC t x

    For the initial conditions at t = 0 ,

    Case3 . Overdamped system )/2oror1( mk mc/ cc c

    )82.2(12

    1

    12

    1

    2

    02

    01

    2

    02

    01

    n

    n

    n

    n

    x xC

    x xC

  • 8/12/2019 DinaAplicada Cap 02ppt

    59/92

    2005 Pearson Education South Asia Pte Ltd. 59

    2.6 Free Vibration with Viscous Damping

    )84.2(

    )83.2()cos()cos(

    1

    1

    2

    1

    020

    010

    2

    1

    d n

    d n

    n

    n

    n

    ee

    e

    t e X t e X

    x x

    t

    t

    d t

    d t

    Logarithmic Decrement:Using Eq.(2.70),

    The logarithmic decrement can be obtained fromEq.(2.84):

    )85.2(2

    2

    1

    2ln

    22

    1

    mc

    x x

    d nd n

  • 8/12/2019 DinaAplicada Cap 02ppt

    60/92

  • 8/12/2019 DinaAplicada Cap 02ppt

    61/92

    b h

  • 8/12/2019 DinaAplicada Cap 02ppt

    62/92

    2005 Pearson Education South Asia Pte Ltd. 62

    The energy dissipated in a complete cycle will be

    Thus, Eq.(2.95) becomes

    Consider the system shown in the figure below.

    The total force resisting the motion is:

    2.6 Free Vibration with Viscous Damping

    )95.2( xckxcvkx F

    )97.2(cossin t X ct kX F d d d

    )96.2( sin)( t X t x d If we assume simple harmonic motion:

    )98.2( )(cos

    )(cossin

    2/2

    0

    22

    /2

    0

    2

    /2

    0

    X ct d t X c

    t d t t kX

    Fvdt W

    d t

    d d d

    t d d d d

    t

    d

    d

    d

    2 6 F Vib i i h Vi D i

  • 8/12/2019 DinaAplicada Cap 02ppt

    63/92

    2005 Pearson Education South Asia Pte Ltd. 63

    where W is either the max potential energy or the maxkinetic energy.

    Computing the fraction of the total energy of thevibrating system that is dissipated in each cycle ofmotion,

    2.6 Free Vibration with Viscous Damping

    )99.2(constant422

    22

    2

    1 22

    2

    mc

    X m

    X cW W

    d

    d

    d

    The loss coefficient, defined as the ratio of theenergy dissipated per radian and the total strainenergy:

    )100.2(2

    )2/(tcoefficienloss

    W W

    W W

    2 6 F Vib i i h Vi D i

  • 8/12/2019 DinaAplicada Cap 02ppt

    64/92

    2005 Pearson Education South Asia Pte Ltd. 64

    The equation of motion can bederived as:

    Torsional systems with Viscous Damping:

    2.6 Free Vibration with Viscous Damping

    )101.2( t cT

    Consider a single degree of freedom torsionalsystem with a viscous damper, as shown in figure(a). The viscous damping torque is given by:

    )102.2(00 t t k c J

    where J 0 = mass moment of inertia of disckt = spring constant of system = angular displacement of disc

    2 6 F Vib i i h Vi D i

  • 8/12/2019 DinaAplicada Cap 02ppt

    65/92

    2005 Pearson Education South Asia Pte Ltd. 65

    In the underdamped case, the frequency ofdamped vibration is given by:

    2.6 Free Vibration with Viscous Damping

    )103.2(1 2 nd

    )104.2(0 J

    k t n

    where

    and)105.2(

    22 00 J k

    c

    J

    c

    c

    c

    t

    t

    n

    t

    tc

    t

    where c tc is the critical torsional damping constant

    Example 2.11

  • 8/12/2019 DinaAplicada Cap 02ppt

    66/92

    2005 Pearson Education South Asia Pte Ltd. 66

    pShock Absorber for a Motorcycle An underdamped shock absorber is to bedesigned for a motorcycle of mass 200kg (shownin Fig.(a)). When the shock absorber is subjectedto an initial vertical velocity due to a road bump,the resulting displacement-time curve is to be asindicated in Fig.(b). Find the necessary stiffnessand dampeing constants of the shock absorber ifthe damped period of vibration is to be 2 s and the

    amplitude x 1 is to be reduced to one-fourth in onehalf cycle (i.e., x 1.5 = x 1/4). Also find the minimuminitial velocity that leads to a maximumdisplacement of 250 mm.

  • 8/12/2019 DinaAplicada Cap 02ppt

    67/92

    E l 2 11 S l ti

  • 8/12/2019 DinaAplicada Cap 02ppt

    68/92

    2005 Pearson Education South Asia Pte Ltd. 68

    From which can be found as 0.4037. Thedamped period of vibration given by 2 s. Hence,

    Hence the logarithmic decrement becomes

    Example 2.11 Solution

    16/4/,4/ 15.1215.1 x x x x x

    (E.1)1

    27726.216lnln

    22

    1

    x x

    Since ,

    rad/s4338.3)4037.0(12

    2

    1

    222

    2

    2

    n

    nd d

    E l 2 11 S l ti

  • 8/12/2019 DinaAplicada Cap 02ppt

    69/92

    2005 Pearson Education South Asia Pte Ltd. 69

    The displacement of the mass will attain its maxvalue at time t

    1, given by

    Thus the damping constant is given by:

    and the stiffness by:

    Example 2.11 Solution

    s/m- N54.373.1)4338.3)(200(22 nc mc

    s/m- N4981.554)54.1373)(4037.0( ccc

    N/m2652.2358)4338.3)(200( 22 nmk

    The critical damping constant can be obtained:

    sec3678.0)9149.0(sin

    9149.0)4037.0(1sinsin

    1sin

    1

    1

    211

    21

    t

    t t

    t

    d

    d

    or

    This gives:

  • 8/12/2019 DinaAplicada Cap 02ppt

    70/92

    2 7 Free Vibration ith Co lomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    71/92

    2005 Pearson Education South Asia Pte Ltd. 71

    Coulombs law of dry friction states that, whentwo bodies are in contact, the force required toproduce sliding is proportional to the normalforce acting in the plane of contact. Thus, thefriction force F is given by:

    2.7 Free Vibration with Coulomb Damping

    )106.2(mg W N F where N is normal force,

    is the coefficient of sliding or kinetic friction

    is usu 0.1 for lubricated metal, 0.3 for nonlubricatedmetal on metal, 1.0 for rubber on metal

    Coulomb damping is sometimes called constantdamping

  • 8/12/2019 DinaAplicada Cap 02ppt

    72/92

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    73/92

    2005 Pearson Education South Asia Pte Ltd.73

    2.7 Free Vibration with Coulomb Damping

    )107.2(or N kx xm N kx xm

    Case 1 . When x is positive and dx/dt is positive or

    when x is negative and dx/dt is positive (i.e., forthe half cycle during which the mass moves fromleft to right) the equation of motion can beobtained using Newtons second law (Fig.b):

    Hence,

    )108.2( sincos)( 21 k N

    t At At x nn

    where n = k/m is the frequency of vibration

    A1 & A2 are constants

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    74/92

    2005 Pearson Education South Asia Pte Ltd.74

    Case 2 . When x is positive and dx/dt is negative

    or when x is negative and dx/dt is negative (i.e.,for the half cycle during which the mass movesfrom right to left) the equation of motion can bederived from Fig. (c):

    2.7 Free Vibration with Coulomb Damping

    )109.2(or N kx xm xm N kx

    The solution of the equation is given by:

    )110.2(sincos)( 43 k N

    t At At x nn

    where A 3 & A4 are constants

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    75/92

    2005 Pearson Education South Asia Pte Ltd.75

    2.7 Free Vibration with Coulomb Damping

    Fig.2.34 Motion of the mass with Coulomb damping

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    76/92

    2005 Pearson Education South Asia Pte Ltd.76

    Eqs.(2.107) & (2.109) can be expressed as asingle equation using N = mg:

    2.7 Free Vibration with Coulomb Damping

    Solution:

    )111.2(0)sgn( kx xmg xm

    where sgn(y) is called the sigum function, whosevalue is defined as 1 for y > 0, -1 for y< 0, and 0for y = 0.

    Assuming initial conditions as

    )112.2(0)0(

    )0( 0t x

    xt x

  • 8/12/2019 DinaAplicada Cap 02ppt

    77/92

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    78/92

    2005 Pearson Education South Asia Pte Ltd.78

    2.7 Free Vibration with Coulomb Damping

    Note the following characteristics of a system with

    Coulomb damping:1. The equation of motion is nonlinear with Coulomb

    damping, while it is linear with viscous damping2. The natural frequency of the system is unaltered with the

    addition of Coulomb damping, while it is reduced with theaddition of viscous damping.

    3. The motion is periodic with Coulomb damping, while itcan be nonperiodic in a viscously damped (overdamped)

    system.4. The system comes to rest after some time with Coulomb

    damping, whereas the motion theoretically continuesforever (perhaps with an infinitesimally small amplitude)with viscous damping.

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    79/92

    2005 Pearson Education South Asia Pte Ltd.79

    2.7 Free Vibration with Coulomb Damping

    Note the following characteristics of a system with

    Coulomb damping:5. The amplitude reduces linearly with Coulomb damping,

    whereas it reduces exponentially with viscous damping.6. In each successive cycle, the amplitude of motion is

    reduced by the amount 4 N/k, so the amplitudes at theend of any two consecutive cycles are related:

    )116.2(4

    1 k N

    X X mm

    As amplitude is reduced by an amount 4 N/k inone cycle, the slope of the enveloping straightlines (shown dotted) in Fig 2.34.

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    80/92

    2005 Pearson Education South Asia Pte Ltd.80

    2.7 Free Vibration with Coulomb Damping

    )118.2(

    )117.2(

    0

    0

    T k J

    T k J

    t

    t

    )119.2(0 J

    k t n

    Torsional Systems with Coulomb Damping:The equation governing the angular oscillations ofthe system is

    and

    The frequency of vibration is given by

    2 7 Free Vibration with Coulomb Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    81/92

    2005 Pearson Education South Asia Pte Ltd.81

    and the amplitude of motion at the end of the r thhalf cycle ( r ) is given by:

    2.7 Free Vibration with Coulomb Damping

    The motion ceases when

    )121.2(2

    0

    t

    t

    k T

    k T

    r

    )120.2(2

    0t

    r k T

    r

    Example 2.14

  • 8/12/2019 DinaAplicada Cap 02ppt

    82/92

    2005 Pearson Education South Asia Pte Ltd.82

    Pulley Subjected to Coulomb Damping A steel shaft of length 1 m and diameter 50 mm isfixed at one end and carries a pulley of massmoment of inertia 25 kg-m 2 at the other end. Aband brake exerts a constant frictional torque of400 N-m around the circumference of the pulley.

    If the pulley is displaced by 6 and released,determine (1) the number of cycles before thepulley comes to rest and (2) the final settlingposition of the pulley.

  • 8/12/2019 DinaAplicada Cap 02ppt

    83/92

    Example 2 14 Solution

  • 8/12/2019 DinaAplicada Cap 02ppt

    84/92

    2005 Pearson Education South Asia Pte Ltd.84

    Example 2.14 Solution

    926.5

    5.087,49

    8005.087,49

    40010472.0

    r

    and T = constant friction torque applied to the

    pulley = 400 N-m. Eq.(E.1) gives

    Thus the motion ceases after six half cycles.

    (2) The angular displacement after six half cycles:

    39734.0rad006935.0

    5.087,494002610472.0

    from the equilibrium posotion on the same side ofthe initial displacement.

    2 8 Free Vibration with Hysteretic Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    85/92

    2005 Pearson Education South Asia Pte Ltd.85

    Consider the spring-viscous damper arrangement

    shown in the figure below. The force needed tocause a displacement:

    For a harmonic motionof frequency andamplitude X,

    2.8 Free Vibration with Hysteretic Damping

    )122.2( xckx F

    )123.2( sin)( t X t x

    )124.2(

    )sin(

    cossin)(

    22

    22

    x X ckx

    t X X ckx

    t cX t kX t F

    Fig.2.35 Spring-Viscous damper system

    2 8 Free Vibration with Hysteretic Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    86/92

    2005 Pearson Education South Asia Pte Ltd.86

    2.8 Free Vibration with Hysteretic Damping

    )125.2(

    coscossin

    2

    /2

    0

    cX

    dt t X t cX t kX FdxW

    When F versus x is plotted, Eq.(2.124) represents

    a closed loop, as shown in Fig(b). The area of theloop denotes the energy dissipated by thedamper in a cycle of motion and is given by:

    Hence, the dampingcoefficient:

    )126.2( h

    c

    where h is called the hysteresisdamping constant.

    Fig.2.36 Hysteresis loop

    2.8 Free Vibration with Hysteretic Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    87/92

    2005 Pearson Education South Asia Pte Ltd.87

    Complex Stiffness .For general harmonic motion, , the force

    is given by

    2.8 Free Vibration with Hysteretic Damping

    )127.2(2hX W

    t i Xe x

    )128.2()( xcik iXeckXe F t it i

    Eqs.(2.125) and (2.126) gives

    Thus, the force-displacement relation:

    )130.2()1(1

    )129.2()(

    ik k h

    ik ihk

    xihk F

    where

    2.8 Free Vibration with Hysteretic Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    88/92

    2005 Pearson Education South Asia Pte Ltd.88

    The hysteresis logarithmic decrement can bedefined as

    2.8 Free Vibration with Hysteretic Damping

    )131.2(2 X k W

    )135.2()1ln(ln1

    j

    j

    X

    X

    Response of the system .

    The energy loss per cycle can be expressed as

    Corresponding frequency)136.2(

    mk

    Response of a hysteretically damped system

    2.8 Free Vibration with Hysteretic Damping

  • 8/12/2019 DinaAplicada Cap 02ppt

    89/92

    2005 Pearson Education South Asia Pte Ltd.89

    And thus the equivalent damping constant is

    2.8 Free Vibration with Hysteretic Damping

    )137.2(22

    2

    k h

    k h

    eq

    eq

    The equivalent viscous damping ratio

    )138.2( 2

    2

    hk mk mk cc eqceq

  • 8/12/2019 DinaAplicada Cap 02ppt

    90/92

    Example 2.16 Solution

  • 8/12/2019 DinaAplicada Cap 02ppt

    91/92

    2005 Pearson Education South Asia Pte Ltd.91

    Example 2.16 Solution

    Using the ratio of successive amplitudes,

    Eq.(2.135) yields the hysteresis logarithmicdecrement as

    0127.004.0

    04.11

    )1ln()04.1ln(ln1

    or

    X

    X

    j

    j

    The equivalent viscous damping coefficient is

    (E.1)km

    mk

    k k ceq

    Example 2.16 Solution

  • 8/12/2019 DinaAplicada Cap 02ppt

    92/92

    p .

    Using the known values of the equivalent stiffnessand equivalent mass,

    s/m- N109013.44)105)(1025()0127.0( 356eqc

    Since c eq < c c, the bridge is underdamped.Hence, its free vibration response is

    0063.0100678.7071

    109013.40

    1sin

    1

    1cos)(

    3

    3

    2

    2

    0020

    c

    eq

    n

    n

    nn

    t

    c

    c

    t x x

    t xet x n

    where