336
© 1995-2015 Foundation of Computational Thermodynamics Stockholm, Sweden DICTRA Examples Guide Version 2015b

DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Embed Size (px)

Citation preview

Page 1: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

© 1995-2015 Foundation of Computational Thermodynamics

Stockholm, Sweden

DICTRA Examples Guide

Version 2015b

Page 2: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa1One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially a linear Ni-concentration profile.

exa2aOne-phase problem. Simple homogenization of a binary Fe-Ni alloy. We have put together a Ni rich and a Ni lean alloy.

exa2bOne-phase problem. Simple homogenization of a binary Fe-Ni alloy. We have put together a Ni rich and a Ni lean alloy. This example isidentical to a2a. However, in this example implicit time integration is used instead of the trapetzoidal method for solving the PDEs.

exa3One-phase problem. Setup file for the simulation of uphill diffusion in a ternary single phase austenite matrix due to the classical darkenexperiment published by L.S. Darken: Trans. Aime, v.180 (1949), pp. 430-438. In this setup two pieces of austenite (3.80 wt%Si, 0.49 wt%C)and (0.05 wt%Si, 0.45 wt%C) are put together and are subsequently annealed at 1050 C for 13 days. As both pieces are austenite they must beentered into the same region. we can accomplish this by giving the compositions of Si and C in each gridpoint individually. For conveniencewe store these data on file.

exa4One-phase problem. This is a simple binary simulation with just one single phase region. We will compare our numerical simulation with ananalytical erf-solution. For this reason a special database erf.tdb is created in which the diffusion coefficient is set to a concentrationindependent value.

exa5One-phase problem. Simulation of carburization of a binary Fe-0.15 wt% C alloy. A mixture of 40% N2 and 60% cracked methanol was used ascarrier gas. The carburizing "carbon potential" in the gas is 0.85 wt%. A surface reaction controles the flux of C at the surface.

exa6One-phase problem. A simple, perhaps not realistic, example on diffusion through a tube wall. The tube-material is an Fe-0.6%Mn-0.7%Si-0.05%Calloy. On the inside wall a carbon activity of 0.9 is maintained whereas on the outside the C-activity is very low. This example demonstratesthe use of the command SET-FIRST-INTERFACE as well as the use of MIXED boundary conditions.

exa7DICTRA simulation of a homogenization heat treatment

exb1aMoving boundary problems. Setup file for calculating a ferrite(BCC)/austenite(FCC) transformation in a binary Fe-C alloy. The initial stateis an austenite of 2 mm thichness. The composition of the austenite is Fe-0.15wt%C. After austenitisation the specimen has been quenched downto 1050K. The system is assumed closed, so we do not set any boundary conditions (closed system is default). Ferrite is expected to grow intothe austenite. For this reason we start with a thin region with ferrite adjacent to the austenite.

exb1bMoving boundary problem. Same problem as in exb1a but now we set up the problem with ferrite as an inactive phase adjacent to the initialaustenite.

exb1cMoving boundary problems. Same problem as in exb1a and exb1b but now we start the simulation at a higher temperature and we assume a gradualcooling down to 1050 K. When we reach 1050 K we keep the temperature constant and thus have an isothermal transformation. As in exb1b we haveferrite as an inactive phase adjacent to the initial austenite.

exb2Moving boundary problems. Setup file for calculating the dissolution of a spherical cementite particle in an austenite matrix. This case isfrom Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren: Metall. Trans.A, v.22A (1991), pp. 1745-1752.

exb3exb3_setup.DCM

exb4aMoving boundary problems. This examples demonstrates the solidification path of an Fe-18%Cr-8%Ni alloy. A eutectic reaction is assumed,LIQUID -> BCC + FCC. Hence the BCC and FCC regions should be on separate sides of the liquid region. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.

exb4bMoving boundary problems. The same as exb4a but now a peritectic reaction is assumed, LIQUID + BCC -> FCC. Hence the FCC region should appearinbetween the LIQUID and the BCC. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, bothmade with Thermo-Calc.

exb4cMoving boundary problems. Same as exb4b but, now the diffusivity data is amended for the LIQUID and a very high value for the diffusivity isused in order to simulate a case where we assume that the composition in the LIQUID is always homogeneous. This case should be consideredless realistic than exb4b. Comparison is made with both a Scheil-Gulliver simulation and equilibrium solidification conditions, both madewith Thermo-Calc.

exb4dMoving boundary problems. Same as exb4b but instead of controlling the temperature the amount of heat extracted is given. Comparison is madewith both a Scheil-Gulliver simulation and equilibrium solidification conditions, both made with Thermo-Calc.

exb5Moving boundary problems. This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion couple. A thin slice of ALPHA phase(38%Cr, 0%Ni) is clamped between two thicker slices of GAMMA phase (27%Cr, 20%Ni). The assembly is subsequently heat treated at 1373K. Thissetup corresponds to diffusion couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International 33 (1993), pp. 498-507. See also M.Kajihara and M. Kikichi: Acta Metall.Mater. 41 (1993), pp.2045-2059.

exb6Moving boundary problems. This example illustrates the effect of microsegregation of phosphorus during peritectic solidification in steel.

exb7Moving boundary problems. This example shows how to enter dispersed phases on either side of a phase interface. The particular case shows howthe kinetics of a ferrite to austenite transformation is affected by simultaneous precipitation of niobium carbide. The transformation iscaused by carburization.

exc1

Page 3: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Cell calculations. This example simulates what happens to a FERRITE plate that has inherited the carbon content of its parent AUSTENITE. TheFERRITE plate formed is embedded in an AUSTENITE matrix. This setup corresponds to a proposed mechanism for formation of WIDMANNSTÄTTENFERRITE or for the FERRITE phase of the BAINITE structure. It is assumed that the phase boundary between FERRITE and AUSTENITE is immobile,this is achieved in the simulation by putting the FERRITE and the AUSTENITE in two different cells. See also M. Hillert, L. Höglund and J.Ågren: Acta Metall. Mater. 41 (1993), pp.1951-1957.

exc2Cell calculations. Setup file for calculating the dissolution of CEMENTITE particles in an AUSTENITE matrix. This case is identical to exb2except that we here have three different particle sizes. Altogether six particles are considered using three different cells. This is inorder to represent some size distribution among the CEMENTITE particles. See also Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren:Metall.Trans.A, v. 22A (1991), pp. 1745-1752.

exd1aDiffusion in dispersed systems. Setup file for carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered asspheroid phases in a FCC matrix. This case is from A. Engström, L. Höglund and J. Ågren: Metall.Trans.A v. 25A (1994), pp. 1127-1134. Thissimulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used,which requires that the default HOMOGENIZATION MODEL is disabled. With the DISPERSED SYSTEM MODEL the command ENTER_LABYRINTH_FUNCTION isused to take into account the impeding effect of dispersed phases on long-range diffusion. For the HOMOGENIZATION MODEL the commandENTER_HOMOGENIZATION_FUNCTION should be used.

exd1bDiffusion in dispersed systems. Setup file for carburization of a Ni-25Cr alloy. In this case the M3C2 and M7C3 carbides are entered asspheroid phases in a FCC matrix. This case is from A. Engström, L. Höglund and J. Ågren: Metall.Trans. A, v.25A (1994), pp. 1127-1134. Thissimulation can be run with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. The default HOMOGENIZATION MODEL is used and thenENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION.

exd2aDiffusion in dispersed systems. Setup file for calculating the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and asingle-phase (FCC) Fe-Ni-Cr alloy.@@ This case is from A. Engström: Scand. J. Met., v. 24, 1995, pp.12-20. This simulation can be run witheither the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. In this example the DISPERSED SYSTEM MODEL is used, which requires that thedefault HOMOGENIZATION MODEL is disabled. With the DISPERSED SYSTEM MODEL the command ENTER_LABYRINTH_FUNCTION is used to take into accountthe impeding effect of dispersed phases on long-range diffusion. For the HOMOGENIZATION MODEL the command ENTER_HOMOGENIZATION_FUNCTIONshould be used.

exd2bDiffusion in dispersed systems. Setup file for calculating the interdiffusion in a diffusion couple between a two-phase (FCC+BCC) and asingle-phase (FCC) Fe-Ni-Cr alloy. This case is from A. Engström: Scand. J. Met., v. 24, 1995, pp.12-20. This simulation can be run witheither the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. Here the default HOMOGENIZATION MODEL is used and thenENTER_HOMOGENIZATION_FUNCTION should be used instead of ENTER_LABYRINTH_FUNCTION.

exd3Diffusion in dispersed systems. This example shows the use of the homogenization model. It is taken from H. Larsson and A. Engström, Acta.Mater. v.54 (2006), pp. 2431-2439. Experimental data from A. Engström, Scand J Metall, v.243 (1995), p.12. The homogenization model can beused for multiphase simulations like the dispersed system model, but unlike the dispersed system model there is no need to have a singlecontinuous matrix phase and, furthermore, there is no need to limit the size of time-steps. The set-up is performed in the same manner as forthe dispersed system model, which means that a certain phase is entered as the matrix phase and the other phases are entered as spheroidal,but the choice of matrix phase will not affect the simulation.

exe1Cooperative growth. This is an example file for a setup and a calculation of PEARLITE growth in an Fe-0.50wt%C - 0.91wt%Mn steel.

exf1Coarsening. Setup file for calculating the Ostwald-ripening of a spherical M6C carbide in an AUSTENITE matrix.

exg1Kinetic data. A file for checking mobilities and diffusivities in an Fe-Ni alloy.

exg2Kinetic data. A file for reading thermodynamic data and setting up the kinetic parameters which are needed for an optimization of the FCCphase in the binary Ni-Al system. See also A. Engström and J. Ågren: ("Assessment of Diffusional Mobilities in Face-Centered Cubic Ni-Cr-AlAlloys" in Z. METALLKUNDE, Feb. 1996).

exh1Deviation from local equilibrium. Setup file for calculating the growth of FERRITE into AUSTENITE with a limited interface mobility. This isachieved by adding a Gibbs-energy contribution to the FERRITE using the SET-SURFACE-ENERGY command.

exh2Deviation from local equilibrium Setup file for calculation of the growth of FERRITE into AUSTENITE in an Fe-2.02%Ni-0.0885%C alloy using thepara-equilibrium model. The results are compared with experimental information from Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "Thediffusional formation of ferrite from austenite in Fe-C-Ni alloys." Metall. Mat. Trans. A 35.4 (2004): 1211-1221.

exh3Deviation from local equilibrium. This calculation shows how a temperature gradient induces diffusion.

exi1Diffusion in complex phases. Diffusion in including effects from chemical ordering. The datafile AlFeNi-data.TDB contains both athermodynamic and kinetic description for the ordered and disordered BCC.

exi2Diffusion in complex phases. This example demonstrates the use of the model for calculation of diffusion through a stoichiometric phase. Theflux of a component in the stoichiometric phase is assumed to be proportional to the difference in chemical potential at each side of thestoichiometric phase multiplied with the mobility for the component in the phase. The mobility is assessed from experimental information andis basically the tracer diffusivity for the component. This calculation is compared with experimental data where a sample of pure iron hasbeen exposed to a gas atmosphere with a certain carbon activity. The weight gain is then measured as a function of time. The experimentaldata is obtained from Ozturk B., Fearing V. L., Ruth A. Jr. and Simkovich G., Met. Trans A, vol 13A (1982), pp. 1871-1873.

exi3aDiffusion in complex phases. Oxidation of iron sample and consequent growth of an oxide layer.

exi3bDiffusion in complex phases. Oxidation of iron sample and consequent growth of an oxide layer using the grain boundary diffusion contributionmodel.

Page 4: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

One-phase problems

Page 5: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example a1

Homogenisation of a binary Fe-Ni alloy

●●● ● ●

1E-4

10% Ni

50% Ni

FCC

T = 1400 K

(Initially we assume a linear concentration profile)

Page 6: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Results

exa1-setup

MACRO exa1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa1\setup.DCM"SYS: @@ SYS: @@ One-phase problem. SYS: @@ Simple homogenization of a binary Fe-Ni alloy. It is assumed SYS: @@ there is initially a linear Ni-concentration profile. SYS: @@ SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: goto_module MODULE NAME: data THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: switch_database Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0

Page 7: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE8/: tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: @@ TDB_TCFE7: define_system ELEMENTS: fe ni FE NI DEFINED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: @@ TDB_TCFE7: reject ELEMENTS, SPECIES, PHASES, CONSTITUENT OR SYSTEM: /PHASES/: phase PHASES: * LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA LAVES_PHASE_C14 NBNI3 NI3TI REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ RESTORE THE THERMODYNAMIC DATA FOR THE FCC PHASE TDB_TCFE7: @@ TDB_TCFE7: restore ELEMENTS, SPECIES, PHASES OR CONSTITUENTS: /ELEMENTS/: phase PHASES: fcc FCC_A1 RESTORED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: @@ TDB_TCFE7: get_data REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_TCFE7: @@ TDB_TCFE7: append_database Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1

Page 8: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: define_system ELEMENTS: fe ni FE NI DEFINED APP: reject ELEMENTS, SPECIES, PHASES, CONSTITUENT OR SYSTEM: /PHASES/: phase PHASES: * BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: APP: restore ELEMENTS, SPECIES, PHASES OR CONSTITUENTS: /ELEMENTS/: phase PHASES: fcc FCC_A1 RESTORED APP: APP: get_data ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: goto_module MODULE NAME: dictra_monitor NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set_condition GLOBAL OR BOUNDARY CONDITION /GLOBAL/: global VARIABLE : T LOW TIME LIMIT /0/: 0 T(TIME,X)= 1400; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N DIC> DIC> @@ DIC> @@ WE START BY ENTERING A REGION DIC> @@ DIC> enter_region REGION NAME : austenite DIC> DIC> @@ DIC> @@ ENTER GRID INTO THE REGION DIC> @@ DIC> @@ FOR SIMPLICITY WE USE AN EQUIDISTANT GRID DIC> @@ DIC> enter_grid_coordinates REGION NAME : /AUSTENITE/: austenite WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 60 DIC> DIC>

Page 9: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> @@ ENTER ACTIVE PHASE INTO REGION DIC> @@ DIC> enter_phase_in_region ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL NI COMPOSITION INTO THE PHASE. WE ASSUME A LINEAR DIC> @@ VARIATION IN THE REGION. DIC> @@ DIC> enter_compositions REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: weight_percent PROFILE FOR /NI/: ni TYPE /LINEAR/: linear VALUE OF FIRST POINT : 10 VALUE OF LAST POINT : /10/: 50 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set_simulation_time END TIME FOR INTEGRATION /.1/: 1E6 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /100000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON FILE DIC> @@ DIC> save_workspaces exa1 Y DIC> DIC> set_interactive --OK--- DIC>

Page 10: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa1-run

MACRO exa1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa1\run.DCM"DIC> DIC> DIC> @@ exa1_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE a1 DIC> @@ DIC> goto_module MODULE NAME: dictra_monitor TIME STEP AT TIME 0.00000E+00 DIC> DIC> read_workspaces exa1 OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> simulate_reaction Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 502.56581 DT = 502.16571 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1506.8972 DT = 1004.3314 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 1 seconds TIME = 3515.5601 DT = 2008.6628 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 7532.8858 DT = 4017.3257 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 15567.537 DT = 8034.6514 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 31636.840 DT = 16069.303 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 63775.446 DT = 32138.606 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 128052.66 DT = 64277.211 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093966 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 228052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 328052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 428052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds

Page 11: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 528052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906033 NI = .290319978093967 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 628052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906035 NI = .290319978093966 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 728052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906034 NI = .290319978093966 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 828052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906035 NI = .290319978093965 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 928052.66 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906036 NI = .290319978093964 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1000000.00 DT = 71947.343 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .709680021906036 NI = .290319978093964 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 502.56581 DELETING TIME-RECORD FOR TIME 1506.8972 DELETING TIME-RECORD FOR TIME 3515.5601 DELETING TIME-RECORD FOR TIME 7532.8858 DELETING TIME-RECORD FOR TIME 15567.537 DELETING TIME-RECORD FOR TIME 31636.840 DELETING TIME-RECORD FOR TIME 63775.446 DELETING TIME-RECORD FOR TIME 128052.66 DELETING TIME-RECORD FOR TIME 228052.66 DELETING TIME-RECORD FOR TIME 328052.66 DELETING TIME-RECORD FOR TIME 428052.66 DELETING TIME-RECORD FOR TIME 528052.66 DELETING TIME-RECORD FOR TIME 628052.66 DELETING TIME-RECORD FOR TIME 728052.66 DELETING TIME-RECORD FOR TIME 828052.66 KEEPING TIME-RECORD FOR TIME 928052.66 AND FOR TIME 1000000.00 WORKSPACE RECLAIMED DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set_interactive --OK--- DIC>

Page 12: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa1-plot

MACRO exa1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa1\plot.DCM"DIC> DIC> DIC> @@ exa1_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a1 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> goto_module MODULE NAME: dictra_monitor TIME STEP AT TIME 1.00000E+06 DIC> read_workspaces exa1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post_processor POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT SOME CONCENTRATION PROFILES POST-1: @@ POST-1: set_diagram_axis AXIS (X, Y OR Z) : x VARIABLE : distance INFO: Distance is set as independent variable DISTANCE : /GLOBAL/: global POST-1: POST-1: set_diagram_axis AXIS (X, Y OR Z) : y VARIABLE : weight-percent FOR COMPONENT : ni POST-1: POST-1: set_plot_condition CONDITION /TIME/: time VALUE(S) /LAST/: 0 1e5 3e5 1e6 POST-1: POST-1: plot_diagram

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: set_interactive --OK--- POST-1:

Page 13: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example a2

Homogenisation of a binary Fe-Ni alloy

1E-4

10% Ni

T = 1400 K

50% Ni

FCC FCC

●● ●●● ●●

(Initially we have a step-profile)

Page 14: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa2a-setup

MACRO exa2a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2a\setup.DCM"SYS: @@ SYS: @@ One-phase problem. SYS: @@ Simple homogenization of a binary Fe-Ni alloy. We have put together a SYS: @@ Ni rich and a Ni lean alloy. SYS: @@ SYS: SYS: @@ exa2a_setup.DCM SYS: SYS: @@ SYS: @@ IN exa1 WE WROTE OUT ALL THE COMMANDS IN FULL BUT FROM NOW ON WE WILL SYS: @@ START USING ABBREVIATED COMMANDS. SYS: @@ SYS: SYS: @@ SYS: @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE SYS: @@ SYS: set_log_file setup Heading: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da ... the command in full is GOTO_MODULE THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw TCFE7 ... the command in full is SWITCH_DATABASE Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: @@ TDB_TCFE7: def-system fe ni ... the command in full is DEFINE_SYSTEM FE NI DEFINED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: @@ TDB_TCFE7: rej ph * all ... the command in full is REJECT LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA LAVES_PHASE_C14 NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc ... the command in full is RESTORE FCC_A1 RESTORED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: @@ TDB_TCFE7: get ... the command in full is GET_DATA REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... ... the command in full is AMEND_PHASE_DESCRIPTION PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_TCFE7: @@ TDB_TCFE7: app ... the command in full is APPEND_DATABASE Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0

Page 15: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni ... the command in full is DEFINE_SYSTEM FE NI DEFINED APP: rej ph * all ... the command in full is REJECT BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc ... the command in full is RESTORE FCC_A1 RESTORED APP: get ... the command in full is GET_DATA ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m ... the command in full is GOTO_MODULE NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond ... the command in full is SET_CONDITION

Page 16: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob VARIABLE : T LOW TIME LIMIT /0/: 0 T(TIME,X)= 1400; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N DIC> DIC> @@ DIC> @@ WE START BY ENTERING A REGION DIC> @@ DIC> enter-region REGION NAME : austenite DIC> DIC> @@ DIC> @@ ENTER GRID INTO THE REGION. DIC> @@ IN THIS CASE WE WANT SEVERAL POINTS IN THE MIDLE OF THE REGION, DIC> @@ THUS WE CONSTRUCT A DOUBLE GEOMETRIC GRID. DIC> @@ DIC> enter-grid ... the command in full is ENTER_GRID_COORDINATES REGION NAME : /AUSTENITE/: austenite WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ... the command in full is ENTER_PHASE_IN_REGION ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL NI COMPOSITION INTO THE PHASE. READ DATA FROM DIC> @@ THE FILE ni.dat WHICH CONTAINS THE NI-PROFILE. DIC> @@ DIC> enter-composition ... the command in full is ENTER_COMPOSITIONS REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /NI/: ni TYPE /LINEAR/: read a2ani.dat ... the command in full is CREATE_NEW_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM

Page 17: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 1E6 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /100000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON FILE DIC> @@ DIC> save exa2a Y ... the command in full is SAVE_WORKSPACES DIC> DIC> set-inter ... the command in full is SET_INTERACTIVE --OK--- DIC>

Page 18: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa2a-run

MACRO exa2a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2a\run.DCM" ... the command in full is MACRO_FILE_OPEN DIC> DIC> DIC> @@ exa2a_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE a2a DIC> @@ DIC> DIC> @@ DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE DIC> @@ DIC> @@set-log-file run DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AN READ SETUP FROM FILE DIC> @@ DIC> go d-m ... the command in full is GOTO_MODULE TIME STEP AT TIME 0.00000E+00 DIC> DIC> read exa2a ... the command in full is READ_WORKSPACES ... the command in full is DEFINE_COMPONENTS ... the command in full is SELECT_EQUILIBRIUM OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> simulate ... the command in full is SIMULATE_REACTION ... the command in full is SET_NUMERICAL_LIMITS Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 10.408313 DT = 10.008213 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 30.424739 DT = 20.016426 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 70.457590 DT = 40.032851 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 150.52329 DT = 80.065703 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 310.65470 DT = 160.13141 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 630.91751 DT = 320.26281 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1271.4431 DT = 640.52562 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 2552.4944 DT = 1281.0512 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds

Page 19: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 5114.5969 DT = 2562.1025 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 10238.802 DT = 5124.2050 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 20487.212 DT = 10248.410 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 40984.032 DT = 20496.820 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 81977.671 DT = 40993.640 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 163964.95 DT = 81987.280 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406172 NI = .291111754593828 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 263964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 1 seconds TIME = 363964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406168 NI = .291111754593832 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 463964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406168 NI = .291111754593832 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 563964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593832 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 663964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406168 NI = .291111754593832 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 763964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 863964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 963964.95 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1000000.00 DT = 36035.049 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 10.408313 DELETING TIME-RECORD FOR TIME 30.424739 DELETING TIME-RECORD FOR TIME 70.457590 DELETING TIME-RECORD FOR TIME 150.52329 DELETING TIME-RECORD FOR TIME 310.65470 DELETING TIME-RECORD FOR TIME 630.91751 DELETING TIME-RECORD FOR TIME 1271.4431 DELETING TIME-RECORD FOR TIME 2552.4944 DELETING TIME-RECORD FOR TIME 5114.5969 DELETING TIME-RECORD FOR TIME 10238.802 DELETING TIME-RECORD FOR TIME 20487.212 DELETING TIME-RECORD FOR TIME 40984.032 DELETING TIME-RECORD FOR TIME 81977.671 DELETING TIME-RECORD FOR TIME 163964.95 DELETING TIME-RECORD FOR TIME 263964.95 DELETING TIME-RECORD FOR TIME 363964.95 DELETING TIME-RECORD FOR TIME 463964.95 DELETING TIME-RECORD FOR TIME 563964.95 DELETING TIME-RECORD FOR TIME 663964.95 DELETING TIME-RECORD FOR TIME 763964.95

Page 20: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DELETING TIME-RECORD FOR TIME 863964.95 KEEPING TIME-RECORD FOR TIME 963964.95 AND FOR TIME 1000000.00 WORKSPACE RECLAIMED DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter ... the command in full is SET_INTERACTIVE --OK--- DIC>

Page 21: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa2a-plot

MACRO exa2a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2a\plot.DCM" ... the command in full is MACRO_FILE_OPEN DIC> DIC> DIC> @@ exa2a_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a2a DIC> @@ DIC> DIC> @@ DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE DIC> @@ DIC> set-log-file plot AMBIGUOUS COMMAND, USE HELP DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m ... the command in full is GOTO_MODULE TIME STEP AT TIME 1.00000E+06 DIC> DIC> read exa2a ... the command in full is READ_WORKSPACES ... the command in full is DEFINE_COMPONENTS ... the command in full is SELECT_EQUILIBRIUM OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post ... the command in full is POST_PROCESSOR POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT SOME NI-CONCENTRATION PROFILES POST-1: @@ POST-1: s-d-a ... the command in full is SET_DIAGRAM_AXIS AXIS (X, Y OR Z) : x VARIABLE : dist INFO: Distance is set as independent variable ... the command in full is SET_INDEPENDENT_VARIABLE DISTANCE : /GLOBAL/: glo POST-1: POST-1: s-d-a ... the command in full is SET_DIAGRAM_AXIS AXIS (X, Y OR Z) : y VARIABLE : weight-percent FOR COMPONENT : ni POST-1: POST-1: s-p-c ... the command in full is SET_PLOT_CONDITION CONDITION /TIME/: time VALUE(S) /LAST/: 0 1e5 3e5 1e6 POST-1: POST-1: @@ POST-1: @@ SET SCALING ON Y-AXIS BEFORE PLOTTING POST-1: @@ POST-1: s-s-s ... the command in full is SET_SCALING_STATUS AXIS (X, Y OR Z) : y AUTOMATIC SCALING (Y OR N) /N/: n MIN VALUE : 0 MAX VALUE : 60 POST-1: POST-1: plot ... the command in full is PLOT_DIAGRAM

POST-1: POST-1:

Page 22: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: set-inter ... the command in full is SET_INTERACTIVE_MODE --OK--- POST-1:

Page 23: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa2b-setup

MACRO exa2b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2b\setup.DCM"SYS: @@ SYS: @@ One-phase problem. SYS: @@ Simple homogenization of a binary Fe-Ni alloy. We have put together a SYS: @@ Ni rich and a Ni lean alloy. This example is identical to a2a. However, SYS: @@ in this example implicit time integration is used instead of the trapetzoidal SYS: @@ method for solving the PDEs. SYS: @@ SYS: SYS: @@ exa2b_setup.DCM SYS: SYS: @@ SYS: @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE SYS: @@ SYS: set_log_file setup Heading: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da ... the command in full is GOTO_MODULE THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 ... the command in full is SWITCH_DATABASE Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: @@ TDB_TCFE7: def-system fe ni ... the command in full is DEFINE_SYSTEM FE NI DEFINED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: @@ TDB_TCFE7: rej ph * all ... the command in full is REJECT LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA LAVES_PHASE_C14 NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc ... the command in full is RESTORE FCC_A1 RESTORED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: @@ TDB_TCFE7: get ... the command in full is GET_DATA REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... ... the command in full is AMEND_PHASE_DESCRIPTION PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_TCFE7: @@ TDB_TCFE7: app ... the command in full is APPEND_DATABASE Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1

Page 24: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni ... the command in full is DEFINE_SYSTEM FE NI DEFINED APP: rej ph * all ... the command in full is REJECT BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc ... the command in full is RESTORE FCC_A1 RESTORED APP: get ... the command in full is GET_DATA ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m ... the command in full is GOTO_MODULE NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond ... the command in full is SET_CONDITION

GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob VARIABLE : T LOW TIME LIMIT /0/: 0

Page 25: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

T(TIME,X)= 1400; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N DIC> DIC> @@ DIC> @@ WE START BY ENTERING A REGION DIC> @@ DIC> enter-region REGION NAME : austenite DIC> DIC> @@ DIC> @@ ENTER GRID INTO THE REGION. DIC> @@ AS IN EXAMPLE a2a WE WANT SEVERAL POINTS IN THE MIDLE OF THE REGION, DIC> @@ THUS WE CONSTRUCT A DOUBLE GEOMETRIC GRID ALSO NI THIS CASE. DIC> @@ DIC> enter-grid ... the command in full is ENTER_GRID_COORDINATES REGION NAME : /AUSTENITE/: austenite WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ... the command in full is ENTER_PHASE_IN_REGION ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL NI COMPOSITION INTO THE PHASE. READ DATA FROM DIC> @@ THE FILE ni.dat WHICH CONTAINS THE NI-PROFILE. DIC> @@ DIC> enter-composition ... the command in full is ENTER_COMPOSITIONS REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /NI/: ni TYPE /LINEAR/: read a2bni.dat ... the command in full is CREATE_NEW_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM

Page 26: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM ... the command in full is COMPUTE_EQUILIBRIUM DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ AFTER THE SIMULATION IN exa2a THE PROFILES HAD SOME FLUCTUATIONS WE DIC> @@ NOW TRY TO GET RID OF THEM USING IMPLICIT (1) TIME INTEGRATION DIC> @@ INSTEAD OF THE MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD DIC> @@ WHICH IS THE DEFAULT METHOD. DIC> @@ DIC> s-s-c ... the command in full is SET_SIMULATION_CONDITION NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: @@ ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 1E6 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /100000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON FILE DIC> @@ DIC> save exa2b Y ... the command in full is SAVE_WORKSPACES DIC> DIC> set-inter ... the command in full is SET_INTERACTIVE --OK--- DIC>

Page 27: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa2b-run

MACRO exa2b\run.DCM ... the command in full is MACRO_FILE_OPEN DIC> DIC> DIC> @@ exa2b_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE a2b DIC> @@ DIC> DIC> @@ DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE DIC> @@ DIC> set-log-file run AMBIGUOUS COMMAND, USE HELP DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AN READ SETUP FROM FILE DIC> @@ DIC> go d-m ... the command in full is GOTO_MODULE TIME STEP AT TIME 0.00000E+00 DIC> read exa2b ... the command in full is READ_WORKSPACES ... the command in full is DEFINE_COMPONENTS ... the command in full is SELECT_EQUILIBRIUM OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> simulate ... the command in full is SIMULATE_REACTION ... the command in full is SET_NUMERICAL_LIMITS Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 10.403455 DT = 10.003355 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 30.410165 DT = 20.006710 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 70.423585 DT = 40.013420 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 150.45043 DT = 80.026840 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 310.50411 DT = 160.05368 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 630.61147 DT = 320.10736 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1270.8262 DT = 640.21472 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 2551.2556 DT = 1280.4294 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds

Page 28: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 5112.1145 DT = 2560.8589 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 10233.832 DT = 5121.7178 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 20477.268 DT = 10243.436 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 40964.139 DT = 20486.871 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .29111175459383 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 81937.881 DT = 40973.742 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .70888824540617 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 163885.37 DT = 81947.484 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406169 NI = .291111754593831 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 263885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406172 NI = .291111754593828 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 363885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406167 NI = .291111754593833 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 463885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406166 NI = .291111754593834 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 563885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406164 NI = .291111754593836 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 663885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406166 NI = .291111754593834 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 763885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406165 NI = .291111754593835 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 863885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406166 NI = .291111754593834 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 963885.37 DT = 100000.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406166 NI = .291111754593834 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1000000.00 DT = 36114.635 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: FE = .708888245406167 NI = .291111754593833 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 10.403455 DELETING TIME-RECORD FOR TIME 30.410165 DELETING TIME-RECORD FOR TIME 70.423585 DELETING TIME-RECORD FOR TIME 150.45043 DELETING TIME-RECORD FOR TIME 310.50411 DELETING TIME-RECORD FOR TIME 630.61147 DELETING TIME-RECORD FOR TIME 1270.8262 DELETING TIME-RECORD FOR TIME 2551.2556 DELETING TIME-RECORD FOR TIME 5112.1145 DELETING TIME-RECORD FOR TIME 10233.832 DELETING TIME-RECORD FOR TIME 20477.268 DELETING TIME-RECORD FOR TIME 40964.139 DELETING TIME-RECORD FOR TIME 81937.881 DELETING TIME-RECORD FOR TIME 163885.37 DELETING TIME-RECORD FOR TIME 263885.37 DELETING TIME-RECORD FOR TIME 363885.37 DELETING TIME-RECORD FOR TIME 463885.37 DELETING TIME-RECORD FOR TIME 563885.37 DELETING TIME-RECORD FOR TIME 663885.37 DELETING TIME-RECORD FOR TIME 763885.37 DELETING TIME-RECORD FOR TIME 863885.37

Page 29: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

KEEPING TIME-RECORD FOR TIME 963885.37 AND FOR TIME 1000000.00 WORKSPACE RECLAIMED DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter ... the command in full is SET_INTERACTIVE --OK--- DIC>

Page 30: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa2b-plot

MACRO exa2b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa2b\plot.DCM" ... the command in full is MACRO_FILE_OPEN DIC> DIC> DIC> @@ exa2b_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a2b DIC> @@ DIC> DIC> @@ DIC> @@ LET US DEFINE A LOG-FILE FOR THIS EXAMPLE DIC> @@ DIC> set-log-file plot AMBIGUOUS COMMAND, USE HELP DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m ... the command in full is GOTO_MODULE TIME STEP AT TIME 1.00000E+06 DIC> read exa2b ... the command in full is READ_WORKSPACES ... the command in full is DEFINE_COMPONENTS ... the command in full is SELECT_EQUILIBRIUM OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post ... the command in full is POST_PROCESSOR POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT SOME CONCENTRATION PROFILES POST-1: @@ POST-1: s-d-a ... the command in full is SET_DIAGRAM_AXIS AXIS (X, Y OR Z) : x VARIABLE : dist INFO: Distance is set as independent variable ... the command in full is SET_INDEPENDENT_VARIABLE DISTANCE : /GLOBAL/: glo POST-1: POST-1: s-d-a ... the command in full is SET_DIAGRAM_AXIS AXIS (X, Y OR Z) : y VARIABLE : w-p FOR COMPONENT : ni POST-1: POST-1: s-p-c ... the command in full is SET_PLOT_CONDITION CONDITION /TIME/: time VALUE(S) /LAST/: 0 1e5 3e5 1e6 POST-1: POST-1: @@ POST-1: @@ SET SCALING ON Y-AXIS BEFORE PLOTTING POST-1: @@ POST-1: s-s-s ... the command in full is SET_SCALING_STATUS AXIS (X, Y OR Z) : y AUTOMATIC SCALING (Y OR N) /N/: n MIN VALUE : 0 MAX VALUE : 60 POST-1: POST-1: plot ... the command in full is PLOT_DIAGRAM

POST-1: POST-1: POST-1:

Page 31: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1:@?<Hit_return_to_continue>POST-1: POST-1: set-inter ... the command in full is SET_INTERACTIVE_MODE --OK--- POST-1:

Page 32: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example a3

Uphill diffusion in an Fe-Si-C alloy

5E-2

3.8% Si

0.49% C

T = 1323 K

0.05% Si

0.45% C

FCC FCC

●● ●●● ●●

Page 33: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa3-setup

MACRO exa3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa3\setup.DCM"SYS: @@ SYS: @@ One-phase problem. SYS: @@ Setup file for the simulation of uphill diffusion in a ternary single phase SYS: @@ austenite matrix due to the classical darken experiment published by SYS: @@ L.S. Darken: Trans. Aime, v.180 (1949), pp. 430-438. SYS: @@ In this setup two pieces of austenite (3.80 wt%Si, 0.49 wt%C) and SYS: @@ (0.05 wt%Si, 0.45 wt%C) are put together and are subsequently annealed SYS: @@ at 1050 C for 13 days. As both pieces are austenite they must be entered SYS: @@ into the same region. we can accomplish this by giving the compositions SYS: @@ of Si and C in each gridpoint individually. For convenience we store SYS: @@ these data on file. SYS: @@ SYS: SYS: @@ darken_setup.DCM SYS: SYS: @@ SYS: @@ FROM NOW ON WE STOP USING LOG-FILES AS WE USED IN EXAMPLES a2a and a2b SYS: @@ SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe si c FE SI C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 M3SI CR3SI FE2SI MSI M5SI3 AL4C3 FE8SI2C SIC REJECTED TDB_TCFE7: res ph fcc FCC_A1 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'J. Lacaze and B. Sundman, Metall. Mater. Trans. A, 22A (1991), 2211-2223; Fe-Si and Fe-Si-C' 'J. Miettinen and B. Hallstedt, Calphad, 22 (1998), 231-256; Fe-Si and Fe -Si-C' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe si c FE SI C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'D. Bergner et al., Defect and Diffusion Forum 66-69(1989)409. Impurity diffusion of Si in fcc Fe.'

Page 34: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

-OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1323; * N DIC> DIC> @@ DIC> @@ ENTER REGION austenite DIC> @@ DIC> enter-region REGION NAME : austenite DIC> DIC> @@ DIC> @@ ENTER GRID DIC> @@ N.B. GRIDPOINT DISTANCES ARE SMALLEST AROUND THE MIDDLE DIC> @@ DIC> enter-grid REGION NAME : /AUSTENITE/: austenite WIDTH OF REGION /1/: 50E-3 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 50 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.9 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.11 DIC> DIC> @@ DIC> @@ ENTER PHASE INTO REGION (BOTH PIECES ARE AUSTENITIC) DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER COMPOSITIONS INTO THE PHASE DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /SI/: FE COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C func 0.49-0.04*HS(X-25E-3); PROFILE FOR /SI/: SI func 3.80-3.75*HS(X-25E-3); DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 1e10 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /1E+09/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> save exa3 Y DIC> DIC> set-inter --OK--- DIC>

Page 35: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa3-run

MACRO exa3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa3\run.DCM"DIC> DIC> DIC> @@ darken_run.DCM DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> DIC> @@ DIC> @@ READ SETUP FROM FILE AND START SIMULATION DIC> @@ DIC> read exa3 OK DIC> DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 456.31374 DT = 455.91364 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 1368.1410 DT = 911.82727 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810839 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 3191.7955 DT = 1823.6545 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970656 FE = .963089414810839 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 6839.1046 DT = 3647.3091 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970655 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 14133.723 DT = 7294.6182 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970661 FE = .963089414810839 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 28722.959 DT = 14589.236 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239970727 FE = .963089414810839 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 57901.432 DT = 29178.473 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239971033 FE = .963089414810839 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 116258.38 DT = 58356.945 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239972062 FE = .963089414810839 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 232972.27 DT = 116713.89 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239974973 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m]

Page 36: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

CPU time used in timestep 0 seconds TIME = 466400.05 DT = 233427.78 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239975114 FE = .963089414810838 SI = .0369105851891616 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 1 seconds TIME = 933255.61 DT = 466855.56 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239974399 FE = .963087589566776 SI = .0369124104332238 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 1866966.7 DT = 933711.13 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239967894 FE = .963085134899492 SI = .0369148651005078

output ignored...

... output resumed

CPU time used in timestep 0 seconds TIME = 59757057. DT = 29878756. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239987765 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.11951457E+09 DT = 59757512. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239989405 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.23902959E+09 DT = 0.11951502E+09 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239990903 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.47805964E+09 DT = 0.23903005E+09 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239992442 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.95611974E+09 DT = 0.47806010E+09 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239994041 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.19122399E+10 DT = 0.95612019E+09 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239995618 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.29122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326239996491 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 1 seconds TIME = 0.39122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240001231 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.49122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240008828 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.59122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240014694 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.69122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240019108 FE = .963085134899492 SI = .0369148651005078 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.79122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240022539 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.89122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240025594 FE = .963085134899492

Page 37: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.99122399E+10 DT = 0.10000000E+10 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0215326240028067 FE = .963085134899492 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] CPU time used in timestep 0 seconds TIME = 0.10000000E+11 DT = 87760071. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .021532624002806 FE = .963085134899493 SI = .0369148651005077 TOTAL SIZE OF SYSTEM: .05 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 456.31374 DELETING TIME-RECORD FOR TIME 1368.1410 DELETING TIME-RECORD FOR TIME 3191.7955 DELETING TIME-RECORD FOR TIME 6839.1046 DELETING TIME-RECORD FOR TIME 14133.723 DELETING TIME-RECORD FOR TIME 28722.959 DELETING TIME-RECORD FOR TIME 57901.432 DELETING TIME-RECORD FOR TIME 116258.38 DELETING TIME-RECORD FOR TIME 232972.27 DELETING TIME-RECORD FOR TIME 466400.05 DELETING TIME-RECORD FOR TIME 933255.61 DELETING TIME-RECORD FOR TIME 1866966.7 DELETING TIME-RECORD FOR TIME 3734389.0 DELETING TIME-RECORD FOR TIME 7469233.5 DELETING TIME-RECORD FOR TIME 14938922. DELETING TIME-RECORD FOR TIME 29878300. DELETING TIME-RECORD FOR TIME 59757057. DELETING TIME-RECORD FOR TIME 0.11951457E+09 DELETING TIME-RECORD FOR TIME 0.23902959E+09 DELETING TIME-RECORD FOR TIME 0.47805964E+09 DELETING TIME-RECORD FOR TIME 0.95611974E+09 DELETING TIME-RECORD FOR TIME 0.19122399E+10 DELETING TIME-RECORD FOR TIME 0.29122399E+10 DELETING TIME-RECORD FOR TIME 0.39122399E+10 DELETING TIME-RECORD FOR TIME 0.49122399E+10 DELETING TIME-RECORD FOR TIME 0.59122399E+10 DELETING TIME-RECORD FOR TIME 0.69122399E+10 DELETING TIME-RECORD FOR TIME 0.79122399E+10 DELETING TIME-RECORD FOR TIME 0.89122399E+10 KEEPING TIME-RECORD FOR TIME 0.99122399E+10 AND FOR TIME 0.10000000E+11 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 38: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa3-plot

MACRO exa3\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa3\plot.DCM"DIC> DIC> DIC> @@ darken_plot.DCM DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+10 DIC> read exa3 OK DIC> DIC> @@ DIC> @@ ENTER THE DICTRA POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ PLOT THE CONCENTRATION PROFILE FOR Si AT TIMES 0, 1E5, 1123200, 1E7, POST-1: @@ 1E8, 1E9 AND 1E10 S POST-1: @@ POST-1: @@ SET DISTANCE IN SYSTEM AS X-AXIS, WEIGHT-% SI ON Y-AXIS AND SPECIFY POST-1: @@ FOR WHICH SIMULATION TIMES WE SHALL PLOT THE PROFILES. POST-1: @@ POST-1: set-diagram-axis x distance global INFO: Distance is set as independent variable POST-1: set-diagram-axis y weight-percent si POST-1: set-plot-condition time 0 1E5 1123200 1e7 1E8 1E9 1E10 POST-1: POST-1: @@ POST-1: @@ PLOT THE DIAGRAM POST-1: @@ POST-1: set-title TITLE : Figure a3.1 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: @@ POST-1: @@ PLOT THE CONCENTRATION PROFILES FOR C POST-1: @@ POST-1: @@ WE ONLY NEED TO CHANGE Y-AXIS POST-1: @@ POST-1: set-diagram-axis y w-p c POST-1: set-title Figure a3.2 POST-1: plot

Page 39: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: @@ POST-1: @@ COMPARE WITH DARKENS EXPERIMENTS POST-1: @@ POST-1: append_experimental_data yes exa3.exp 0; 1 POST-1: POST-1: set-plot-condition time 1123200 POST-1: POST-1: s-s-s AXIS (X, Y OR Z) : y AUTOMATIC SCALING (Y OR N) /N/: n MIN VALUE : 0.25 MAX VALUE : 0.75 POST-1: POST-1: set-title Figure a3.3 POST-1: plot

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: set-inter --OK--- POST-1:

Page 40: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example a4

Carburization of a binary Fe-C alloy

1E-4

T = 1200 K

FCC

●● ● ●● ●●

(Comparison with an analytical erf-solution)

X(C) = 0.03

X(C) = 0.005

Page 41: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa4-setup

MACRO exa4\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa4\setup.DCM"SYS: @@ SYS: @@ One-phase problem. SYS: @@ This is a simple binary simulation with just one single phase region. SYS: @@ We will compare our numerical simulation with an analytical erf-solution. SYS: @@ For this reason a special database erf.tdb is created in which SYS: @@ the diffusion coefficient is set to a concentration independent value. SYS: @@ SYS: SYS: @@ exa4_setup.DCM SYS: SYS: SYS: @@ SYS: @@ READ DATA FROM DATABASES SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: def-system fe,c FE C DEFINED TDB_FEDEMO: rej-ph * GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: rest-ph fcc FCC_A1 RESTORED TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: append user exa4.TDB Current database: User defined Database This database does not support the DATABASE_INFORMATION command VA DEFINED TDB_APP: def-system fe,c FE C DEFINED TDB_APP: rej-ph * FCC_A1 REJECTED TDB_APP: rest-ph fcc FCC_A1 RESTORED TDB_APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS .... -OK- TDB_APP: TDB_APP: @@ TDB_APP: @@ GOTO DICTRA MODULE AND SETUP THE PROBLEM TDB_APP: @@ TDB_APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1200; * N DIC> DIC> @@ DIC> @@ ENTER REGION steel DIC> @@ DIC> enter-region REGION NAME : steel DIC> DIC> @@ DIC> @@ ENTER GRID DIC> @@ CARBON WILL ENTER THE SYSTEM FROM THE LOWER BOUNDARY AND CONSEQUENTLY DIC> @@ WE REUIRE MORE POINTS AT THAT BOUNDARY. FOR THIS REASON WE USE A DIC> @@ GEOMETRIC GRID IN THIS CASE. DIC> @@ DIC> enter-grid REGION NAME : /STEEL/: steel WIDTH OF REGION /1/: 1E-4 TYPE /LINEAR/: geometric NUMBER OF POINTS /50/: 32 VALUE OF R IN THE GEOMETRICAL SERIE : 1.11 DIC> DIC> @@ DIC> @@ ENTER PHASE INTO REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /STEEL/: steel

Page 42: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> DIC> @@ DIC> @@ INITIAL COMPOSITION IN FCC-PHASE DIC> @@ DIC> enter-composition REGION NAME : /STEEL/: steel PHASE NAME: /FCC_A1/: fcc#1 COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction PROFILE FOR /C/: c TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.005 VALUE OF LAST POINT : /5E-3/: 0.005 DIC> DIC> DIC> @@ DIC> @@ SET A FIX COMPOSITION AS BOUNDARY VALUE DIC> @@ DIC> set-condition GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary BOUNDARY /LOWER/: lower CONDITION TYPE /CLOSED_SYSTEM/: state-variable-value State variable expression #1 : /N=1/: n=1 State variable expression #2 : x(c)=0.03 DIC> DIC> DIC> @@ DIC> @@ SET SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 100 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /10/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> DIC> save exa4 Y DIC> DIC> set-inter --OK--- DIC>

Page 43: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa4-run

MACRO exa4\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa4\run.DCM"DIC> DIC> DIC> @@ exa4_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE a4 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exa4 OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0050251256281407 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: C = .0050251256281407 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] 9 GRIDPOINT(S) ADDED TO CELL #1 REGION: STEEL TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00508348834679686 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: STEEL TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00508409543247046 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.12105107E-01 DT = 0.12005007E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00513626829627971 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.36115121E-01 DT = 0.24010014E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00519794167790874 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.84135150E-01 DT = 0.48020029E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00527960440299711 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.18017521 DT = 0.96040057E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00539181114486415 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.37225532 DT = 0.19208011 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0055483575543518 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 1 seconds TIME = 0.75641555 DT = 0.38416023 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00576829415910515 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1.5247360 DT = 0.76832046 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00607832336005493 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 3.0613769 DT = 1.5366409 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00651606477943325 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 6.1346588 DT = 3.0732818 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00713462772374615 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 12.281222 DT = 6.1465637 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00800905728756118 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 22.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00904285003239105 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 32.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000

Page 44: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

U-FRACTION IN SYSTEM: C = .00985903057950594 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 42.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .010556058900354 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 52.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0111746120989673 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 62.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0117364077404952 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 72.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .012254681140506 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 82.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0127382074556105 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 92.281222 DT = 10.0000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0131931583377927 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 100.000000 DT = 7.7187776 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0135276709358081 FE = 1 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.12105107E-01 DELETING TIME-RECORD FOR TIME 0.36115121E-01 DELETING TIME-RECORD FOR TIME 0.84135150E-01 DELETING TIME-RECORD FOR TIME 0.18017521 DELETING TIME-RECORD FOR TIME 0.37225532 DELETING TIME-RECORD FOR TIME 0.75641555 DELETING TIME-RECORD FOR TIME 1.5247360 DELETING TIME-RECORD FOR TIME 3.0613769 DELETING TIME-RECORD FOR TIME 6.1346588 DELETING TIME-RECORD FOR TIME 12.281222 DELETING TIME-RECORD FOR TIME 22.281222 DELETING TIME-RECORD FOR TIME 32.281222 DELETING TIME-RECORD FOR TIME 42.281222 DELETING TIME-RECORD FOR TIME 52.281222 DELETING TIME-RECORD FOR TIME 62.281222 DELETING TIME-RECORD FOR TIME 72.281222 DELETING TIME-RECORD FOR TIME 82.281222 KEEPING TIME-RECORD FOR TIME 92.281222 AND FOR TIME 100.000000 WORKSPACE RECLAIMED DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 45: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa4-plot

MACRO exa4\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa4\plot.DCM"DIC> DIC> DIC> @@ exa4_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE exa4 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+02 DIC> read exa4 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ PLOTT A COMPOSITION PROFILE POST-1: @@ POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-d-a y x(c) POST-1: s-p-c time 25 POST-1: POST-1: @@ POST-1: @@ ENTER THE ANALYTICAL SOLUTION, CALLED ERFSOL POST-1: @@ POST-1: enter-symbol Function or table /FUNCTION/: function NAME: erfsol FUNCTION: 0.03-0.025*erf(gd/sqrt(4*dc(fcc,c,c,fe)*25)); POST-1: POST-1: @@ POST-1: @@ COMPARE THE ANALYTICAL AND NUMERICAL SOLUTIONS POST-1: @@ POST-1: enter-symbol Function or table /FUNCTION/: table NAME: aaa Variable(s) x(c) erfsol POST-1: POST-1: s-d-a y aaa COLUMN NUMBER /*/: 1 2 POST-1: POST-1: set-axis-text AXIS (X, Y OR Z) : y AUTOMATIC AXIS TEXT (Y OR N) /N/: n AXIS TEXT : Mole-fraction C POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ PLOT THE DIFFERENCE POST-1: @@ POST-1: enter func diff=x(c)-erfsol; POST-1: s-d-a y diff POST-1: s-s-s y n -1e-2 1e-2 POST-1: POST-1: plot

Page 46: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: set-interactive --OK--- POST-1:

Page 47: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example a5

Carburization of a binary Fe-C alloy

3E-3

T = 1173 K

FCC

●● ● ●● ●●

(A surface reaction controls the flux of C at the surface)

0.15% C

J = - 8.25E-9 a - 0.64C C( )surf

Page 48: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa5-setup

MACRO exa5\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa5\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ One-phase problem. SYS: @@ Simulation of carburization of a binary Fe-0.15 wt% C alloy. SYS: @@ A mixture of 40% N2 and 60% cracked methanol was used as carrier gas. SYS: @@ The carburizing "carbon potential" in the gas is 0.85 wt%. SYS: @@ A surface reaction controles the flux of C at the surface. SYS: @@ SYS: SYS: @@ exa5_setup.DCM SYS: SYS: @@ SYS: @@ GOTO DATABASE AND READ THERMODYNAMIC AND KINETIC DATA. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: def-sys fe,c FE C DEFINED TDB_FEDEMO: rej-ph * GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: rest-ph fcc graphite FCC_A1 GRAPHITE RESTORED TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'B. Uhrenius (1993-1994), International journal of refractory metals and hard mater, Vol. 12, pp. 121-127; Molar volumes' -OK- TDB_FEDEMO:@?TDB_FEDEMO: append Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0

Page 49: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /FEDEMO/: mfedemo Current database: Fe-Alloys Mobility demo database VA DEFINED APP: def-sys fe,c FE C DEFINED APP: rej-ph * BCC_A2 FCC_A1 REJECTED APP: rest-ph fcc FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' -OK- APP:@?APP: @@ APP: @@ GOTO THE DICTRA MONITOR TO SETUP THE INITIAL STATE OF THE SPECIMEN APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> set-cond glob T 0 1173; * N DIC> DIC> @@ DIC> @@ SELECT REFERENCE STATE FOR THE C ACTIVITY DIC> @@ DIC> set-ref-state Component: c Reference state: graph Temperature /*/: * Pressure /100000/: 1e5 DIC> DIC> @@ DIC> @@ ENTER REGION ETC. DIC> @@ DIC> enter-region REGION NAME : steel DIC> DIC> enter-grid REGION NAME : /STEEL/: steel WIDTH OF REGION /1/: 3E-3 TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE : 1.11 DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /STEEL/: steel PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> enter-composition REGION NAME : /STEEL/: steel PHASE NAME: /FCC_A1/: fcc#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: c TYPE /LINEAR/: lin VALUE OF FIRST POINT : 0.15 VALUE OF LAST POINT : /0.15/: 0.15 DIC> DIC> @@ DIC> @@ NOW SET BOUNDARY CONDITIONS. WE ARE ONLY INTERESTED IN THE DIC> @@ SURFACE REGION IT IS THUS ENOUGH TO SET CONDITIONS AT I.E. DIC> @@ THE LOWER BOUNDARY. DIC> @@ DIC>

Page 50: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> @@ Specify the activity flux function which controls the uptake of C. DIC> @@ DIC> @@ The functions f and g and the parameter N has to be specified. DIC> @@ k k DIC> @@ DIC> @@ N DIC> @@ J V = f (variables)*(ACTIVITY -g (variables)) (1) DIC> @@ k m k k k DIC> @@ DIC> @@ f and g in equation 1 is the mass-transfer coefficient and DIC> @@ k k DIC> @@ the activity of k in the gas respectively. ACTIVITY in eq. 1 means DIC> @@ the actual activity of species k at the surface. DIC> @@ DIC> DIC> @@ DIC> @@ The main carburizing reaction for our atmosphere is: DIC> @@ DIC> @@ CO + H -> C + H O (I) DIC> @@ 2 <- - 2 DIC> @@ DIC> @@ Following Sproge and Ågren (J. Heat Treating, Vol. 6, No1, 1988 pp. 9-19) DIC> @@ we may callculate the mass-transfer coefficient for carbon, f in DIC> @@ eq. 1 above by means of eq. 3,4 and 12 in Sproges and Ågrens paper. DIC> @@ DIC> @@ DIC> @@ A * K * P * sqrt( P ) DIC> @@ I CO H DIC> @@ 2 DIC> @@ f = ----------------------------- / gamma (2) DIC> @@ a + B * K * P * sqrt( P ) DIC> @@ C I CO H DIC> @@ 2 DIC> @@ DIC> @@ K is the equilibrium constant for reaction (I) DIC> @@ I DIC> @@ DIC> @@ A and B are constants defined in Sproges and Ågrens paper. gamma DIC> @@ is the activity coefficient for carbon in the steel. DIC> @@ DIC> @@ We will here assume a constant value for P * sqrt( P ) = 0.14 DIC> @@ CO H DIC> @@ 2 DIC> @@ The carbon activity in the gas will thus be controlled by the partial DIC> @@ pressure of water as can be understood from reaction (I). DIC> @@ DIC> @@ We will here assume that the carbon activity, a of the gas is 0.64 DIC> @@ C DIC> @@ which corresponds to a carburizing "carbon potential" of 0.85 wt%. DIC> @@ DIC> @@ In this way we may calculate f to 8.25E-9 mol/s. DIC> @@ DIC> DIC> set-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: bound BOUNDARY /LOWER/: lower CONDITION TYPE /CLOSED_SYSTEM/: activity_flux_function ENTER THE EXPRESSION AS: N J V = f (variables)*(ACTIVITY -g (variables)) k m k k k FLUX OF FCC_A1,C LOW TIME LIMIT /0/: 0 f(T,P,TIME)= -8.25E-9; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N N /1/: 1 LOW TIME LIMIT /0/: 0 g(T,P,TIME)= 0.64; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N DIC> DIC> @@ DIC> @@ Specify simulation time ... DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 18000 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /1800/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> @@ DIC> @@ Save the setup on file DIC> @@ DIC> Save exa5 Y DIC> DIC> set-inter --OK--- DIC>

Page 51: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa5-run

MACRO exa5\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa5\run.DCM"DIC> DIC> DIC> @@ exa5_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE a5 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exa5 OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] 9 GRIDPOINT(S) ADDED TO CELL #1 REGION: STEEL TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916398348 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: STEEL TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495931637932 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 0.33719637E-01 DT = 0.33619537E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698501030669505 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 0.10095871 DT = 0.67239073E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698511164116955 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 0.23543686 DT = 0.13447815 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698531294268508 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 0.50439315 DT = 0.26895629 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698571203087749 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 1.0423057 DT = 0.53791259 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698650077061368 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 2.1181309 DT = 1.0758252 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0069880525746046 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 4.2697813 DT = 2.1516503 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00699108630238 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 8.5730820 DT = 4.3033007 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00699696503140297 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 17.179683 DT = 8.6066014 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00700822016227207 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 34.392886 DT = 17.213203 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00702942229331612 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 68.819292 DT = 34.426406 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00706852220082184 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds

Page 52: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 137.67210 DT = 68.852811 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00713870843155664 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 275.37772 DT = 137.70562 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00726063934605857 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 550.78897 DT = 275.41124 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00746470580143571 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 1 seconds TIME = 1101.6115 DT = 550.82249 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00779310153791831 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 2203.2564 DT = 1101.6450 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00830224458781655 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 4003.2564 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00894215174870194 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 5803.2564 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00946192476382281 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 7603.2564 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00991191759849181 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 9403.2564 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0103145419290457 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 11203.256 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0106822470518481 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 13003.256 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0110228177770633 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 14803.256 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0113415095977369 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 16603.256 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0116420719686607 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 18000.000 DT = 1396.7436 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0118645957846414 FE = 1 TOTAL SIZE OF SYSTEM: .003 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.33719637E-01 DELETING TIME-RECORD FOR TIME 0.10095871 DELETING TIME-RECORD FOR TIME 0.23543686 DELETING TIME-RECORD FOR TIME 0.50439315 DELETING TIME-RECORD FOR TIME 1.0423057 DELETING TIME-RECORD FOR TIME 2.1181309 DELETING TIME-RECORD FOR TIME 4.2697813 DELETING TIME-RECORD FOR TIME 8.5730820 DELETING TIME-RECORD FOR TIME 17.179683 DELETING TIME-RECORD FOR TIME 34.392886 DELETING TIME-RECORD FOR TIME 68.819292 DELETING TIME-RECORD FOR TIME 137.67210 DELETING TIME-RECORD FOR TIME 275.37772 DELETING TIME-RECORD FOR TIME 550.78897 DELETING TIME-RECORD FOR TIME 1101.6115 DELETING TIME-RECORD FOR TIME 2203.2564 DELETING TIME-RECORD FOR TIME 4003.2564 DELETING TIME-RECORD FOR TIME 5803.2564 DELETING TIME-RECORD FOR TIME 7603.2564 DELETING TIME-RECORD FOR TIME 9403.2564 DELETING TIME-RECORD FOR TIME 11203.256 DELETING TIME-RECORD FOR TIME 13003.256 DELETING TIME-RECORD FOR TIME 14803.256 KEEPING TIME-RECORD FOR TIME 16603.256 AND FOR TIME 18000.000 WORKSPACE RECLAIMED DIC>

Page 53: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> set-inter --OK--- DIC>

Page 54: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa5-plot

MACRO exa5\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa5\plot.DCM"DIC> DIC> DIC> @@ exa5_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE a5 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.80000E+04 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exa5 OK DIC> DIC> @@ DIC> @@ ENTER THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ PLOT SOME DIFFERENT CONCENTRATION PROFILES. POST-1: @@ POST-1: s-d-a x dist glo INFO: Distance is set as independent variable POST-1: s-d-a y w-p c POST-1: s-p-c time 100 1000 5000 18000 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ PLOT THE VARIATION OF THE C ACTIVITY AT THE SURFACE POST-1: @@ POST-1: s-d-a y acr(c) POST-1: POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: POST-1: s-p-c CONDITION /TIME/: interface INTERFACE : first POST-1: POST-1: plot

Page 55: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ LETS HAVE A LOGARITHMIC SCALE ON THE X-AXIS POST-1: @@ POST-1: set-axis-type AXIS (X, Y OR Z) : x AXIS TYPE /LINEAR/: logarithmic POST-1: POST-1: s-s-s x n 0.001 2e4 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ PLOT THE AVERAGE WEIGHT FRACTION OF C IN THE SPECIMEN POST-1: @@ POST-1: s-d-a y iww(c) POST-1: POST-1: set-ax-ty AXIS (X, Y OR Z) : x AXIS TYPE /LINEAR/: linear POST-1: POST-1: plot

Page 56: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 57: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa6-setup

MACRO exa6\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa6\setup.DCM"SYS: @@ SYS: @@ One-phase problem. SYS: @@ A simple, perhaps not realistic, example on diffusion through a SYS: @@ tube wall. The tube-material is an Fe-0.6%Mn-0.7%Si-0.05%C alloy. On SYS: @@ the inside wall a carbon activity of 0.9 is maintained whereas on SYS: @@ the outside the C-activity is very low. This example demonstrates SYS: @@ the use of the command SET-FIRST-INTERFACE as well as the use of SYS: @@ MIXED boundary conditions. SYS: @@ SYS: SYS: @@ setup.DCM SYS: SYS: SYS: @@ SYS: @@ GO TO THE DATABASE MODULE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET'S USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe si mn c FE SI MN C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 M3SI G_PHASE CR3SI FE2SI MSI M5SI3 AL4C3 FE8SI2C SIC REJECTED TDB_TCFE7: res ph fcc,grap FCC_A1 GRAPHITE RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'W. Huang, Metall. Trans. A, 21A (1990), 2115-2123; TRITA-MAC 411 (Rev 1989); C-FE-MN' 'J. Lacaze and B. Sundman, Metall. Mater. Trans. A, 22A (1991), 2211-2223; Fe-Si and Fe-Si-C' 'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN' 'J.E. Tibballs, SI Norway (1991) Rep. 890221-5; Mn-Si' 'J. Miettinen and B. Hallstedt, Calphad, 22 (1998), 231-256; Fe-Si and Fe -Si-C' 'A. Forsberg and J. Agren, J. Phase Equil., 14 (1993), 354-363; Fe-Mn-Si' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'B. Uhrenius (1993-1994), International journal of refractory metals and hard mater, Vol. 12, pp. 121-127; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIVE KINETIC DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1

Page 58: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe si mn c FE SI MN C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'Bae et al.: Z. Metallkunde 91(2000)672-674; fcc Fe-Mn Mn-Ni' 'D. Bergner et al., Defect and Diffusion Forum 66-69(1989)409. Impurity diffusion of Si in fcc Fe.' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR PROBLEM APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1273; * N DIC> DIC> @@ DIC> @@ SET REFERENCE STATE FOR CARBON DIC> @@ DIC> set-ref C grap * 101325 DIC> DIC> @@

Page 59: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ ENTER A REGION DIC> @@ DIC> enter-region aus DIC> DIC> @@ DIC> @@ ENTER DOUBLE GEOMETRIC GRID INTO THE REGION DIC> @@ DIC> enter-grid REGION NAME : /AUS/: aus WIDTH OF REGION /1/: 1e-2 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 80 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.02 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.98 DIC> DIC> @@ DIC> @@ SET GEOMETRY (1 = CYLINDER) DIC> @@ DIC> enter-geo GEOMETRICAL EXPONENT /0/: 1 DIC> DIC> @@ DIC> @@ SET FIRST INTERFACE => TUBE DIC> @@ DIC> set-first-interface COORDINATE FOR FIRST INTERFACE /0/: 2e-2 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASE IN REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc_a1#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS INTO THE PHASE DIC> @@ DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /SI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: si lin 0.7 0.7 PROFILE FOR /MN/: mn lin 0.6 0.6 PROFILE FOR /SI/: c lin 5e-2 5e-2 DIC> DIC> @@ DIC> @@ SET BOUNDARY CONDITIONS ON BOTH LOWER AND UPPER PART OF THE REGION DIC> @@ DIC> @@ USE MIXED CONDITIONS, AN ACTIVITY CONDITION FOR C AND CLOSED DIC> @@ SYSTEMS FOR MN AND SI. DIC> @@ DIC> set-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary BOUNDARY /LOWER/: lower CONDITION TYPE /CLOSED_SYSTEM/: mixed Dependent substitutional element:FE Dependent interstitial element:VA TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity LOW TIME LIMIT /0/: 0 ACR(C)(TIME)= 0.9; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N TYPE OF CONDITION FOR COMPONENT MN /ZERO_FLUX/: zero_flux TYPE OF CONDITION FOR COMPONENT SI /ZERO_FLUX/: zero_flux DIC> DIC> set-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary BOUNDARY /UPPER/: upper CONDITION TYPE /CLOSED_SYSTEM/: mixed Dependent substitutional element:FE Dependent interstitial element:VA TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity LOW TIME LIMIT /0/: 0 ACR(C)(TIME)= 1e-5; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N TYPE OF CONDITION FOR COMPONENT MN /ZERO_FLUX/: zero_flux TYPE OF CONDITION FOR COMPONENT SI /ZERO_FLUX/: zero_flux DIC> DIC> @@ DIC> @@ SET SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 1e9 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /100000000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ SAVE ON FILE DIC> @@ DIC> save exa6 y DIC> DIC> set-inter --OK--- DIC>

Page 60: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa6-run

MACRO exa6\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa6\run.DCM"DIC> DIC> DIC> @@ run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING exa6 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exa6 OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> simulate Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00115488575879621 FE = .490055682684517 MN = .00302988813183617 SI = .00691442924890044 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] U-FRACTION IN SYSTEM: C = .00115488575879621 FE = .490055682684517 MN = .00302988813183617 SI = .00691442924890044 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00125366195459931 FE = .490055682684517 MN = .00302988813183617 SI = .00691442924890044 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0012541227432527 FE = .490055682684517 MN = .00302988813183617 SI = .00691442924890044 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00125473479150122 FE = .490055682684518 MN = .0030298881318363 SI = .00691442924889893 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 160.87030 DT = 160.47020 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00140660867390162 FE = .490055682684802 MN = .00302988813186406 SI = .00691442924858674 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 481.81071 DT = 320.94041 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0015631121798786 FE = .490055682685047 MN = .00302988813188851 SI = .00691442924831815 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 1 seconds TIME = 1123.6915 DT = 641.88082 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00176551489262203 FE = .490055682685355 MN = .00302988813191944 SI = .00691442924797909 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 2407.4532 DT = 1283.7616 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00204188977019142 FE = .490055682685768 MN = .00302988813196098 SI = .00691442924752467 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 4974.9764 DT = 2567.5233 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00242787670585282 FE = .490055682686336 MN = .00302988813201827 SI = .00691442924689948 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 10110.023 DT = 5135.0465 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00297316977084057 FE = .490055682687126 MN = .00302988813209826 SI = .00691442924602937 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 20380.116 DT = 10270.093 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0037491613580386 FE = .490055682688229 MN = .00302988813221057 SI = .00691442924481427 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 40920.302 DT = 20540.186 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00486019233189309 FE = .490055682689761 MN = .0030298881323684 SI = .00691442924312399 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 1 seconds TIME = 82000.674 DT = 41080.372 SUM OF SQUARES = 0.0000000

Page 61: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

U-FRACTION IN SYSTEM: C = .00646111106297823 FE = .490055682691865 MN = .0030298881325897 SI = .00691442924079908 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 164161.42 DT = 82160.744 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0087824743281453 FE = .490055682694715 MN = .00302988813290127 SI = .00691442923763758 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 328482.91 DT = 164321.49 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0120233349524823 FE = .490055682698822 MN = .00302988813337276 SI = .00691442923305911 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]

output ignored...

... output resumed

CPU time used in timestep 0 seconds TIME = 15119280. DT = 6738922.5 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .016530430864208 FE = .490055682867987 MN = .00302988815669835 SI = .00691442904056798 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 28597125. DT = 13477845. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165300519884718 FE = .490055682940724 MN = .00302988816674853 SI = .00691442895778081 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 55552815. DT = 26955690. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .016529737105878 FE = .490055683047884 MN = .00302988818132928 SI = .00691442883604053 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 1 seconds TIME = 0.10946419E+09 DT = 53911380. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .016529699237533 FE = .490055683206572 MN = .00302988820257483 SI = .00691442865610666 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.20883343E+09 DT = 99369240. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165306811403286 FE = .49005568342848 MN = .00302988823170669 SI = .00691442840506641 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.30830636E+09 DT = 99472929. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165348571162441 FE = .490055683611437 MN = .00302988825525438 SI = .0069144281985626 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.40784707E+09 DT = 99540711. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .016538250858666 FE = .490055683774507 MN = .00302988827589775 SI = .00691442801484847 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 1 seconds TIME = 0.50744329E+09 DT = 99596213. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165412919615189 FE = .490055683925116 MN = .00302988829469354 SI = .00691442784544345 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.60708721E+09 DT = 99643921. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165441256829561 FE = .490055684067096 MN = .00302988831219105 SI = .00691442768596585 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.70677300E+09 DT = 99685789. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .016546817769877 FE = .490055684202729 MN = .00302988832871668 SI = .00691442753380813 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 1 seconds TIME = 0.80649607E+09 DT = 99723077. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165494037752657 FE = .490055684333495 MN = .00302988834448347 SI = .00691442738727498 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.90625273E+09 DT = 99756653. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165519052639314 FE = .490055684460418 MN = .00302988835963936 SI = .0069144272451963 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] CPU time used in timestep 0 seconds TIME = 0.99706021E+09 DT = 90807478. SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165543980726468 FE = .490055684573206 MN = .00302988837299422 SI = .0069144271190536 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2]

Page 62: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

CPU time used in timestep 0 seconds TIME = 0.10000000E+10 DT = 2939794.5 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0165570300715913 FE = .490055684576818 MN = .00302988837342096 SI = .00691442711501466 TOTAL SIZE OF SYSTEM: .00314159265359 [m^2] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 160.87030 DELETING TIME-RECORD FOR TIME 481.81071 DELETING TIME-RECORD FOR TIME 1123.6915 DELETING TIME-RECORD FOR TIME 2407.4532 DELETING TIME-RECORD FOR TIME 4974.9764 DELETING TIME-RECORD FOR TIME 10110.023 DELETING TIME-RECORD FOR TIME 20380.116 DELETING TIME-RECORD FOR TIME 40920.302 DELETING TIME-RECORD FOR TIME 82000.674 DELETING TIME-RECORD FOR TIME 164161.42 DELETING TIME-RECORD FOR TIME 328482.91 DELETING TIME-RECORD FOR TIME 657125.89 DELETING TIME-RECORD FOR TIME 1314411.8 DELETING TIME-RECORD FOR TIME 2593116.0 DELETING TIME-RECORD FOR TIME 4748316.3 DELETING TIME-RECORD FOR TIME 8380357.3 DELETING TIME-RECORD FOR TIME 15119280. DELETING TIME-RECORD FOR TIME 28597125. DELETING TIME-RECORD FOR TIME 55552815. DELETING TIME-RECORD FOR TIME 0.10946419E+09 DELETING TIME-RECORD FOR TIME 0.20883343E+09 DELETING TIME-RECORD FOR TIME 0.30830636E+09 DELETING TIME-RECORD FOR TIME 0.40784707E+09 DELETING TIME-RECORD FOR TIME 0.50744329E+09 DELETING TIME-RECORD FOR TIME 0.60708721E+09 DELETING TIME-RECORD FOR TIME 0.70677300E+09 DELETING TIME-RECORD FOR TIME 0.80649607E+09 DELETING TIME-RECORD FOR TIME 0.90625273E+09 KEEPING TIME-RECORD FOR TIME 0.99706021E+09 AND FOR TIME 0.10000000E+10 WORKSPACE RECLAIMED DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 63: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa6-plot

MACRO exa6\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa6\plot.DCM"DIC> DIC> DIC> @@ exa6_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+09 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exa6 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT CONCENTRATION OF C AT DIFFERENT TIMES POST-1: @@ POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-d-a y w-p c POST-1: s-p-c time 0,1e4,2e5,1e7,1e9 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ NOW, LET'S PLOT THE ACTIVITY OF C POST-1: @@ POST-1: POST-1: s-d-a y acr(c) POST-1: POST-1: plot

Page 64: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ LET US LOOK AT THE MN AND SI PROFILES POST-1: @@ POST-1: @@ WE PLOT THE U-FRACTION OF MN AND SI WHICH WILL BE INDEPENDENT POST-1: @@ OF THE C-CONCENTRATION. POST-1: @@ POST-1: s-d-a y u-f mn POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-d-a y u-f si POST-1: POST-1: plot

Page 65: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ FINALLY, LET'S HAVE A LOOK ON THE ACTIVITY PROFILES OF SI POST-1: @@ POST-1: s-d-a y ac(si) POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: set-inter --OK--- POST-1:

Page 66: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa7-setup

MACRO exa7\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa7\setup.DCM"SYS: @@ DICTRA simulation of a homogenization heat treatment SYS: @@ SYS: @@ The initial segregation profile is created from a SYS: @@ Scheil calculation (see macro create_initial_profile.TCM). SYS: @@ The command INPUT_SCHEIL_PROFILE in the DICTRA monitor SYS: @@ performs most of the setup. Only time and temperature must SYS: @@ be entered after the INPUT_SCHEIL_PROFILE command is SYS: @@ executed. SYS: SYS: SYS: @@ In this case only a single phase, ferrite, is entered in the simulation SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: def-sys fe cr ni mn FE CR NI MN DEFINED TDB_FEDEMO: rej ph * LIQUID:L BCC_A2 CHI_A12 FCC_A1 HCP_A3 LAVES_PHASE_C14 SIGMA REJECTED TDB_FEDEMO: rest ph bcc BCC_A2 RESTORED TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'B.-J. Lee, Metall. Trans. A, 24A (1993), 1919-1933; Cr-Mn, Fe-Cr -Mn' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'NPL, unpublished work (1989); Mn-Ni' -OK- TDB_FEDEMO: TDB_FEDEMO: app MFEDEMO Current database: Fe-Alloys Mobility demo database VA DEFINED APP: def-sys fe cr ni mn FE CR NI MN DEFINED APP: rej ph * BCC_A2 FCC_A1 REJECTED APP: rest ph bcc BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' 'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H. Mehrer, springer (1990); Impurity diff of Mn in bcc Fe.' -OK- APP: APP: go dict-mon NO TIME STEP DEFINED DIC> DIC> DIC> @@ This command perform most of the setup DIC> input_scheil_profile INFO: SCHEIL_REGION CREATED FILE NAME /XF.TXT/: segregation_profile.TXT ENTER WIDTH OF REGION /1/: 100e-6 INFO: LINEAR GRID IN SCHEIL_REGION ENTERED WITH 100 GRID POINTS ENTER MAIN SOLID SOLUTION PHASE PHASE NAME:: bcc#1 INFO: COMPOSITION PROFILE ENTERED IN REGION SHOULD MORE PHASES BE ENTERED IN THE REGION /NO/: n INFO: TO COMPLETE SETUP, ENTER TEMPERATURE AND SIMULATION TIME DIC> DIC> DIC> @@ Enter heat treatment temperature DIC> s-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob VARIABLE : t LOW TIME LIMIT /0/: 0 1473; * n DIC>

Page 67: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> DIC> @@ Enter simulation time DIC> se-si-ti END TIME FOR INTEGRATION /.1/: 3600 AUTOMATIC TIMESTEP CONTROL /YES/: y MAX TIMESTEP DURING INTEGRATION /360/: 360 INITIAL TIMESTEP : /1E-07/: 1e-7 SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-9 DIC> DIC> DIC> save exa7 y DIC> DIC> set-inter --OK--- DIC>

Page 68: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa7-run

MACRO exa7\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa7\run.DCM"DIC> go dict-mon TIME STEP AT TIME 0.00000E+00 DIC> DIC> read exa7 OK DIC> DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788 MN = .00999016878282828 NI = .0130905459141414 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788 MN = .00999016878282828 NI = .0130905459141414 TOTAL SIZE OF SYSTEM: 1E-04 [m] TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788 MN = .00999016878282828 NI = .0130905459141413 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788 MN = .00999016878282828 NI = .0130905459141413 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.41672379 DT = 0.41662369 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788 MN = .00999016878282773 NI = .0130905459141418 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1.2499712 DT = 0.83324738 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424242 FE = .796498787878788 MN = .00999016878282774 NI = .0130905459141418 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 2.9164659 DT = 1.6664948 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424243 FE = .796498787878789 MN = .00999016878282915 NI = .0130905459141385 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 6.2494554 DT = 3.3329895 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424268 FE = .796498787878825 MN = .00999016878285738 NI = .0130905459140505 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 1 seconds TIME = 12.915434 DT = 6.6659790 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424346 FE = .796498787878952 MN = .00999016878291414 NI = .013090545913788 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 26.247393 DT = 13.331958 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424366 FE = .796498787878902 MN = .00999016878296264 NI = .0130905459137682 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 52.911309 DT = 26.663916 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424359 FE = .796498787878652 MN = .00999016878321378 NI = .0130905459137757 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 106.23914 DT = 53.327832 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497424258 FE = .796498787878506 MN = .0099901687831963 NI = .0130905459140401 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 212.89481 DT = 106.65566 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497423953 FE = .796498787878029 MN = .00999016878329586 NI = .0130905459147225 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 1 seconds TIME = 426.20613 DT = 213.31133 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497423878 FE = .796498787878058 MN = .00999016878319379 NI = .0130905459148703 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 786.20613 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497423547 FE = .796498787877697 MN = .0099901687830277 NI = .0130905459157284 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1146.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000

Page 69: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

U-FRACTION IN SYSTEM: CR = .180420497423556 FE = .796498787877959 MN = .00999016878294356 NI = .0130905459155414 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1506.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497423591 FE = .796498787878198 MN = .00999016878288937 NI = .0130905459153216 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 1866.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497423079 FE = .796498787877623 MN = .00999016878258491 NI = .0130905459167128 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 2226.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497422548 FE = .796498787875116 MN = .00999016878299362 NI = .0130905459193419 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 1 seconds TIME = 2586.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497421996 FE = .796498787871567 MN = .00999016878382051 NI = .0130905459226154 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 2946.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497421692 FE = .796498787870126 MN = .00999016878407415 NI = .013090545924108 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 3306.2061 DT = 360.00000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497421389 FE = .796498787868369 MN = .00999016878448586 NI = .0130905459257564 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 3600.0000 DT = 293.79387 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .180420497421215 FE = .796498787867462 MN = .00999016878467954 NI = .0130905459266437 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.41672379 DELETING TIME-RECORD FOR TIME 1.2499712 DELETING TIME-RECORD FOR TIME 2.9164659 DELETING TIME-RECORD FOR TIME 6.2494554 DELETING TIME-RECORD FOR TIME 12.915434 DELETING TIME-RECORD FOR TIME 26.247393 DELETING TIME-RECORD FOR TIME 52.911309 DELETING TIME-RECORD FOR TIME 106.23914 DELETING TIME-RECORD FOR TIME 212.89481 DELETING TIME-RECORD FOR TIME 426.20613 DELETING TIME-RECORD FOR TIME 786.20613 DELETING TIME-RECORD FOR TIME 1146.2061 DELETING TIME-RECORD FOR TIME 1506.2061 DELETING TIME-RECORD FOR TIME 1866.2061 DELETING TIME-RECORD FOR TIME 2226.2061 DELETING TIME-RECORD FOR TIME 2586.2061 DELETING TIME-RECORD FOR TIME 2946.2061 KEEPING TIME-RECORD FOR TIME 3306.2061 AND FOR TIME 3600.0000 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 70: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exa7-plot

MACRO exa7\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exa7\plot.DCM"DIC> go dict-mon TIME STEP AT TIME 3.60000E+03 DIC> DIC> read exa7 OK DIC> DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: s-p-c time 0,3600 POST-1: s-d-a x d g INFO: Distance is set as independent variable POST-1: s-d-a y w-p mn POST-1: plot

POST-1: POST-1: @@ Hit enter for the next plot POST-1:@?POST-1: POST-1: s-d-a y w-p ni POST-1: plot

POST-1: POST-1: set-inter --OK--- POST-1:

Page 71: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

ν ν

Moving boundary problems

Page 72: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

600

650

700

750

800

850

900

950

1000

TE

MP

ER

AT

UR

E_C

ELS

IUS

0 0.2 0.4 0.6 0.8 1.0

WEIGHT_PERCENT C

α γ+

γ

777 Co

α cem+

Fe - C Phase diagram

Example b1a

T = 1050 K

to transformation in a binary Fe - C alloyγ α

γ

α

2E-31E-9

ν

0.15% C

●●● ● ●

Page 73: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1a-setup

MACRO exb1a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1a\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ Setup file for calculating a ferrite(BCC)/austenite(FCC) SYS: @@ transformation in a binary Fe-C alloy. The initial state SYS: @@ is an austenite of 2 mm thichness. The composition of the SYS: @@ austenite is Fe-0.15wt%C. After austenitisation the SYS: @@ specimen has been quenched down to 1050K. The system is SYS: @@ assumed closed, so we do not set any boundary conditions SYS: @@ (closed system is default). Ferrite is expected to grow SYS: @@ into the austenite. For this reason we start with a thin SYS: @@ region with ferrite adjacent to the austenite. SYS: @@ SYS: SYS: @@ exb1a_setup.DCM SYS: SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE THE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_FEDEMO: @@ TDB_FEDEMO: def-sys fe c FE C DEFINED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_FEDEMO: @@ TDB_FEDEMO: rej ph * all GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: res ph fcc bcc FCC_A1 BCC_A2 RESTORED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ RETRIEVE DATA FROM DATABASE FILE TDB_FEDEMO: @@ TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_FEDEMO: @@ TDB_FEDEMO: append Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1

Page 74: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /FEDEMO/: MFEDEMO Current database: Fe-Alloys Mobility demo database VA DEFINED APP: def-sys fe c FE C DEFINED APP: rej ph * all BCC_A2 FCC_A1 REJECTED APP: res ph fcc bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> set-condition global T 0 1050; * N DIC> DIC> @@ DIC> @@ WE START BY ENTERING REGION ferrite AND austenite WHEREIN WE DIC> @@ PUT THE BCC AND FCC PHASE RESPECTIVELY. THE ferrite REGION IS DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS. DIC> @@ DIC> enter-region REGION NAME : ferrite DIC> DIC> enter-region REGION NAME : austenite ATTACH TO REGION NAMED /FERRITE/: ATTACHED TO THE RIGHT OF FERRITE /YES/:

Page 75: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> DIC> @@ DIC> @@ ENTER GRIDS INTO THE REGIONS. DIC> @@ DIC> enter-grid REGION NAME : /FERRITE/: ferrite WIDTH OF REGION /1/: 1e-9 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 10 DIC> DIC> enter-grid austenite WIDTH OF REGION /1/: 20e-4 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 50 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /FERRITE/: ferrite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: bcc DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO BCC. DIC> @@ DIC> enter-composition REGION NAME : /FERRITE/: ferrite PHASE NAME: /BCC_A2/: bcc COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.01 VALUE OF LAST POINT : /1E-2/: 0.01 DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO FCC. DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.15 VALUE OF LAST POINT : /0.15/: 0.15 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 1e9 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /100000000/: 1e8 INITIAL TIMESTEP : /1E-07/: 1E-5 SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1E-5 DIC> DIC> DIC> @@ DIC> @@ WE USE IMPLICIT (1) TIME INTEGRATION IN THIS CASE INSTEAD OF THE DIC> @@ MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD WHICH IS THE DIC> @@ DEFAULT METHOD. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb1a Y DIC> DIC> set-inter --OK--- DIC>

Page 76: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1a-run

MACRO exb1a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1a\run.DCM"DIC> DIC> DIC> @@ exb1a_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b1a DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb1a OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> simulate Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 3 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00698495590385911 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] U-FRACTION IN SYSTEM: C = .00698495590385911 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: FERRITE 3.010538010512817E-002 3.010525750453487E-002 8.73429533351254 6.430152751436794E-003 1.088329900651139E-002 1.051437238892292E-006 5.743440422749835E-009 1.178782546966484E-015 1.344994482070243E-024 TIME = 0.10000000E-04 DT = 0.10000000E-04 SUM OF SQUARES = 0.13449945E-23 CELL # 1 VELOCITY AT INTERFACE # 2 IS 4.7526995 AND 4.7526995 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.47527995E-04 U-FRACTION IN SYSTEM: C = .00698495582617667 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 12 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 9.690361202920592E-004 9.692265256370506E-004 2.896523308148584E-006 1.678632823004402E-006 2.028472855772477E-007 1.088890478783754E-010 3.846704497402363E-011 5.540201244046097E-012 1.010398334671203E-020 TIME = 0.30000000E-04 DT = 0.20000000E-04 SUM OF SQUARES = 0.10103983E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.68730744E-07 AND 0.68730744E-07 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.47527996E-04 U-FRACTION IN SYSTEM: C = .00698495582718185 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] CPU time used in timestep 0 seconds 1.245186523741115E-006 1.243974389959101E-006 2.369369898701173E-012 2.332100192675378E-017 TIME = 0.70000000E-04 DT = 0.40000000E-04 SUM OF SQUARES = 0.23321002E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.81210434E-07 AND 0.81210434E-07 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.47527999E-04 U-FRACTION IN SYSTEM: C = .00698495582718188 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 1.711476362561969E-008 1.694778506305460E-008 6.675926348340630E-014 9.293828400262089E-018 TIME = 0.15000000E-03 DT = 0.80000000E-04 SUM OF SQUARES = 0.92938284E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.81210495E-07 AND 0.81210495E-07 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.47528006E-04 U-FRACTION IN SYSTEM: C = .0069849558271819 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 3 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 1.711823108234314E-008 1.695082183487405E-008 4.059532925449025E-015 2.495989573251053E-019 TIME = 0.31000000E-03 DT = 0.16000000E-03 SUM OF SQUARES = 0.24959896E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.81210687E-07 AND 0.81210687E-07 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.47528019E-04 U-FRACTION IN SYSTEM: C = .00698495582718182 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 5 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 1.711092983135726E-008 1.694356915365577E-008 2.891564791858802E-015 1.642362799560462E-021

output ignored...

... output resumed

4.817237533333497E-003 4.817237487819453E-003 3.942745981904871E-018 TIME = 0.67592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.39427460E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.34033061E-15 AND 0.34033061E-15 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13807395E-02 U-FRACTION IN SYSTEM: C = .00697278470595053 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 32 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 4.624365622691025E-005 4.625290796660806E-005 1.845839415222149E-019 TIME = 0.77592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.18458394E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.91778947E-19 AND 0.91778947E-19 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13807395E-02 U-FRACTION IN SYSTEM: C = .00697278461241442 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE

Page 77: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

CPU time used in timestep 0 seconds 7.467937289421528E-005 7.467934118250251E-005 4.095882852043687E-012 3.009265538105056E-036 TIME = 0.87592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.30092655E-35 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.42462218E-16 AND 0.42462218E-16 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13807438E-02 U-FRACTION IN SYSTEM: C = .00697274131207285 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 32 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 7.181953829198454E-005 7.183392363922831E-005 7.189159937568113E-025 TIME = 0.97592186E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.71891599E-24 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.59938459E-19 AND 0.59938459E-19 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13807438E-02 U-FRACTION IN SYSTEM: C = .00697274125098088 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 0 seconds 2.711243439354092E-009 2.711118498082412E-009 5.998351979959399E-015 3.194255858747948E-024 TIME = 0.10000000E+10 DT = 24078140. SUM OF SQUARES = 0.31942559E-23 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.31404843E-18 AND 0.31404843E-18 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13807438E-02 U-FRACTION IN SYSTEM: C = .00697274117389868 FE = 1 TOTAL SIZE OF SYSTEM: .002000001 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-04 DELETING TIME-RECORD FOR TIME 0.30000000E-04 DELETING TIME-RECORD FOR TIME 0.70000000E-04 DELETING TIME-RECORD FOR TIME 0.15000000E-03 DELETING TIME-RECORD FOR TIME 0.31000000E-03 DELETING TIME-RECORD FOR TIME 0.63000000E-03 DELETING TIME-RECORD FOR TIME 0.12700000E-02 DELETING TIME-RECORD FOR TIME 0.25500000E-02 DELETING TIME-RECORD FOR TIME 0.51100000E-02 DELETING TIME-RECORD FOR TIME 0.10230000E-01 DELETING TIME-RECORD FOR TIME 0.20470000E-01 DELETING TIME-RECORD FOR TIME 0.40950000E-01 DELETING TIME-RECORD FOR TIME 0.81910000E-01 DELETING TIME-RECORD FOR TIME 0.16383000 DELETING TIME-RECORD FOR TIME 0.32767000 DELETING TIME-RECORD FOR TIME 0.65535000 DELETING TIME-RECORD FOR TIME 1.3107100 DELETING TIME-RECORD FOR TIME 2.6214300 DELETING TIME-RECORD FOR TIME 5.2428700 DELETING TIME-RECORD FOR TIME 10.485750 DELETING TIME-RECORD FOR TIME 20.971510 DELETING TIME-RECORD FOR TIME 41.943030 DELETING TIME-RECORD FOR TIME 83.886070 DELETING TIME-RECORD FOR TIME 167.77215 DELETING TIME-RECORD FOR TIME 335.54431 DELETING TIME-RECORD FOR TIME 671.08863 DELETING TIME-RECORD FOR TIME 1342.1773 DELETING TIME-RECORD FOR TIME 2684.3546 DELETING TIME-RECORD FOR TIME 5368.7091 DELETING TIME-RECORD FOR TIME 10737.418 DELETING TIME-RECORD FOR TIME 21474.836 DELETING TIME-RECORD FOR TIME 42949.673 DELETING TIME-RECORD FOR TIME 85899.346 DELETING TIME-RECORD FOR TIME 171798.69 DELETING TIME-RECORD FOR TIME 343597.38 DELETING TIME-RECORD FOR TIME 687194.77 DELETING TIME-RECORD FOR TIME 1374389.5 DELETING TIME-RECORD FOR TIME 2748779.1 DELETING TIME-RECORD FOR TIME 5497558.1 DELETING TIME-RECORD FOR TIME 10995116. DELETING TIME-RECORD FOR TIME 21990233. DELETING TIME-RECORD FOR TIME 43980465. DELETING TIME-RECORD FOR TIME 87960930. DELETING TIME-RECORD FOR TIME 0.17592186E+09 DELETING TIME-RECORD FOR TIME 0.27592186E+09 DELETING TIME-RECORD FOR TIME 0.37592186E+09 DELETING TIME-RECORD FOR TIME 0.47592186E+09 DELETING TIME-RECORD FOR TIME 0.57592186E+09 DELETING TIME-RECORD FOR TIME 0.67592186E+09 DELETING TIME-RECORD FOR TIME 0.77592186E+09 DELETING TIME-RECORD FOR TIME 0.87592186E+09 KEEPING TIME-RECORD FOR TIME 0.97592186E+09 AND FOR TIME 0.10000000E+10 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 78: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1a-plot

MACRO exb1a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1a\plot.DCM"DIC> DIC> DIC> @@ exb1a_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b1a DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+09 DIC> read exb1a OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT CARBON CONCENTRATIONS AT DIFFERENT TIMES POST-1: @@ POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-d-a y w-p c POST-1: s-p-c time 1e3,1e5,1e9 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y VARIABLE : pos INTERFACE : aus UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower POST-1: POST-1: set_axis_type AXIS (X, Y OR Z) : x AXIS TYPE /LINEAR/: log POST-1: POST-1: s-s-s AXIS (X, Y OR Z) : x AUTOMATIC SCALING (Y OR N) /N/: n MIN VALUE : 10 MAX VALUE : 1e9 POST-1: POST-1: plot

Page 79: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ PLOT THE VELOCITY OF THE BCC/FCC INTERPHASE POST-1: @@ POST-1: s-d-a AXIS (X, Y OR Z) : y VARIABLE : velocity INTERFACE : aus UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: set-inter --OK--- POST-1:

Page 80: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

T = 1050 K

γ

0.15% C

2E-3

Inactive α

Time = 0

T = 1050 K

γ● ●● ●● ●●

ν

α

2E-3

Time > 0

Example b1b

to transformation in a binary Fe - C alloyγ α

( Inactive ) α

●●● ● ●

Page 81: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1b-setup

MACRO exb1b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1b\setup.DCM"SYS: @@ SYS: @@ Moving boundary problem. SYS: @@ Same problem as in exb1a but now we set up the problem with SYS: @@ ferrite as an inactive phase adjacent to the initial austenite. SYS: @@ SYS: SYS: @@ exb1b_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE THE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_FEDEMO: @@ TDB_FEDEMO: def-sys fe c FE C DEFINED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_FEDEMO: @@ TDB_FEDEMO: rej ph * all GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: res ph fcc bcc FCC_A1 BCC_A2 RESTORED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ RETRIEVE DATA FROM DATABASE FILE TDB_FEDEMO: @@ TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_FEDEMO: @@ TDB_FEDEMO: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2

Page 82: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /FEDEMO/: MFEDEMO Current database: Fe-Alloys Mobility demo database VA DEFINED APP: def-sys fe c FE C DEFINED APP: rej ph * all BCC_A2 FCC_A1 REJECTED APP: res ph fcc bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> set-cond glob T 0 1050; * N DIC> DIC> @@ DIC> @@ WE START BY ENTERING REGION austenite WHEREIN WE PUT THE fcc PHASE DIC> @@ DIC> enter-region REGION NAME : austenite DIC> DIC> @@ DIC> @@ ENTER GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /AUSTENITE/: austenite WIDTH OF REGION /1/: 20e-4 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 50 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active

Page 83: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inactive ATTACH TO REGION NAMED /AUSTENITE/: austenite ATTACHED TO THE RIGHT OF AUSTENITE /YES/: no PHASE NAME: /NONE/: bcc REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO FCC. DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: lin VALUE OF FIRST POINT : 0.15 VALUE OF LAST POINT : /0.15/: 0.15 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 1e9 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /100000000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> DIC> @@ DIC> @@ WE USE IMPLICIT (1) TIME INTEGRATION IN THIS CASE INSTEAD OF THE DIC> @@ MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD WHICH IS THE DIC> @@ DEFAULT METHOD. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb1b Y DIC> DIC> set-inter --OK--- DIC>

Page 84: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1b-run

MACRO exb1b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1b\run.DCM" DIC> DIC> @@ exb1b_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b1b DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb1b OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] INFO: PHASE BCC_A2 IS SCHEDULED TO APPEAR REGION STATUS CHANGE, ITERATING: TIME= 0.50000000E-07 REGION STATUS CHANGE, ITERATING: TIME= 0.25000000E-07 TIME = 0.25000000E-07 DT = 0.25000000E-07 U-FRACTION IN SYSTEM: C = .00698495916383109 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE KEEPING TIME-RECORD FOR TIME 0.0000000 AND FOR TIME 0.25000000E-07 WORKSPACE RECLAIMED WIDTH OF NEW REGION R_BCC_A2 /1E-06/: Trying old scheme 3 START VALUE(S) FOR INTERFACE #2 R_BCC_A2/AUSTENITE, CELL #1 ----------------------------------------------------------- VELOCITY /1/: Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 3 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00698156310125387 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] U-FRACTION IN SYSTEM: C = .00698156310125387 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: R_BCC_A2 2.75176053686592 2.75176116101681 393.018358848755 3.01758588659041 2.94562519081330 4.20884975046566

ERROR RETURN FROM NS01A BECAUSE 5 CALLS OF CALFUN FAILED TO IMPROVE THE RESIDUALS

output ignored...

... output resumed

2 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 4.145273712277845E-006 4.145189447978009E-006 1.782766781986157E-015 1.841710151007174E-025 TIME = 0.60995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.18417102E-24 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.10997612E-16 AND 0.10997612E-16 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13815296E-02 U-FRACTION IN SYSTEM: C = .00696472091885118 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 21 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 9.440415825265427E-007 9.444687683708112E-007 3.601784548391823E-018 TIME = 0.70995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.36017845E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.60135928E-17 AND 0.60135928E-17 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13815302E-02 U-FRACTION IN SYSTEM: C = .00696471478656231 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 1.881966167727280E-009 1.892408938756642E-009 4.489495044434513E-033

Page 85: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 0.80995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.44894950E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.56806112E-17 AND 0.56806112E-17 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13815308E-02 U-FRACTION IN SYSTEM: C = .00696470899382898 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 8.171179521830250E-007 8.169127014153828E-007 2.011110967025222E-030 TIME = 0.90995116E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.20111110E-29 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.99992447E-17 AND 0.99992447E-17 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13815318E-02 U-FRACTION IN SYSTEM: C = .00696469879722088 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 17 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 2.894270273633906E-008 2.887474213271796E-008 1.641913086827151E-019 TIME = 0.10000000E+10 DT = 90048837. SUM OF SQUARES = 0.16419131E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.10633421E-16 AND 0.10633421E-16 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13815327E-02 U-FRACTION IN SYSTEM: C = .00696468903295322 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.25000000E-07 DELETING TIME-RECORD FOR TIME 0.12500000E-06 DELETING TIME-RECORD FOR TIME 0.10012500E-03 DELETING TIME-RECORD FOR TIME 0.30012500E-03 DELETING TIME-RECORD FOR TIME 0.70012500E-03 DELETING TIME-RECORD FOR TIME 0.15001250E-02 DELETING TIME-RECORD FOR TIME 0.31001250E-02 DELETING TIME-RECORD FOR TIME 0.63001250E-02 DELETING TIME-RECORD FOR TIME 0.12700125E-01 DELETING TIME-RECORD FOR TIME 0.25500125E-01 DELETING TIME-RECORD FOR TIME 0.51100125E-01 DELETING TIME-RECORD FOR TIME 0.10230012 DELETING TIME-RECORD FOR TIME 0.20470012 DELETING TIME-RECORD FOR TIME 0.40950012 DELETING TIME-RECORD FOR TIME 0.81910012 DELETING TIME-RECORD FOR TIME 1.6383001 DELETING TIME-RECORD FOR TIME 3.2767001 DELETING TIME-RECORD FOR TIME 6.5535001 DELETING TIME-RECORD FOR TIME 13.107100 DELETING TIME-RECORD FOR TIME 26.214300 DELETING TIME-RECORD FOR TIME 52.428700 DELETING TIME-RECORD FOR TIME 104.85750 DELETING TIME-RECORD FOR TIME 209.71510 DELETING TIME-RECORD FOR TIME 419.43030 DELETING TIME-RECORD FOR TIME 838.86070 DELETING TIME-RECORD FOR TIME 1677.7215 DELETING TIME-RECORD FOR TIME 3355.4431 DELETING TIME-RECORD FOR TIME 6710.8863 DELETING TIME-RECORD FOR TIME 13421.773 DELETING TIME-RECORD FOR TIME 26843.546 DELETING TIME-RECORD FOR TIME 53687.091 DELETING TIME-RECORD FOR TIME 107374.18 DELETING TIME-RECORD FOR TIME 214748.36 DELETING TIME-RECORD FOR TIME 429496.73 DELETING TIME-RECORD FOR TIME 858993.46 DELETING TIME-RECORD FOR TIME 1717986.9 DELETING TIME-RECORD FOR TIME 3435973.8 DELETING TIME-RECORD FOR TIME 6871947.7 DELETING TIME-RECORD FOR TIME 13743895. DELETING TIME-RECORD FOR TIME 27487791. DELETING TIME-RECORD FOR TIME 54975581. DELETING TIME-RECORD FOR TIME 0.10995116E+09 DELETING TIME-RECORD FOR TIME 0.20995116E+09 DELETING TIME-RECORD FOR TIME 0.30995116E+09 DELETING TIME-RECORD FOR TIME 0.40995116E+09 DELETING TIME-RECORD FOR TIME 0.50995116E+09 DELETING TIME-RECORD FOR TIME 0.60995116E+09 DELETING TIME-RECORD FOR TIME 0.70995116E+09 DELETING TIME-RECORD FOR TIME 0.80995116E+09 KEEPING TIME-RECORD FOR TIME 0.90995116E+09 AND FOR TIME 0.10000000E+10 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 86: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1b-plot

MACRO exb1b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1b\plot.DCM"DIC> DIC> DIC> @@ exb1b_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b1b DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+09 DIC> read exb1b OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT CARBON CONCENTRATIONS AT DIFFERENT TIMES POST-1: @@ POST-1: s-d-a y w-p c POST-1: s-d-a x dist glob INFO: Distance is set as independent variable POST-1: s-p-c time 1e3,1e5,1e9 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y VARIABLE : pos INTERFACE : aus UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower POST-1: POST-1: set_axis_type AXIS (X, Y OR Z) : x AXIS TYPE /LINEAR/: log POST-1: POST-1: s-s-s AXIS (X, Y OR Z) : x AUTOMATIC SCALING (Y OR N) /N/: n MIN VALUE : 10 MAX VALUE : 1e9 POST-1: POST-1: plot

Page 87: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ PLOT THE VELOCITY OF THE BCC/FCC INTERPHASE POST-1: @@ POST-1: s-d-a AXIS (X, Y OR Z) : y VARIABLE : velocity INTERFACE : aus UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: set-inter --OK--- POST-1:

Page 88: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b1c

to transformation in a binary Fe - C alloyγ α

( Gradual cooling down to 1050 K )

T = 1050 K

γ● ●● ●● ●●

ν

α

2E-3

Time > 738s

γ●● ● ●● ●●

0.15% C

2E-3

Inactive α

Time = 0 T = 1173 - Time 0.1667*

Page 89: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1c-setup

MACRO exb1c\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1c\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ Same problem as in exb1a and exb1b but now we start the simulation at SYS: @@ a higher temperature and we assume a gradual cooling down to 1050 K. SYS: @@ When we reach 1050 K we keep the temperature constant and thus have an SYS: @@ isothermal transformation. As in exb1b we have ferrite as an inactive SYS: @@ phase adjacent to the initial austenite. SYS: @@ SYS: SYS: @@ exb1c_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE THE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_FEDEMO: @@ TDB_FEDEMO: def-sys fe c FE C DEFINED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_FEDEMO: @@ TDB_FEDEMO: rej ph * all GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: res ph fcc bcc FCC_A1 BCC_A2 RESTORED TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ RETRIEVE DATA FROM DATABASE FILE TDB_FEDEMO: @@ TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_FEDEMO: @@ TDB_FEDEMO: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2

Page 90: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /FEDEMO/: MFEDEMO Current database: Fe-Alloys Mobility demo database VA DEFINED APP: def-sys fe c FE C DEFINED APP: rej ph * all BCC_A2 FCC_A1 REJECTED APP: res ph fcc bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> @@ WE ASSUME THAT THE COOLING RATE IS 10K/MINUTE DOWN TO 1050K. DIC> @@ DIC> set-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: glob VARIABLE : T LOW TIME LIMIT /0/: 0 T(TIME,X)= 1173-time*0.1667; HIGH TIME LIMIT /*/: 738 ANY MORE RANGES /N/: y T(TIME,X)= 1050; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N DIC> DIC> @@ DIC> @@ WE START BY ENTERING REGION austenite WHEREIN WE PUT THE fcc PHASE DIC> @@ DIC> enter-region REGION NAME : austenite DIC>

Page 91: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> @@ ENTER GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /AUSTENITE/: austenite WIDTH OF REGION /1/: 20e-4 TYPE /LINEAR/: geometric NUMBER OF POINTS /50/: 50 VALUE OF R IN THE GEOMETRICAL SERIE : 1.05 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /AUSTENITE/: austenite ATTACHED TO THE RIGHT OF AUSTENITE /YES/: no PHASE NAME: /NONE/: bcc REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO FCC. DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: lin VALUE OF FIRST POINT : 0.15 VALUE OF LAST POINT : /0.15/: 0.15 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 738 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /73.8/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ WE USE IMPLICIT (1) TIME INTEGRATION IN THIS CASE INSTEAD OF THE DIC> @@ MORE ACCURATE BUT LESS STABLE TRAPETZOIDAL METHOD WHICH IS THE DIC> @@ DEFAULT METHOD. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb1c Y DIC> DIC> set-inter --OK--- DIC>

Page 92: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1c-run

MACRO exb1c\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1c\run.DCM"DIC> DIC> DIC> @@ exb1c_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE exb1c DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb1c OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 7.3675051 DT = 6.9674050 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 21.302315 DT = 13.934810 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 49.171935 DT = 27.869620 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 86.071935 DT = 36.900000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 122.97193 DT = 36.900000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 159.87193 DT = 36.900000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 196.77193 DT = 36.900000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 233.67193 DT = 36.900000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 270.57193 DT = 36.900000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds INFO: PHASE BCC_A2 IS SCHEDULED TO APPEAR REGION STATUS CHANGE, ITERATING: TIME= 289.02193 REGION STATUS CHANGE, ITERATING: TIME= 279.79693 REGION STATUS CHANGE, ITERATING: TIME= 284.40943 REGION STATUS CHANGE, ITERATING: TIME= 286.71568 REGION STATUS CHANGE, ITERATING: TIME= 287.86881 REGION STATUS CHANGE, ITERATING: TIME= 288.44537 REGION STATUS CHANGE, ITERATING: TIME= 288.73365 TIME = 288.73365 DT = 18.161719 U-FRACTION IN SYSTEM: C = .00698495916383108 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] MUST SAVE WORKSPACE ON FILE

Page 93: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 7.3675051 DELETING TIME-RECORD FOR TIME 21.302315 DELETING TIME-RECORD FOR TIME 49.171935 DELETING TIME-RECORD FOR TIME 86.071935 DELETING TIME-RECORD FOR TIME 122.97193 DELETING TIME-RECORD FOR TIME 159.87193 DELETING TIME-RECORD FOR TIME 196.77193 DELETING TIME-RECORD FOR TIME 233.67193 KEEPING TIME-RECORD FOR TIME 270.57193 AND FOR TIME 288.73365 WORKSPACE RECLAIMED WIDTH OF NEW REGION R_BCC_A2 /1E-06/: Trying old scheme 3

output ignored...

... output resumed

5.641678946485316E-006 5.642328620485267E-006 3.375081953191066E-027 TIME = 0.54091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.33750820E-26 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.49407513E-16 AND -0.49407513E-16 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13817870E-02 U-FRACTION IN SYSTEM: C = .00696209592658495 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE CPU time used in timestep 0 seconds 1.670639865180212E-005 1.669832710886392E-005 1.537597922697983E-020 TIME = 0.64091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.15375979E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.68460524E-16 AND -0.68460524E-16 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13817802E-02 U-FRACTION IN SYSTEM: C = .00696216573837476 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE CPU time used in timestep 0 seconds 1.941122205259937E-005 1.941242777689002E-005 2.849963234264096E-020 TIME = 0.74091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.28499632E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.14893562E-15 AND 0.14893562E-15 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13817951E-02 U-FRACTION IN SYSTEM: C = .00696201386307983 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 19 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 7.349200127361923E-006 7.350814177500563E-006 1.526526411001117E-019 TIME = 0.84091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.15265264E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.13033476E-16 AND 0.13033476E-16 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13817964E-02 U-FRACTION IN SYSTEM: C = .00696200057235138 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 4.879876772699683E-006 4.881027743221242E-006 1.323573115488523E-017 TIME = 0.94091645E+09 DT = 0.10000000E+09 SUM OF SQUARES = 0.13235731E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.19413568E-17 AND 0.19413568E-17 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13817966E-02 U-FRACTION IN SYSTEM: C = .00696199859267588 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 0 seconds 3.942521069221882E-002 3.942522610095536E-002 8.202643114488313E-022 TIME = 0.10000000E+10 DT = 59083546. SUM OF SQUARES = 0.82026431E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.97167033E-15 AND -0.97167033E-15 POSITION OF INTERFACE R_BCC_A2 / AUSTENITE IS 0.13817392E-02 U-FRACTION IN SYSTEM: C = .00696258402143314 FE = 1 TOTAL SIZE OF SYSTEM: .002 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 721.20154 DELETING TIME-RECORD FOR TIME 738.00000 DELETING TIME-RECORD FOR TIME 754.79846 DELETING TIME-RECORD FOR TIME 788.39539 DELETING TIME-RECORD FOR TIME 855.58925 DELETING TIME-RECORD FOR TIME 989.97697 DELETING TIME-RECORD FOR TIME 1258.7524 DELETING TIME-RECORD FOR TIME 1796.3033 DELETING TIME-RECORD FOR TIME 2871.4050 DELETING TIME-RECORD FOR TIME 5021.6084 DELETING TIME-RECORD FOR TIME 9322.0153 DELETING TIME-RECORD FOR TIME 17922.829 DELETING TIME-RECORD FOR TIME 35124.457 DELETING TIME-RECORD FOR TIME 69527.712 DELETING TIME-RECORD FOR TIME 138334.22 DELETING TIME-RECORD FOR TIME 275947.24 DELETING TIME-RECORD FOR TIME 551173.28 DELETING TIME-RECORD FOR TIME 1101625.4 DELETING TIME-RECORD FOR TIME 2202529.5 DELETING TIME-RECORD FOR TIME 4404337.9 DELETING TIME-RECORD FOR TIME 8807954.5 DELETING TIME-RECORD FOR TIME 17615188. DELETING TIME-RECORD FOR TIME 35229654. DELETING TIME-RECORD FOR TIME 70458588. DELETING TIME-RECORD FOR TIME 0.14091645E+09 DELETING TIME-RECORD FOR TIME 0.24091645E+09 DELETING TIME-RECORD FOR TIME 0.34091645E+09 DELETING TIME-RECORD FOR TIME 0.44091645E+09

Page 94: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DELETING TIME-RECORD FOR TIME 0.54091645E+09 DELETING TIME-RECORD FOR TIME 0.64091645E+09 DELETING TIME-RECORD FOR TIME 0.74091645E+09 DELETING TIME-RECORD FOR TIME 0.84091645E+09 KEEPING TIME-RECORD FOR TIME 0.94091645E+09 AND FOR TIME 0.10000000E+10 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 95: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb1c-plot

MACRO exb1c\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb1c\plot.DCM"DIC> DIC> DIC> @@ exb1c_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b1c DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+09 DIC> read exb1c OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ PLOT TEMPERATURE VS. TIME POST-1: @@ POST-1: s-d-a y t POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-p-c CONDITION /TIME/: interface INTERFACE : austenite UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower POST-1: s-s-s x n 0 1000 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ PLOT VS. LOG TIME POST-1: @@ POST-1: set-axis-type x log POST-1: s-s-s x n 10 1e9 POST-1: POST-1: plot

Page 96: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ PLOT THE POSITION OF THE BCC/FCC INTERPHASE POST-1: @@ POST-1: s-d-a AXIS (X, Y OR Z) : y VARIABLE : position INTERFACE : austenite UPPER OR LOWER INTERFACE OF REGION AUSTENITE#1 /LOWER/: lower POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ PLOT THE CARBON CONCENTRATION VS. DISTANCE POST-1: @@ POST-1: s-d-a y w-p c POST-1: s-d-a x dis glob INFO: Distance is set as independent variable POST-1: s-p-c time 500,700,1200,2000 POST-1: set-axis-type x lin POST-1: s-s-s x n 0 3e-4 POST-1: POST-1: plot

Page 97: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: set-inter --OK--- POST-1:

Page 98: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b2

Cementite dissolution in an Fe-Cr-C alloy

T = 1183 K

●● ●

●●●

ν

Cem

FCC

Page 99: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb2-setup

MACRO exb2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb2\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Moving boundary problems. SYS: @@ Setup file for calculating the dissolution of a spherical cementite SYS: @@ particle in an austenite matrix. SYS: @@ This case is from Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren: SYS: @@ Metall. Trans.A, v.22A (1991), pp. 1745-1752. SYS: SYS: @@ SYS: @@ In order to achieve the correct average composition in the calculation SYS: @@ it is necessary to take into account the fact that the calculation in SYS: @@ DICTRA is setup using the volume fraction of the phases. To calculate SYS: @@ the initial state at the heat treatment temperature we need first to SYS: @@ determine the state at the normalizing temperature. To calculate the SYS: @@ volume fraction of the phases we need to enter a number of functions SYS: @@ that calculate these quantities. NOTE: The volume fractions are SYS: @@ determined by assuming that only the substitutional components SYS: @@ contribute to the volume of system, whereas the interstitial components SYS: @@ don't. SYS: @@ SYS: @@ The total radius of the system can be calculated from the relation: SYS: @@ SYS: @@ 3 SYS: @@ R V SYS: @@ cem cem f SYS: @@ ---- = ---- = V SYS: @@ 3 cem SYS: @@ R V SYS: @@ tot tot SYS: @@ SYS: @@ SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: def-sys fe cr c FE CR C DEFINED TDB_FEDEMO: rej ph * all GAS:G LIQUID:L BCC_A2 CEMENTITE CHI_A12 DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M3C2 M5C2 M7C3 SIGMA REJECTED TDB_FEDEMO: res ph fcc bcc cem FCC_A1 BCC_A2 CEMENTITE RESTORED TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'J-O. Andersson, Calphad, 11 (1987), 271-276; TRITA 0314; C-CR' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'J-O. Andersson, Metall. Trans. A, 19A (1988), 627-636 TRITA 0207 (1986); C-CR-FE' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'P. Villars and L.D. Calvert (1985). Pearsons handbook of crystallographic data for intermetallic phases. Metals park, Ohio. American Society for Metals; Molar volumes' 'J. Bratberg, Z. Metallkd., Vol 96 (2005), 335-344; Fe-Cr-Mo-C' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_FEDEMO: @@ TDB_FEDEMO: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sp fe cr c FE CR C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc cementite FCC_A1 CEMENTITE RESTORED

Page 100: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' 'This parameter has been estimated' -OK- APP: APP: @@ APP: @@ ENTER THE POLY-3 MONITOR APP: @@ APP: go p-3 POLY version 3.32 POLY_3: POLY_3: @@ POLY_3: @@ SET THE CONDITIONS AT THE NORMALIZING TEMPERATURE POLY_3: @@ POLY_3: set-cond T=1008,P=101325,N=1 POLY_3: set-cond X(CR)=0.0206,X(C)=0.0391 POLY_3: POLY_3: POLY_3: @@ POLY_3: @@ ENTER FUNCTIONS IN ORDER TO DETERMINE THE VOLUME-FRACTIONS POLY_3: @@ POLY_3: POLY_3: @@ Radius of the cementite particle POLY_3: ent-symb var rcem=0.5255e-6; POLY_3: POLY_3: @@ total number of moles of substitutional components POLY_3: ent-symb func nstot=n(fe)+n(cr); POLY_3: POLY_3: @@ number of moles of substitutional components in cementite POLY_3: ent-symb func nscem=n(cem,fe)+n(cem,cr); POLY_3: POLY_3: @@ volume fraction (U-fraction) of cementite POLY_3: ent-symb func vfcem=nscem/nstot; POLY_3: POLY_3: @@ total radius of the system POLY_3: ent-symb func rtot=rcem/vfcem**(1/3); POLY_3: POLY_3: @@ radius of the surrounding austenite matrix POLY_3: ent-symb func rmat=rtot-rcem; POLY_3: POLY_3: POLY_3: @@ POLY_3: @@ COMPUTE THE EQUILIBRIUM POLY_3: @@ POLY_3: compute-eq Using global minimization procedure Calculated 3775 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: POLY_3: POLY_3: @@ POLY_3: @@ SHOW THE COMPUTED VALUES THAT ARE TO BE USED IN THE DICTRA CALCULATION POLY_3: @@ POLY_3: show rmat RMAT=5.3896717E-7 POLY_3: show w(cem,cr),w(bcc,cr),w(bcc,c) W(CEMENTITE,CR)=0.12907323 W(BCC_A2,CR)=3.9505464E-3 W(BCC_A2,C)=1.4325888E-4 POLY_3: POLY_3: ent var wmatcr=w(bcc,cr); POLY_3: ent var wmatc=w(bcc,c); POLY_3: ent var wcemcr=w(cem,cr); POLY_3: POLY_3: POLY_3: @@ POLY_3: @@ ENTER THE DICTRA MONITOR POLY_3: @@ POLY_3: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob t 0 1183; * n DIC> DIC> @@ DIC> @@ ENTER REGIONS carb AND aus DIC> @@ DIC> enter-region REGION NAME : carb DIC> DIC> enter-region REGION NAME : aus ATTACH TO REGION NAMED /CARB/: ATTACHED TO THE RIGHT OF CARB /YES/: DIC> @@ DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS DIC> @@ DIC>

Page 101: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> @@ THE INITIAL SIZE OF THE CEMENTITE PARTICLE IS ASSUMED TO BE KNOWN DIC> @@ (IN THIS CASE WE TAKE OUR VALUE FROM LIU ET AL. WHO ESTIMATED THE DIC> @@ AVERAGE INITIAL DIAMETER OF THE PARTICLES TO 1.051E-6 METERS). DIC> @@ DIC> enter-grid REGION NAME : /CARB/: carb WIDTH OF REGION /1/: rcem TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 16 VALUE OF R IN THE GEOMETRICAL SERIE : 0.80 DIC> DIC> @@ DIC> @@ THE SIZE OF THE FCC REGION WE MAY CALCULATE FROM A MASSBALANCE DIC> @@ AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES. DIC> @@ DIC> enter-grid REGION NAME : /AUS/: aus WIDTH OF REGION /1/: rmat TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 16 VALUE OF R IN THE GEOMETRICAL SERIE : 1.25 DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGIONS DIC> @@ DIC> enter-phase act carb matrix cementite DIC> enter-phase act aus matrix fcc#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES DIC> @@ DIC> enter-composition REGION NAME : /CARB/: carb PHASE NAME: /CEMENTITE/: cementite COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction PROFILE FOR /CR/: cr lin wcemcr wcemcr DIC> DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /FE/: fe COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction PROFILE FOR /C/: CR lin wmatcr wmatcr PROFILE FOR /CR/: C lin wmatc wmatc DIC> DIC> @@ DIC> @@ SET SPHERICAL GEOMETRY DIC> @@ DIC> enter-geo GEOMETRICAL EXPONENT /0/: 2 DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 10000 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /1000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exb2 Y DIC> DIC> set-inter --OK--- DIC>

Page 102: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb2-run

MACRO exb2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb2\run.DCM"DIC> DIC> DIC> @@ exb2_run.DCM DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb2 OK DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS DONE 6 OUT OF 9 04 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0406910188418179 CR = .0214382349908299 FE = .978561765139677 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] U-FRACTION IN SYSTEM: C = .0406910188418179 CR = .0214382349908299 FE = .978561765139677 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] 13 GRIDPOINT(S) ADDED TO CELL #1 REGION: CARB 15 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUS 0.176548249161086 0.176589788972957 0.176554043370322 3.680653025207026E-003 9.613115127703042E-005 1.348698347770180E-006 1.521697948390529E-006 1.380415587624159E-006 1.345112033614597E-006 1.340943907800665E-006 1.328437867559631E-006 1.322012213748229E-006 1.297767444039547E-006 1.298885545861614E-006 1.263386445796726E-006 1.177289696524509E-006 1.029702876540562E-006 1.025833475844701E-006 7.431788736429131E-007 3.069915977298758E-007 1.240153131614171E-009 5.834386602873902E-013 2.401882982751997E-017 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.24018830E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.28999660E-02 AND -0.28999660E-02 POSITION OF INTERFACE CARB / AUS IS 0.52521000E-06 U-FRACTION IN SYSTEM: C = .0407169752433709 CR = .0214511874044738 FE = .978548812726033 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 1 seconds 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: CARB 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUS 6.653814852955000E-007 6.655272405266193E-007 6.652862996091669E-007 3.421485904420861E-007 6.526996755780810E-008 5.902173629417987E-012 5.247794362534176E-017 TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.52477944E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.28387079E-03 AND -0.28387079E-03 POSITION OF INTERFACE CARB / AUS IS 0.52515323E-06 U-FRACTION IN SYSTEM: C = .0407196023401171 CR = .0214536735090761 FE = .978546326621431 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 0 seconds 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: CARB 2.782284523671428E-009 2.776376688605356E-009 2.755792903567012E-009 3.648886181064838E-010 1.740387832600494E-010 1.014564712495594E-012 3.472363214266680E-017 TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.34723632E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.26422306E-03 AND -0.26422306E-03 POSITION OF INTERFACE CARB / AUS IS 0.52504754E-06 U-FRACTION IN SYSTEM: C = .0407208187382304 CR = .0214582666752659 FE = .978541733455241 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 0 seconds 1.257291393098316E-007 1.257696203799970E-007 1.254027000861004E-007 4.321388946375052E-008 2.919044531703546E-008 7.657777882391577E-009 5.043773115804332E-014 2.094175212923899E-019 TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.20941752E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.19103621E-03 AND -0.19103621E-03 POSITION OF INTERFACE CARB / AUS IS 0.52489471E-06 U-FRACTION IN SYSTEM: C = .040720826044832 CR = .0214648390963127 FE = .978535161034195 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 0 seconds 6.957511781635871E-008 6.959875245832238E-008

output ignored...

... output resumed

2.082561816029498E-010 1.507751644327011E-010 6.258999028925892E-011 3.068903659304607E-015 2.147904589318593E-019 TIME = 6953.2886 DT = 1000.00000 SUM OF SQUARES = 0.21479046E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10244842E-10 AND -0.10244842E-10 POSITION OF INTERFACE CARB / AUS IS 0.28802589E-06 U-FRACTION IN SYSTEM: C = .0407454632284414 CR = .021714140397982 FE = .978285859732525 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 1 seconds 6.776976395674054E-010 6.772741821706955E-010 6.938083004114355E-010 1.217208300354100E-010 1.016989846927682E-010 6.689519218390809E-011 1.899710203807532E-011 3.262823108209396E-016 1.043205884325779E-020 TIME = 7953.2886 DT = 1000.00000 SUM OF SQUARES = 0.10432059E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.92358868E-11 AND -0.92358868E-11 POSITION OF INTERFACE CARB / AUS IS 0.27879000E-06 U-FRACTION IN SYSTEM: C = .0407454833114684 CR = .0216984244548314 FE = .978301575675676 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 1 seconds

Page 103: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

6.009381403882585E-010 6.005136544558488E-010 6.171813824723330E-010 5.944500742394692E-011 4.723150753443881E-011 2.650480952078728E-011 3.013590116115770E-012 1.444192273775268E-017 TIME = 8953.2886 DT = 1000.00000 SUM OF SQUARES = 0.14441923E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.85048316E-11 AND -0.85048316E-11 POSITION OF INTERFACE CARB / AUS IS 0.27028517E-06 U-FRACTION IN SYSTEM: C = .0407455056373234 CR = .0216836148546153 FE = .978316385275891 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 0 seconds 5.482504141833919E-010 5.478385318422762E-010 5.645087335148419E-010 2.841111545172076E-011 2.156007730477038E-011 9.058137127134344E-012 1.000854470429399E-017 TIME = 9953.2886 DT = 1000.00000 SUM OF SQUARES = 0.10008545E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.79666996E-11 AND -0.79666996E-11 POSITION OF INTERFACE CARB / AUS IS 0.26231847E-06 U-FRACTION IN SYSTEM: C = .0407454854423656 CR = .0216703774593679 FE = .978329622671139 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] CPU time used in timestep 1 seconds 5.930700240718404E-012 5.928267087186882E-012 8.675078779587592E-012 2.371093605565389E-013 2.302148279205644E-013 2.164620787518801E-013 1.904687273153091E-013 4.506953063957254E-013 1.432759543270245E-013 6.912456288719108E-014 9.956750740554640E-016 1.382936552707374E-023 TIME = 10000.0000 DT = 46.711442 SUM OF SQUARES = 0.13829366E-22 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.80493199E-11 AND -0.80493199E-11 POSITION OF INTERFACE CARB / AUS IS 0.26194247E-06 U-FRACTION IN SYSTEM: C = .0407454799578226 CR = .0216694467618613 FE = .978330553368646 TOTAL SIZE OF SYSTEM: 5.05225693054E-18 [m^3] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.30000000E-06 DELETING TIME-RECORD FOR TIME 0.70000000E-06 DELETING TIME-RECORD FOR TIME 0.15000000E-05 DELETING TIME-RECORD FOR TIME 0.31000000E-05 DELETING TIME-RECORD FOR TIME 0.63000000E-05 DELETING TIME-RECORD FOR TIME 0.12700000E-04 DELETING TIME-RECORD FOR TIME 0.25500000E-04 DELETING TIME-RECORD FOR TIME 0.51100000E-04 DELETING TIME-RECORD FOR TIME 0.10230000E-03 DELETING TIME-RECORD FOR TIME 0.20470000E-03 DELETING TIME-RECORD FOR TIME 0.40950000E-03 DELETING TIME-RECORD FOR TIME 0.81910000E-03 DELETING TIME-RECORD FOR TIME 0.16383000E-02 DELETING TIME-RECORD FOR TIME 0.32120700E-02 DELETING TIME-RECORD FOR TIME 0.60099431E-02 DELETING TIME-RECORD FOR TIME 0.10631393E-01 DELETING TIME-RECORD FOR TIME 0.17916898E-01 DELETING TIME-RECORD FOR TIME 0.29375408E-01 DELETING TIME-RECORD FOR TIME 0.48512461E-01 DELETING TIME-RECORD FOR TIME 0.84586691E-01 DELETING TIME-RECORD FOR TIME 0.15673515 DELETING TIME-RECORD FOR TIME 0.30103207 DELETING TIME-RECORD FOR TIME 0.57443972 DELETING TIME-RECORD FOR TIME 1.1019649 DELETING TIME-RECORD FOR TIME 2.1570154 DELETING TIME-RECORD FOR TIME 4.2671162 DELETING TIME-RECORD FOR TIME 8.4873179 DELETING TIME-RECORD FOR TIME 16.927721 DELETING TIME-RECORD FOR TIME 33.808528 DELETING TIME-RECORD FOR TIME 67.570142 DELETING TIME-RECORD FOR TIME 135.09337 DELETING TIME-RECORD FOR TIME 270.13982 DELETING TIME-RECORD FOR TIME 540.23273 DELETING TIME-RECORD FOR TIME 1080.4186 DELETING TIME-RECORD FOR TIME 2008.6858 DELETING TIME-RECORD FOR TIME 2953.2886 DELETING TIME-RECORD FOR TIME 3953.2886 DELETING TIME-RECORD FOR TIME 4953.2886 DELETING TIME-RECORD FOR TIME 5953.2886 DELETING TIME-RECORD FOR TIME 6953.2886 DELETING TIME-RECORD FOR TIME 7953.2886 DELETING TIME-RECORD FOR TIME 8953.2886 KEEPING TIME-RECORD FOR TIME 9953.2886 AND FOR TIME 10000.0000 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 104: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb2-plot

MACRO exb2\plot.DCMDIC> DIC> DIC> @@ exb2_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b2 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+04 DIC> read exb2 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET US PLOT CHROMIUM CONCENTRATION PROFILES POST-1: @@ WE THEN SET DISTANCE AS X-AXIS (NOTE THAT DISTANCE IS SET AS POST-1: @@ INDEPENDENT VARIABLE AUTOMATICALLY) AND U-FRACTION CARBON AS Y-AXIS POST-1: @@ REMEMBER THAT ONE ALSO HAS TO SET PLOT CONDITION POST-1: @@ POST-1: @@ NOTICE THAT ALL DISTANCES IN THE DATA FILE ARE GIVEN RELATIVE TO THE POST-1: @@ CEM/FCC INTERFACE. FOR THIS REASON ONE HAS TO GIVE AN OFFSET TO THE POST-1: @@ DATA ACCORDING TO THE ACTUAL PARTICLE RADIUS AT THE SPECIFIED TIME. POST-1: @@ POST-1: enter-symb Function or table /FUNCTION/: func NAME: rdist FUNCTION: gd-poi(carb,u); POST-1: POST-1: s-d-a x rdist POST-1: POST-1: s-i-v VARIABLE /TIME/: dist DISTANCE : /GLOBAL/: glo POST-1: POST-1: s-d-a y uf(cr) POST-1: POST-1: s-p-c time 10 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-title Figure b2.1 POST-1: POST-1: plo

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ INCLUDE EXPERIMENTAL DATAPOINTS ON THE FIGURE FOR COMPARISION POST-1: @@ POST-1: @@ FIRST LIST DATASETS POST-1: @@ POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: -1 DATASET 1 CONCENTRATION PROFILE T=10S DATASET 2 CONCENTRATION PROFILE T=100S DATASET 3 CONCENTRATION PROFILE T=1000S DATASET 4 CONCENTRATION PROFILE T=10000S DATASET 5 VOLUME FRACTION CEMENTITE VS. TIME DATASET 6 MEAN PARTICLE DIAMETER VS. TIME

Page 105: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: @@ POST-1: @@ SELECT THE PROPER DATASET POST-1: @@ POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 1 POST-1: POST-1: set-title Figure b2.2 POST-1: plo

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ PLOT ALSO FOR 100, 1000 AND 10000S POST-1: @@ POST-1: POST-1: s-p-c time 100 POST-1: POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 2 POST-1: POST-1: set-title Figure b2.3 POST-1: plo

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: POST-1: s-p-c time 1000 POST-1: POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 3 POST-1: POST-1: set-title Figure b2.4 POST-1: plo

Page 106: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: s-p-c time 10000 POST-1: POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 4 POST-1: POST-1: set-title Figure b2.5 POST-1: plo

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ LET US ALSO PLOT HOW THE VOLUME FRACTION OF CEMENTITE VARIES POST-1: @@ WITH TIME POST-1: @@ POST-1: s-d-a y ivv(cem) POST-1: s-s-s y n 0 .15 POST-1: POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: set-axis-type x log POST-1: s-s-s x n .01 10000 POST-1: POST-1: s-p-c integral POST-1: POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 5 POST-1: POST-1: set-title Figure b2.6 POST-1: plo

Page 107: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ LET US ALSO PLOT HOW THE DIAMETER OF CEMENTITE VARIES WITH TIME POST-1: @@ POST-1: enter func diam=2*poi(carb,u); POST-1: s-d-a y diam POST-1: POST-1: s-p-c interface carb upper POST-1: POST-1: app y exb2.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 6 POST-1: POST-1: set-title Figure b2.7 POST-1: plo

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: set-inter --OK--- POST-1:

Page 108: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b3

Dissolution of 23 - carbide in an austenitic matrix

T = 1273 K

●● ●

●●●

ν

23 - carbide

FCC

Inactive BCC

Page 109: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb3-setup

MACRO exb3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb3\setup.DCM"SYS: SYS: SYS: @@ exb3_setup.DCM SYS: SYS: @@------------------------------------------------------------------- SYS: @@ SETUP FILE FOR CALCULATING THE DISSOLUTION OF A M23C6 PARTICLE IN SYS: @@ AN AUSTENITE MATRIX. A FILM OF FERRITE IS ALLOWED TO NUCLEATE AROUND SYS: @@ THE CARBIDE DURING THE PERCIPITATION. SYS: @@------------------------------------------------------------------- SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE A PUBLIC DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe8 TDB_TCFE8: def-sys fe c cr FE C CR DEFINED TDB_TCFE8: rej ph * GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 M3C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI CRZN17 AL5FE4 REJECTED TDB_TCFE8: res ph fcc bcc m23 FCC_A1 BCC_A2 M23C6 RESTORED TDB_TCFE8: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, Calphad, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu et al. Calphad 29 (2005) 49-55, Fe P-T diagram' 'J-O. Andersson, Calphad, 11 (1987), 271-276; TRITA 0314; C-CR' 'J. Bratberg, Z. Metallkd., Vol 96 (2005), 335-344; Fe-Cr-Mo-C' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'P. Franke, estimated PARAM within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'J-O. Andersson, Metall. Trans. A, 19A (1988), 627-636 TRITA 0207 (1986); C-CR-FE' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' -OK- TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE8: @@ TDB_TCFE8: app mfedemo Current database: Fe-Alloys Mobility demo database VA DEFINED APP: def-sys c cr fe C CR FE DEFINED APP: rej ph * BCC_A2 FCC_A1 REJECTED APP: res ph fcc bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING M23C6 AS A DIFFUSION NONE PHASE

Page 110: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1273; * N DIC> DIC> @@ DIC> @@ ENTER REGIONS carbide AND matrix DIC> @@ DIC> enter-region carbide DIC> enter-region matrix ATTACH TO REGION NAMED /CARBIDE/: ATTACHED TO THE RIGHT OF CARBIDE /YES/: DIC> @@ DIC> @@ WE ASSUME SOME REASONABLE SIZE OF THE CARBIDE PARTICLE DIC> @@ DIC> enter-grid carbide 5.00000000E-7 TYPE /LINEAR/: NUMBER OF POINTS /50/: DIC> DIC> @@ DIC> @@ THE SIZE OF THE FCC REGION WE MAY CALCULATE FROM A MASSBALANCE DIC> @@ AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES. DIC> @@ DIC> enter-grid matrix 5.55859755E-7,,,,,, DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGION MATRIX, BOUNDARY CONDITIONS ARE GIVEN DIC> @@ IF THE INACTIVE PHASE bcc IS NUCLEATED DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /CARBIDE/: matrix PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /MATRIX/: matrix ATTACHED TO THE RIGHT OF MATRIX /YES/: no PHASE NAME: /NONE/: bcc#1 DEPENDENT COMPONENT ? /FE/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER PHASE INTO REGION carbide DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /CARBIDE/: carbide PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: m23c6 DIC> DIC> @@ DIC> @@ ENTER COMPOSITIONS INTO THE PHASES DIC> @@ DIC> enter-composition REGION NAME : /CARBIDE/: carbide PHASE NAME: /M23C6/: m23c6 DEPENDENT COMPONENT ? /FE/: fe COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction PROFILE FOR /CR/: cr lin 0.55079807 0.55079807 DIC> DIC> DIC> enter-composition REGION NAME : /MATRIX/: matrix PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /FE/: fe COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction PROFILE FOR /C/: cr lin 8.5203899E-2 8.5203899E-2 PROFILE FOR /CR/: c lin 1.8072433E-4 1.8072433E-4 DIC> DIC> @@ DIC> @@ SET SPHERICAL GEOMETRY DIC> @@ DIC> enter-geo GEOMETRICAL EXPONENT /0/: 2 DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 8000 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /800/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> @@ DIC> @@ VARY POTENTIALS INSTEAD OF ACTIVITIES DIC> @@ DIC> @@set-simulation-conditions ,,,,POTENTIALS,,,,,,,,, DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE DIC> @@ DIC> save exb3 Y DIC> DIC> DIC> DIC> set-inter --OK--- DIC>

Page 111: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb3-run

MACRO exb3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb3\run.DCM"DIC> DIC> DIC> @@ exb3_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b3 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING M23C6 AS A DIFFUSION NONE PHASE DIC> read exb3 OK DIC> DIC> @@ DIC> @@ WHEN THE FERRITE NUCLEATES WE USE DEFAULT VALUES DIC> @@ AS STARTING VALUES FOR THE WIDTH OF THE NEW REGION DIC> @@ AND THE VELOCITY OF THE INTERFACES DIC> @@ DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim yes Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS *** ERROR 1611 IN QTHISS *** TOO MANY ITERATIONS Give the command INFO TROUBLE for help DONE 6 OUT OF 9 DONE 9 OUT OF 9 try 2 failed DETERMINED ACTIVITIES ACR(CR) .00193522400114 UNABLE TO OBTAIN GOOD STARTING VALUE USING THE OLD SCHEME Trying new scheme GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 17 EQUILIBRIUM CALCULATIONS DONE 1 OUT OF 17 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0278637912207471 CR = .149918318671311 FE = .850081681459196 TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3] U-FRACTION IN SYSTEM: C = .0278637912207471 CR = .149918318671311 FE = .850081681459196 TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3] 0.408619885131314 0.408716710898664 0.408584145263652 1.674986954178332E-002 4.918693138972422E-004 6.126723360891388E-007 1.619902718423255E-006 5.811986825683249E-007 5.699623545438217E-007 5.724552977420747E-007 5.618258895585958E-007 5.536922381679318E-007 5.443329190243083E-007 5.470206516910119E-007 5.256911614533897E-007 4.893336064636908E-007 4.196579594423448E-007 4.220458017873270E-007 2.939007522182687E-007 1.024476099049136E-007 5.450394316391980E-009 1.541151015590047E-010 1.713431975931416E-016 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.17134320E-15 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.26058211E-02 AND -0.26058211E-02 POSITION OF INTERFACE CARBIDE / MATRIX IS 0.49973942E-06 U-FRACTION IN SYSTEM: C = .0278841352664978 CR = .149550600858534 FE = .850449399271973 TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3] CPU time used in timestep 1 seconds 3.816055715956604E-003 3.816839008490423E-003 3.815370652862120E-003 2.527897640536468E-005 1.144939040108324E-006 2.032168530485676E-007 1.026204753345505E-009 3.159262579630971E-014 6.773743355690572E-019 SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1 FROM: C TO: CR

output ignored...

... output resumed

6.927387066289644E-014 6.931519858520847E-014 2.335463551605804E-013 6.918553369433477E-014 6.925355098996109E-014 6.929355400087825E-014 2.335207494959195E-013 6.916261461491805E-014 6.923315353994493E-014 6.927438480145949E-014 2.334791261152170E-013 6.914087844510265E-014 6.921252134575964E-014 6.925368003364189E-014 2.334869075816354E-013 6.912101405612129E-014 6.919256658256397E-014 6.923286350735860E-014 2.334739247120146E-013 6.910158851581425E-014 6.917030974332241E-014 6.921431822339167E-014 2.334367506479928E-013 6.908253365469867E-014 6.915303134991009E-014 6.919523486530147E-014 2.334221614392812E-013 6.906078393500270E-014 6.913225892512623E-014 6.917291254128657E-014 2.334014250062081E-013 6.903897366993359E-014 6.911017644221225E-014 6.915137431261912E-014 2.333833599182512E-013 6.901980764049190E-014 6.908898112797514E-014 6.913222667978269E-014 2.333663842270504E-013 6.899989934323851E-014 6.906842055192835E-014 6.911183917390004E-014 2.333371742342332E-013 6.897900644051470E-014 6.904894610768656E-014 6.909033840540276E-014 2.333171431316021E-013 6.895756785848278E-014 6.902862739892802E-014 6.907321094753266E-014 2.333035585643108E-013 6.893795055364259E-014 6.901021816547033E-014 6.905214363249911E-014 2.332826239910425E-013 6.891743606935416E-014 6.899040209495990E-014 6.902958937120014E-014 2.332738861001053E-013 6.889788959233373E-014 6.896724834219189E-014 6.900934364527586E-014 2.332473780870336E-013 6.888143260503876E-014 6.894797618418828E-014 6.899006471534289E-014 2.332259283040875E-013 6.885591601253775E-014 6.892688648541616E-014 6.897006406445248E-014 2.331881070932989E-013 6.883766946449420E-014 6.890539538830185E-014 6.894732790319194E-014 2.331871569012679E-013

ERROR RETURN FROM NS01A BECAUSE THERE HAVE BEEN 300 CALLS OF CALFUN

*** ERROR 1890 IN DCNS01

Page 112: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

*** ERROR RETURN FROM NS01A 1.312210028766995E-013 1.310320227371677E-013 1.310606580974647E-013 1.310330523718692E-013 5.812625362109149E-013 1.313332202146105E-013 SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1 FROM: CR TO: FE TIME = 8000.0000 DT = 390.12029 SUM OF SQUARES = 0.92283394E-14 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.74168880E-13 AND -0.74168880E-13 POSITION OF INTERFACE CARBIDE / MATRIX IS 0.38406467E-06 U-FRACTION IN SYSTEM: C = .0275883708014442 CR = .146716739349575 FE = .853283260780932 TOTAL SIZE OF SYSTEM: 4.93068569406E-18 [m^3] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 53.013009 DELETING TIME-RECORD FOR TIME 67.702436 DELETING TIME-RECORD FOR TIME 67.702446 DELETING TIME-RECORD FOR TIME 67.702466 DELETING TIME-RECORD FOR TIME 67.702506 DELETING TIME-RECORD FOR TIME 67.702586 DELETING TIME-RECORD FOR TIME 67.702746 DELETING TIME-RECORD FOR TIME 67.703066 DELETING TIME-RECORD FOR TIME 67.703706 DELETING TIME-RECORD FOR TIME 67.704986 DELETING TIME-RECORD FOR TIME 67.707546 DELETING TIME-RECORD FOR TIME 67.712666 DELETING TIME-RECORD FOR TIME 67.722906 DELETING TIME-RECORD FOR TIME 67.743386 DELETING TIME-RECORD FOR TIME 67.784346 DELETING TIME-RECORD FOR TIME 67.866266 DELETING TIME-RECORD FOR TIME 68.030106 DELETING TIME-RECORD FOR TIME 68.357786 DELETING TIME-RECORD FOR TIME 69.013146 DELETING TIME-RECORD FOR TIME 70.323866 DELETING TIME-RECORD FOR TIME 72.945306 DELETING TIME-RECORD FOR TIME 78.188186 DELETING TIME-RECORD FOR TIME 88.673946 DELETING TIME-RECORD FOR TIME 109.64547 DELETING TIME-RECORD FOR TIME 151.58851 DELETING TIME-RECORD FOR TIME 235.47459 DELETING TIME-RECORD FOR TIME 403.24675 DELETING TIME-RECORD FOR TIME 738.79107 DELETING TIME-RECORD FOR TIME 1409.8797 DELETING TIME-RECORD FOR TIME 2209.8797 DELETING TIME-RECORD FOR TIME 3009.8797 DELETING TIME-RECORD FOR TIME 3809.8797 DELETING TIME-RECORD FOR TIME 4609.8797 DELETING TIME-RECORD FOR TIME 5409.8797 DELETING TIME-RECORD FOR TIME 6209.8797 DELETING TIME-RECORD FOR TIME 7009.8797 DELETING TIME-RECORD FOR TIME 7209.8797 KEEPING TIME-RECORD FOR TIME 7609.8797 AND FOR TIME 8000.0000 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 113: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb3-plot

MACRO exb3\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb3\plot.DCM"DIC> DIC> DIC> @@ exb3_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b3 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 8.00000E+03 *** ENTERING M23C6 AS A DIFFUSION NONE PHASE DIC> read exb3 OK DIC> DIC> @@ DIC> @@ ENTER THE DICTRA POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET US FIRST SEE HOW THE AMOUNT OF FERRITE VARIED DURING THE POST-1: @@ SIMULATION POST-1: @@ POST-1: s-d-a y iww(bcc) POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-ax-typ x log POST-1: s-s-s x n 1E-5 1E3 POST-1: s-s-s y n 0 0.1 POST-1: POST-1: set-tit Figure b3.1 POST-1: POST-1: plot

POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ NOW LOOK AT THE ALLOYING ELEMENTS AT THE UPPER BOUND OF THE SYSTEM POST-1: @@ POST-1: s-d-a y w(c) POST-1: s-s-s x n 1E-3 1E4 POST-1: s-p-c interface last POST-1: POST-1: set-tit Figure b3.2 POST-1: POST-1: plot

Page 114: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: s-d-a y w(cr) POST-1: s-s-s y n 0 0.12 POST-1: POST-1: set-tit Figure b3.3 POST-1: POST-1: plot

POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ AND FINALLY LOOK AT THE CHANGE OF RADIUS OF THE M23-CARBIDE POST-1: @@ POST-1: s-d-a y position carbide upper POST-1: s-s-s x n 1E-4 1E4 POST-1: POST-1: set-tit Figure b3.4 POST-1: POST-1: plot

Page 115: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 116: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b4a

Solidification path of a Fe - 18% Cr - 8% Ni alloy

( Eutectic reaction)

1E-4

T = 1900 - 1 Time K∗

Liquid BCCFCC

ν ν

Time > 0

Page 117: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4a-setup

MACRO exb4a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4a\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ This examples demonstrates the solidification path of an Fe-18%Cr-8%Ni SYS: @@ alloy. A eutectic reaction is assumed, LIQUID -> BCC + FCC. Hence the SYS: @@ BCC and FCC regions should be on separate sides of the liquid region. SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium SYS: @@ solidification conditions, both made with Thermo-Calc. SYS: @@ SYS: SYS: @@ exb4a_setup.DCM SYS: SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ LET US USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: def-sys fe ni cr FE NI CR DEFINED TDB_TCFE7: TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: rej ph /all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED TDB_TCFE7: TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1

Page 118: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni cr FE NI CR DEFINED APP: rej ph /all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S DIC> @@ DIC> set-cond glob T 0 1900-1*TIME; * N DIC> DIC> @@ DIC> @@ ENTER A REGION CALLED smalta DIC> @@ DIC> enter-region smalta DIC> DIC> @@

Page 119: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /SMALTA/: smalta WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9 DIC> DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /SMALTA/: smalta PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: liq DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGION, ONE PHASE ON EACH SIDE OF THE LIQUID DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: no PHASE NAME: /NONE/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: bcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR THE LIQUID DIC> @@ DIC> enter-composition REGION NAME : /SMALTA/: smalta PHASE NAME: /LIQUID/: liq DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr lin 18 18 PROFILE FOR /NI/: ni lin 8 8 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 200 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /20/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ CHECK INTERFACE POSSITION DIC> @@ DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: yes VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: no SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb4a Y DIC> DIC> set-inter --OK--- DIC>

Page 120: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4a-run

MACRO exb4a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4a\run.DCM"DIC> DIC> DIC> @@ exb4a_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b4a DIC> @@ DIC> DIC> @@ DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb4a OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim yes Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: SMALTA TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.30341217E-04 DT = 0.30241217E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.90823651E-04 DT = 0.60482434E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.21178852E-03 DT = 0.12096487E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.45371826E-03 DT = 0.24192974E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.93757773E-03 DT = 0.48385947E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.19052967E-02 DT = 0.96771895E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.38407346E-02 DT = 0.19354379E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.77116104E-02 DT = 0.38708758E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.15453362E-01 DT = 0.77417516E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.30936865E-01 DT = 0.15483503E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.61903871E-01 DT = 0.30967006E-01 SUM OF SQUARES = 0.0000000

Page 121: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.12383788 DT = 0.61934013E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292 NI = .0754116207882253 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.24770591 DT = 0.12386803 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m]

output ignored...

... output resumed

5.771371582884955E-012 2.089558108784325E-017 TIME = 180.86919 DT = 2.6214400 SUM OF SQUARES = 0.20895581E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.41981368E-07 AND -0.41981368E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.63377458E-05 U-FRACTION IN SYSTEM: CR = .191525960107609 FE = .733031163665452 NI = .0754428762269383 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 3 seconds 1.460359577486928E-009 1.460424345810496E-009 1.508731074903434E-009 1.064013602682988E-010 1.044336853713972E-010 1.006921655765308E-010 9.323286653824786E-011 9.363639914867788E-011 7.929423073972821E-011 5.480511680805466E-011 1.938013801667766E-011 7.461691077798861E-017 TIME = 186.11207 DT = 5.2428800 SUM OF SQUARES = 0.74616911E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.15615759E-07 AND -0.15615759E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.62558743E-05 U-FRACTION IN SYSTEM: CR = .191525761328886 FE = .733031734201103 NI = .0754425044700113 TOTAL SIZE OF SYSTEM: 1E-04 [m] 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_BCC_A2 CPU time used in timestep 2 seconds 8.463934080918495E-010 8.464210007709240E-010 8.673104528639008E-010 2.489945026114041E-010 2.478593658014353E-010 2.456637718005384E-010 2.412297841820694E-010 2.413929260828676E-010 2.325330086774077E-010 2.156237357646513E-010 1.837209222034226E-010 1.839360039621276E-010 1.275701172534941E-010 4.617578549592149E-011 8.103041359381663E-016 4.474487158087514E-020 TIME = 196.59783 DT = 10.485760 SUM OF SQUARES = 0.44744872E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.24172842E-07 AND 0.24172842E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.65093449E-05 U-FRACTION IN SYSTEM: CR = .191525752899147 FE = .733032006620248 NI = .0754422404806052 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 4 seconds 2.285329270877706E-010 2.285300657944728E-010 2.501264527568899E-010 6.191425452799986E-012 6.092317751107364E-012 5.897883803589933E-012 5.517164895079782E-012 6.016558369509794E-012 4.794676132351746E-012 3.475176114401289E-012 1.505516335260266E-012 1.610328537170677E-017 TIME = 200.00000 DT = 3.4021729 SUM OF SQUARES = 0.16103285E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.17465648E-07 AND 0.17465648E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.65687661E-05 U-FRACTION IN SYSTEM: CR = .1915257131766 FE = .733032182333232 NI = .0754421044901677 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 175.06428 DELETING TIME-RECORD FOR TIME 175.62632 DELETING TIME-RECORD FOR TIME 175.62633 DELETING TIME-RECORD FOR TIME 175.62635 DELETING TIME-RECORD FOR TIME 175.62639 DELETING TIME-RECORD FOR TIME 175.62647 DELETING TIME-RECORD FOR TIME 175.62663 DELETING TIME-RECORD FOR TIME 175.62695 DELETING TIME-RECORD FOR TIME 175.62759 DELETING TIME-RECORD FOR TIME 175.62887 DELETING TIME-RECORD FOR TIME 175.63143 DELETING TIME-RECORD FOR TIME 175.63655 DELETING TIME-RECORD FOR TIME 175.64679 DELETING TIME-RECORD FOR TIME 175.66727 DELETING TIME-RECORD FOR TIME 175.70823 DELETING TIME-RECORD FOR TIME 175.79015 DELETING TIME-RECORD FOR TIME 175.95399 DELETING TIME-RECORD FOR TIME 176.28167 DELETING TIME-RECORD FOR TIME 176.93703 DELETING TIME-RECORD FOR TIME 178.24775 DELETING TIME-RECORD FOR TIME 180.86919 DELETING TIME-RECORD FOR TIME 186.11207 KEEPING TIME-RECORD FOR TIME 196.59783 AND FOR TIME 200.00000 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC>

Page 122: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> set-inter --OK--- DIC>

Page 123: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4a-plot

MACRO exb4a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4a\plot.DCM"DIC> DIC> DIC> @@ exb4a_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4a DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 2.00000E+02 DIC> read exb4a OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: set-title Fe-18%Cr-8%Ni POST-1: POST-1: @@ POST-1: @@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION POST-1: @@ AND EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp) POST-1: @@ POST-1: enter function fs=1-ivv(liquid); POST-1: s-d-a x fs POST-1: s-s-s x n 0 1 POST-1: set-axis-text AXIS (X, Y OR Z) : x AUTOMATIC AXIS TEXT (Y OR N) /N/: n AXIS TEXT : Fraction Solid POST-1: POST-1: s-d-a y t-c POST-1: s-s-s y n 1420 1480 POST-1: POST-1: s-p-c interface smalta lower POST-1: POST-1: app y exb4a.exp 0; 1 POST-1: plo

POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 124: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b4b

Solidification path of a Fe - 18% Cr - 8% Ni alloy

( Peritectic reaction)

1E-4

T = 1900 - 1 Time K∗

Liquid BCCFCC

ν

Time > 0

ν

Page 125: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4b-setup

MACRO exb4b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4b\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ The same as exb4a but now a peritectic reaction is assumed, LIQUID + BCC -> SYS: @@ FCC. Hence the FCC region should appear inbetween the LIQUID and the BCC. SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium SYS: @@ solidification conditions, both made with Thermo-Calc. SYS: @@ SYS: SYS: @@ exb4b_setup.DCM SYS: SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ LET US USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: def-sys fe ni cr FE NI CR DEFINED TDB_TCFE7: TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: rej ph /all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED TDB_TCFE7: TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2

Page 126: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni cr FE NI CR DEFINED APP: rej ph /all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S DIC> @@ DIC> set-cond glob T 0 1900-1*TIME; * N DIC> DIC> @@ DIC> @@ ENTER A REGION CALLED smalta DIC> @@ DIC> enter-region smalta DIC> DIC> @@

Page 127: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /SMALTA/: smalta WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /SMALTA/: smalta PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: liq DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION. DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: bcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR THE LIQUID DIC> @@ DIC> enter-composition REGION NAME : /SMALTA/: smalta PHASE NAME: /LIQUID/: liq DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr lin 18 18 PROFILE FOR /NI/: ni lin 8 8 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 200 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /20/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> DIC> @@ DIC> @@ CHECK INTERFACE POSSITION DIC> @@ DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: yes VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb4b Y DIC> DIC> set-inter --OK--- DIC>

Page 128: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4b-run

MACRO exb4b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4b\run.DCM"DIC> DIC> @@ exb4b_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b4b DIC> @@ DIC> DIC> @@ DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb4b OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim yes Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: SMALTA TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.30341217E-04 DT = 0.30241217E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.90823651E-04 DT = 0.60482434E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.21178852E-03 DT = 0.12096487E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.45371826E-03 DT = 0.24192974E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.93757773E-03 DT = 0.48385947E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.19052967E-02 DT = 0.96771895E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.38407346E-02 DT = 0.19354379E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.77116104E-02 DT = 0.38708758E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.15453362E-01 DT = 0.77417516E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.30936865E-01 DT = 0.15483503E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.61903871E-01 DT = 0.30967006E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292

Page 129: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.12383788 DT = 0.61934013E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292 NI = .0754116207882253 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.24770591 DT = 0.12386803 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds

output ignored...

... output resumed

1.606351071323816E-013 9.497522945818284E-014 1.349247768140254E-010 9.497406542702966E-014 9.497296286315062E-014 9.497190547356131E-014 2.354281790341135E-013 9.497089313323211E-014 1.607849942101898E-013 9.496992514727693E-014 1.343723284978931E-010 9.496900240858102E-014 9.496812415855370E-014 9.496729103007874E-014 2.354253625072466E-013 9.496650269226790E-014 1.607881539665046E-013 9.496575908853408E-014 1.338384054899058E-010 9.496506028289182E-014 9.496440641896879E-014 9.496379751987669E-014 2.354236642947368E-013 9.496323361192260E-014 1.607924261702835E-013 9.496271453790768E-014 1.333061296216786E-010 9.496223980373605E-014 9.496181014899195E-014 9.496142550153503E-014 2.354230847514591E-013 9.496108579321768E-014 1.607978137505358E-013 9.496079103329023E-014 1.327752654355967E-010 9.496054095406605E-014 9.496033560604795E-014 9.496017491953049E-014 2.354236212383154E-013 9.496005968213400E-014 1.608043169815855E-013 9.495998911620896E-014 1.322460548851414E-010 9.495996328145033E-014 9.495992915577071E-014 9.495990338925266E-014 2.354251628075671E-013 9.495986896715417E-014 1.608118915174528E-013 9.495984363010964E-014 1.316978044005179E-010 9.495980904529519E-014 9.495978353145641E-014 9.495974887476056E-014 2.354268837975142E-013 9.495972316638317E-014 1.608195286036031E-013 9.495968926673921E-014 1.311383534892437E-010 9.495966332877960E-014 9.495962873821918E-014 9.495960309863504E-014 2.354285881841828E-013 9.495956871168775E-014 1.608273105561955E-013 1.906798733565061E-010 1.360228222917424E-010 1.185969918003716E-013 9.696328407590267E-014 1.203545096568814E-010 1.905701620131140E-010 1.032919799701922E-013 9.570399446675509E-014 1.467150150947997E-013 1.904058121409195E-010

ERROR RETURN FROM NS01A BECAUSE 8 CALLS OF CALFUN FAILED TO IMPROVE THE RESIDUALS

*** ERROR 1890 IN DCNS01 *** ERROR RETURN FROM NS01A MAX ERROR LEVEL EXCEEDED PLEASE CHECK STARTING VALUES MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 170.10836 DELETING TIME-RECORD FOR TIME 170.48419 DELETING TIME-RECORD FOR TIME 170.48419 DELETING TIME-RECORD FOR TIME 170.48419 DELETING TIME-RECORD FOR TIME 170.48419 DELETING TIME-RECORD FOR TIME 170.48419 DELETING TIME-RECORD FOR TIME 170.48419 DELETING TIME-RECORD FOR TIME 170.48420 KEEPING TIME-RECORD FOR TIME 170.48421 AND FOR TIME 170.48421 WORKSPACE RECLAIMED

*** ERROR 1880 IN DITER *** FATAL INTEGRATION ERROR ERROR 1880 RESET DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 130: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4b-plot

MACRO exb4b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4b\plot.DCM"DIC> DIC> DIC> @@ exb4b_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4b DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.70484E+02 DIC> read exb4b OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: set-title Fe-18%Cr-8%Ni POST-1: POST-1: @@ POST-1: @@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION AND POST-1: @@ EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp) POST-1: @@ POST-1: enter func fs=1-ivv(liquid); POST-1: s-d-a x fs POST-1: s-s-s x n 0 1 POST-1: s-ax-te x n Fraction Solid POST-1: POST-1: s-d-a y t-c POST-1: s-s-s y n 1420 1480 POST-1: POST-1: s-p-c interf smalta lower POST-1: POST-1: app y exb4b.exp 0; 1 POST-1: plo

POST-1: POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 131: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b4c

Solidification path of a Fe - 18% Cr - 8% Ni alloy

( Peritectic reaction , Homogeneous liquid )

1E-4

T = 1900 - 1 Time K∗

Liquid BCCFCC

ν

Time > 0

ν

( Homogeneous )

Page 132: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4c-setup

MACRO exb4c\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4c\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ Same as exb4b but, now the diffusivity data is amended for the LIQUID SYS: @@ and a very high value for the diffusivity is used in order to simulate a SYS: @@ case where we assume that the composition in the LIQUID is always SYS: @@ homogeneous. This case should be considered less realistic than exb4b. SYS: @@ Comparison is made with both a Scheil-Gulliver simulation and equilibrium SYS: @@ solidification conditions, both made with Thermo-Calc. SYS: @@ SYS: SYS: @@ exb4c_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: def-sys fe ni cr FE NI CR DEFINED TDB_TCFE7: TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: rej ph /all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED TDB_TCFE7: TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1

Page 133: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni cr FE NI CR DEFINED APP: rej ph /all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ LIST MOBILITIES IN THE LIQUID DIC> @@ DIC> list-mobility-data Sorry, LIST-DATA disabled for this database DIC> DIC> DIC> liquid NO SUCH COMMAND, USE HELP DIC> DIC> DIC> @@ DIC> @@ AMEND THE DIFFUSIVITY DATA IN THE LIQUID DIC> @@

Page 134: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ LET'S CHANGE TO A DIFFUSIVITY WHICH IS 1000 TIMES HIGHER THAN THE DIC> @@ VALUE IN THE MOB-DATABASE. THIS SHOULD BE ENOUGH IN ORDER FOR US TO DIC> @@ ASSUME THAT THE COMPOSITION IN THE LIQUID IS ATT ALL TIMES HOMOGENEOUS. DIC> @@ DIC> amend_mobility_data PARAMETER: *** ERROR, PLEASE RE-ENTER EACH PART SEPARATELY IDENTIFIER: dq PHASE NAME: liquid&cr CONSTITUENT: cr INTERACTING CONSTITUENT: DQ(LIQUID&CR#1,CR;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: yes I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&CR#1,CR;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 FUNCTION: +R*T*LN(1E-06); HIGH TEMPERATURE LIMIT /6000/: 6000 ANY MORE RANGES /N/: no DIC> DIC> amend_mobility_data PARAMETER: dq(liquid&cr,fe;0) DQ(LIQUID&CR#1,FE;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&CR#1,FE;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&cr,ni;0) DQ(LIQUID&CR#1,NI;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&CR#1,NI;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&ni,cr;0) DQ(LIQUID&NI#1,CR;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&NI#1,CR;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&ni,fe;0) DQ(LIQUID&NI#1,FE;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&NI#1,FE;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&ni,ni;0) DQ(LIQUID&NI#1,NI;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&NI#1,NI;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&fe,cr;0) DQ(LIQUID&FE#1,CR;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&FE#1,CR;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&fe,fe;0) DQ(LIQUID&FE#1,FE;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&FE#1,FE;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> am-mob dq(liquid&fe,ni;0) DQ(LIQUID&FE#1,NI;0) = Sorry, database encrypted DO YOU WANT TO CHANGE THE NUMBER OF RANGES /NO/: y I AM SORRY BUT YOU MUST THEN REENTER ALL RANGES DQ(LIQUID&FE#1,NI;0) = LOW TEMPERATURE LIMIT /298.15/: 298.15 +R*T*LN(1E-06); 6000 n DIC> DIC> li-mob AMBIGUOUS COMMAND, USE HELP DIC> DIC> DIC> liquid NO SUCH COMMAND, USE HELP DIC> DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S DIC> set-cond glob T 0 1900-1*TIME; * N DIC> DIC> @@ DIC> @@ ENTER A REGION CALLED smalta DIC> @@ DIC> enter-region smalta DIC> DIC> @@ DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /SMALTA/: smalta WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGION DIC> @@

Page 135: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /SMALTA/: smalta PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: liq DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION. DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: bcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR THE LIQUID DIC> @@ DIC> enter-composition REGION NAME : /SMALTA/: smalta PHASE NAME: /LIQUID/: liq DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr lin 18 18 PROFILE FOR /NI/: ni lin 8 8 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 200 AUTOMATIC TIMESTEP CONTROL /YES/: yes MAX TIMESTEP DURING INTEGRATION /20/: 1 INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ CHECK INTERFACE POSSITION DIC> @@ DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: yes VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb4c Y DIC> DIC> set-inter --OK--- DIC>

Page 136: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4c-run

MACRO exb4c\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4c\run.DCM"DIC> DIC> @@ exb4c_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b4b DIC> @@ DIC> DIC> @@ DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb4c OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim yes Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: SMALTA TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.63000000E-05 DT = 0.32000000E-05 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.12700000E-04 DT = 0.64000000E-05 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.25500000E-04 DT = 0.12800000E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.51100000E-04 DT = 0.25600000E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.10230000E-03 DT = 0.51200000E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.20470000E-03 DT = 0.10240000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882254 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.40950000E-03 DT = 0.20480000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992482 FE = .733068011219292

Page 137: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

NI = .0754116207882251 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.81910000E-03 DT = 0.40960000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219291 NI = .075411620788225 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.16383000E-02 DT = 0.81920000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .191520367992485 FE = .73306801121929 NI = .0754116207882253 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds

output ignored...

... output resumed

TIME = 199.15650 DT = 1.00000000 SUM OF SQUARES = 0.22397494E-15 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10275834E-06 AND -0.10275834E-06 POSITION OF INTERFACE SMALTA / R_FCC_A1 IS 0.46571227E-06 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.11599686E-07 AND 0.11599686E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.11075416E-04 U-FRACTION IN SYSTEM: CR = .191193855891716 FE = .733395570121137 NI = .0754105739871477 TOTAL SIZE OF SYSTEM: 1E-04 [m] 30 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1 CPU time used in timestep 3 seconds 6.884754720605361E-010 6.899356554633356E-010 6.884857097222088E-010 6.752526945588829E-010 7.175312094595172E-010 2.311181779713061E-010 1.481380242214286E-010 1.320165285754225E-010 1.143976837410466E-010 1.147464336880186E-010 9.128149536211991E-011 5.165875724569470E-011 6.758135683676992E-012 9.678197719845635E-016 1.046019864581144E-017 TIME = 200.00000 DT = 0.84350267 SUM OF SQUARES = 0.10460199E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.94237389E-07 AND -0.94237389E-07 POSITION OF INTERFACE SMALTA / R_FCC_A1 IS 0.38622278E-06 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.13707658E-07 AND 0.13707658E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.11086979E-04 U-FRACTION IN SYSTEM: CR = .191194078405121 FE = .73339541805811 NI = .0754105035367696 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 170.09596 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47878 DELETING TIME-RECORD FOR TIME 170.47879 DELETING TIME-RECORD FOR TIME 170.47880 DELETING TIME-RECORD FOR TIME 170.47883 DELETING TIME-RECORD FOR TIME 170.47888 DELETING TIME-RECORD FOR TIME 170.47898 DELETING TIME-RECORD FOR TIME 170.47919 DELETING TIME-RECORD FOR TIME 170.47959 DELETING TIME-RECORD FOR TIME 170.48041 DELETING TIME-RECORD FOR TIME 170.48205 DELETING TIME-RECORD FOR TIME 170.48533 DELETING TIME-RECORD FOR TIME 170.49188 DELETING TIME-RECORD FOR TIME 170.50499 DELETING TIME-RECORD FOR TIME 170.53120 DELETING TIME-RECORD FOR TIME 170.58363 DELETING TIME-RECORD FOR TIME 170.68849 DELETING TIME-RECORD FOR TIME 170.89821 DELETING TIME-RECORD FOR TIME 171.31764 DELETING TIME-RECORD FOR TIME 172.15650 DELETING TIME-RECORD FOR TIME 173.15650 DELETING TIME-RECORD FOR TIME 174.15650 DELETING TIME-RECORD FOR TIME 175.15650 DELETING TIME-RECORD FOR TIME 176.15650 DELETING TIME-RECORD FOR TIME 177.15650 DELETING TIME-RECORD FOR TIME 178.15650 DELETING TIME-RECORD FOR TIME 179.15650 DELETING TIME-RECORD FOR TIME 180.15650 DELETING TIME-RECORD FOR TIME 181.15650 DELETING TIME-RECORD FOR TIME 182.15650 DELETING TIME-RECORD FOR TIME 183.15650 DELETING TIME-RECORD FOR TIME 184.15650 DELETING TIME-RECORD FOR TIME 185.15650 DELETING TIME-RECORD FOR TIME 186.15650 DELETING TIME-RECORD FOR TIME 187.15650 DELETING TIME-RECORD FOR TIME 188.15650 DELETING TIME-RECORD FOR TIME 189.15650 DELETING TIME-RECORD FOR TIME 190.15650 DELETING TIME-RECORD FOR TIME 191.15650 DELETING TIME-RECORD FOR TIME 192.15650 DELETING TIME-RECORD FOR TIME 193.15650 DELETING TIME-RECORD FOR TIME 194.15650 DELETING TIME-RECORD FOR TIME 195.15650 DELETING TIME-RECORD FOR TIME 196.15650 DELETING TIME-RECORD FOR TIME 197.15650 DELETING TIME-RECORD FOR TIME 198.15650 KEEPING TIME-RECORD FOR TIME 199.15650 AND FOR TIME 200.00000 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> DIC>

Page 138: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 139: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4c-plot

MACRO exb4c\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4c\plot.DCM"DIC> DIC> DIC> @@ exb4c_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4c DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 2.00000E+02 DIC> read exb4c OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: set-title Fe-18%Cr-8%Ni POST-1: POST-1: @@ POST-1: @@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION AND POST-1: @@ EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp). IN THIS CASE WE POST-1: @@ MAY SEE THAT ALL THREE LINES INITIALLY FALL ON THE SAME LINE. POST-1: @@ POST-1: enter func fs=1-ivv(liquid); POST-1: s-d-a x fs POST-1: s-s-s x n 0 1 POST-1: s-ax-te x n Fraction Solid POST-1: POST-1: s-d-a y t-c POST-1: s-s-s y n 1420 1480 POST-1: POST-1: s-p-c interf smalta lower POST-1: POST-1: app y exb4c.exp 0; 1 POST-1: plo

POST-1: POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 140: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b4d

Solidification path of a Fe - 18% Cr - 8% Ni alloy

( Peritectic reaction, Heat-flux controls the temperature)

1E-4

Liquid BCCFCC

ν

Time > 0

ν

Q

Page 141: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4d-setup

MACRO exb4d\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4d\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ Same as exb4b but instead of controlling the temperature the amount SYS: @@ of heat extracted is given. Comparison is made with both a Scheil-Gulliver SYS: @@ simulation and equilibrium solidification conditions, both made SYS: @@ with Thermo-Calc. SYS: @@ SYS: SYS: @@ exb4d_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ LET US USE THE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: def-sys fe ni cr FE NI CR DEFINED TDB_TCFE7: TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: rej ph /all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED TDB_TCFE7: TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'B.-J. Lee, Calphad (1993); revison of Fe-Cr and Fe-Ni liquid' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'J. Brillo and I. Egry, Int. J. Thermophysics, 24, pp. 1155-1170' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2

Page 142: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni cr FE NI CR DEFINED APP: rej ph /all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 1 K/S DIC> @@ DIC> set-cond glob Q 0 91.19; * N DIC> DIC> DIC> set-initial-temp 1900 DIC> DIC> @@ DIC> @@ ENTER A REGION CALLED smalta DIC> @@ DIC> enter-region smalta

Page 143: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> DIC> @@ DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /SMALTA/: smalta WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /SMALTA/: smalta PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: liq DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION. DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-3 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: yes PHASE NAME: /NONE/: bcc#1 DEPENDENT COMPONENT ? /NI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-3 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR THE LIQUID DIC> @@ DIC> enter-composition REGION NAME : /SMALTA/: smalta PHASE NAME: /LIQUID/: liq DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr lin 18 18 PROFILE FOR /NI/: ni lin 8 8 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 200 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /20/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> DIC> @@ DIC> @@ CHECK INTERFACE POSSITION DIC> @@ DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: yes VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: no SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb4d Y DIC> DIC> set-inter --OK--- DIC>

Page 144: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4d-run

MACRO exb4d\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb4d\run.DCM"DIC> DIC> @@ exb4d_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b4b DIC> @@ DIC> DIC> @@ DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb4d OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set TEMPERATURE: 1900. ENTHALPY: 0.7394E+05 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] TEMPERATURE: 1900. ENTHALPY: 0.7394E+05 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: SMALTA 3.863918610053683E-007 3.864691456618458E-007 3.837208708589287E-016 3.818673870627797E-025 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.38186739E-24 TEMPERATURE: 1900. ENTHALPY: 0.7394E+05 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds 1.391013277902083E-015 1.391013277902083E-015

ERROR RETURN FROM NS01A BECAUSE A NEARBY STATIONARY POINT OF F(X) IS PREDICTED

*** ERROR 1890 IN DCNS01 *** ERROR RETURN FROM NS01A 1.391013277902083E-015 1.391013277902083E-015 1.391013277902083E-015 6.201282479414338E-016 1.381874772924989E-015 9.633560150782941E-016 9.633560150782941E-016 3.521917793531438E-016 3.521917793531438E-016 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 1.143246451654787E-030 TIME = 0.30341217E-04 DT = 0.30241217E-04 SUM OF SQUARES = 0.11432465E-29 TEMPERATURE: 1900. ENTHALPY: 0.7394E+05 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds 1.391013373335957E-015 1.391013373335957E-015

ERROR RETURN FROM NS01A BECAUSE A NEARBY STATIONARY POINT OF F(X) IS PREDICTED

*** ERROR 1890 IN DCNS01 *** ERROR RETURN FROM NS01A 1.391013373335957E-015 1.391013373335957E-015 1.391013373335957E-015 1.363331585815682E-011 1.391013373335957E-015 3.999579931858193E-029 3.999579931858193E-029 3.999579931858193E-029 3.999579931858193E-029 1.391013373335957E-015 5.341059802424994E-029 5.341059802424994E-029 5.341059802424994E-029 5.341059802424994E-029 5.341059802424994E-029 5.341059802424994E-029 TIME = 0.90823651E-04 DT = 0.60482434E-04 SUM OF SQUARES = 0.53410598E-28 TEMPERATURE: 1900. ENTHALPY: 0.7394E+05 U-FRACTION IN SYSTEM: CR = .191520367992483 FE = .733068011219292 NI = .0754116207882255 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds 5.564053736206117E-015 5.564053736206117E-015

output ignored...

... output resumed

4.652172223732392E-007 4.519150917255312E-007 4.256682594290620E-007 4.256594182322315E-007 3.640435129324556E-007 2.708292483065120E-007 1.045743962567992E-007 1.643023330347266E-013 4.424353373453989E-015 3.602550427171037E-019 TIME = 196.65470 DT = 0.86250000 SUM OF SQUARES = 0.36025504E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.75244346E-07 AND 0.75244346E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.52760463E-05 TEMPERATURE: 1704. ENTHALPY: 0.5593E+05 U-FRACTION IN SYSTEM: CR = .191464760917737 FE = .733089957199255 NI = .0754452818830082 TOTAL SIZE OF SYSTEM: 1E-04 [m] 15 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1 CPU time used in timestep 2 seconds 1.914495317682618E-006 1.914481391408520E-006 1.914817283448515E-006 1.914113522347135E-006 1.764479218358891E-006 1.603307021154490E-006 1.259985448963141E-006 1.259891218446057E-006 7.828420230386651E-007 8.573601833391040E-008 3.640376978482006E-011 1.011308024743076E-014 1.476276857769010E-017 TIME = 198.37970 DT = 1.7250000 SUM OF SQUARES = 0.14762769E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.93047393E-07 AND 0.93047393E-07 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.54365530E-05 TEMPERATURE: 1700. ENTHALPY: 0.5578E+05 U-FRACTION IN SYSTEM: CR = .191464704847506 FE = .733089971592494

Page 145: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

NI = .0754453235600003 TOTAL SIZE OF SYSTEM: 1E-04 [m] 56 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: R_FCC_A1 CPU time used in timestep 3 seconds 2.646763117621882E-008 2.646947765807383E-008 2.643702066248058E-008 2.655729024243307E-008 1.486424097744991E-008 5.556683275897760E-009 1.354440024849325E-009 9.094859250558854E-015 1.300540734365709E-018 TIME = 200.00000 DT = 1.6203030 SUM OF SQUARES = 0.13005407E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.10274262E-06 AND 0.10274262E-06 POSITION OF INTERFACE R_FCC_A1 / R_BCC_A2 IS 0.56030272E-05 TEMPERATURE: 1697. ENTHALPY: 0.5563E+05 U-FRACTION IN SYSTEM: CR = .191464629158383 FE = .73309001821154 NI = .075445352630077 TOTAL SIZE OF SYSTEM: 1E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 194.68712 DELETING TIME-RECORD FOR TIME 194.95665 DELETING TIME-RECORD FOR TIME 194.98360 DELETING TIME-RECORD FOR TIME 195.03751 DELETING TIME-RECORD FOR TIME 195.14532 DELETING TIME-RECORD FOR TIME 195.36095 DELETING TIME-RECORD FOR TIME 195.79220 DELETING TIME-RECORD FOR TIME 196.65470 KEEPING TIME-RECORD FOR TIME 198.37970 AND FOR TIME 200.00000 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 146: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb4d-plot

MACRO exb4d\plot.DCMDIC> DIC> DIC> @@ exb4d_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b4b DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 2.00000E+02 DIC> read exb4d OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: set-title Fe-18%Cr-8%Ni POST-1: POST-1: @@ POST-1: @@ PLOT FRACTION SOLID AND COMPARE WITH SCHEIL-GULLIVER SIMULATION AND POST-1: @@ EQUILIBRIUM SOLIDIFICATION (DATA ON FILE exb4.exp) POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y T POST-1: s-p-c inter first POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: enter func fs=1-ivv(liquid); POST-1: s-d-a x fs POST-1: s-s-s x n 0 1 POST-1: s-ax-te x n Fraction Solid POST-1: POST-1: s-d-a y t-c POST-1: s-s-s y n 1420 1480 POST-1: POST-1: s-p-c interf smalta lower POST-1: POST-1: app y exb4d.exp 0; 1 POST-1: plo

Page 147: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 148: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example b5

diffusion couple of Fe-Ni-Cr alloysγ/α/γ

T = 1373 K

γ●

ν

593.45E-6

α● ●● ●● ●●●

Page 149: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb5-setup

MACRO exb5\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb5\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ This example demonstrates the evaluation of a ternary Fe-Cr-Ni diffusion SYS: @@ couple. A thin slice of ALPHA phase (38%Cr, 0%Ni) is clamped between SYS: @@ two thicker slices of GAMMA phase (27%Cr, 20%Ni). The assembly is SYS: @@ subsequently heat treated at 1373K. This setup corresponds to diffusion SYS: @@ couple A in M. Kajihara, C.-B. Lim and M. Kikuchi: ISIJ International SYS: @@ 33 (1993), pp. 498-507. See also M. Kajihara and M. Kikichi: Acta Metall.Mater. SYS: @@ 41 (1993), pp.2045-2059. SYS: @@ SYS: SYS: @@ exb5_setup.DCM SYS: SYS: @@ SYS: @@ GOTO DATABASE AND READ THERMODYNAMIC AND KINETIC DATA. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys cr fe ni CR FE NI DEFINED TDB_TCFE7: rej-ph /all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res-ph bcc,fcc BCC_A2 FCC_A1 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1

Page 150: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys cr fe ni CR FE NI DEFINED APP: rej-ph /all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res-ph bcc,fcc BCC_A2 FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ GOTO DICTRA MODULE TO SETUP THE SIMULATION APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ SET GLOBAL CONDITIONS DIC> @@ DIC> set-cond glob T 0 1373; * N DIC> DIC> @@ DIC> @@ ENTER TWO REGIONS, ONE FOR EACH PHASE DIC> @@ DIC> enter-region alfa DIC> enter-region gamma ATTACH TO REGION NAMED /ALFA/: ATTACHED TO THE RIGHT OF ALFA /YES/: DIC> @@ DIC> @@ ENTER GRID SIZE AND SPACINGS DIC> @@ DIC> enter-grid alfa 93.45E-6 geo 40 0.8 DIC> enter-grid gamma 500.0E-6 geo 80 1.05 DIC> DIC> @@ DIC> @@ SPECIFY WHICH PHASE GOES INTO WHICH REGION DIC> @@ DIC> enter-phase act alfa matrix bcc DIC> enter-phase act gamma matrix fcc DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES DIC> @@ N.B. DO NOT PUT 0%NI IN PHASE BCC, USE SOME SMALL VALUE INSTEAD DIC> @@

Page 151: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> enter-composition REGION NAME : /ALFA/: alfa PHASE NAME: /BCC_A2/: bcc DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-f PROFILE FOR /CR/: cr lin .38 .38 PROFILE FOR /NI/: ni lin 1e-5 1e-5 DIC> DIC> enter-composition REGION NAME : /GAMMA/: gamma PHASE NAME: /FCC_A1/: fcc DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-f PROFILE FOR /CR/: cr lin .27 .27 PROFILE FOR /NI/: ni lin .28 .28 DIC> DIC> @@ DIC> @@ SPECIFY SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 36E5 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /360000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> SAVE exb5 Y DIC> DIC> set-inter --OK--- DIC>

Page 152: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb5-run

MACRO exb5\run.DCMDIC> DIC> DIC> @@ exb5_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE b5 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER DICTRA MONITOR AND READ THE SETUP FROM FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb5 OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> simulate Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS *** ERROR 1611 IN QTHISS *** TOO MANY ITERATIONS Give the command INFO TROUBLE for help DONE 6 OUT OF 9 *** ERROR 1611 IN QTHISS *** TOO MANY ITERATIONS Give the command INFO TROUBLE for help DONE 9 OUT OF 9 try 1 failed try 2 failed try 3 failed DETERMINED ACTIVITIES ACR(NI) 2.00457405352E-04 UNABLE TO OBTAIN GOOD STARTING VALUE USING THE OLD SCHEME USE NEW SCHEME /YES/: Trying new scheme GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 18 EQUILIBRIUM CALCULATIONS DONE 1 OUT OF 18 04 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: CR = .305280432605602 FE = .471672082221691 NI = .223047485172707 TOTAL SIZE OF SYSTEM: 5.9345E-04 [m] U-FRACTION IN SYSTEM: CR = .305280432605602 FE = .471672082221691 NI = .223047485172707 TOTAL SIZE OF SYSTEM: 5.9345E-04 [m] 13 GRIDPOINT(S) ADDED TO CELL #1 REGION: ALFA 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: GAMMA 0.106136983530096 0.106150062854856 0.106103203276532 8.458791749426496E-002 7.268921933966221E-002 4.499519033155664E-002 2.528136911225624E-002 1.196170289740929E-003 1.970625768439523E-004 2.224111111030204E-005 4.500545505034420E-006 2.214525007523396E-008 1.596263972994138E-011 2.591624659919232E-015 1.159628751007539E-008 2.700321779891248E-022 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.27003218E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.27803281 AND -0.27803281 POSITION OF INTERFACE ALFA / GAMMA IS 0.93422197E-04 U-FRACTION IN SYSTEM: CR = .305282651467081 FE = .47167522036077 NI = .223042128172149 TOTAL SIZE OF SYSTEM: 5.9345E-04 [m] 6 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: ALFA 8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: GAMMA CPU time used in timestep 1 seconds 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: ALFA 7.049309196277842E-004 7.050719130692013E-004 7.045328946069252E-004 9.080136498675171E-005 5.652947025108335E-005 9.091094382616951E-006 9.353712426062240E-010 1.702056250928643E-010 3.097406201361293E-010 1.226936705809184E-010 1.038469404964575E-010 1.053346045678465E-010 1.062853484583819E-010 1.035861573534911E-010 1.023782009274843E-010 1.029498463007279E-010 1.024216274831730E-010 1.048185113202060E-010

output ignored...

... output resumed

NI = .223117419874602 TOTAL SIZE OF SYSTEM: 5.9345E-04 [m] 7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: GAMMA CPU time used in timestep 2 seconds 8.171295660509001E-010 8.168471576592743E-010 7.755351865192994E-010 1.398860646461774E-012 1.220625245325760E-012 9.073877157361427E-013 4.199096919088357E-013 9.672955022077600E-013 1.476839819722347E-015 8.734778778083146E-021 TIME = 3384108.1 DT = 360000.00 SUM OF SQUARES = 0.87347788E-20 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.52341539E-11 AND -0.52341539E-11 POSITION OF INTERFACE ALFA / GAMMA IS 0.88558359E-04 U-FRACTION IN SYSTEM: CR = .305309528578132 FE = .471572960994874 NI = .223117510426995 TOTAL SIZE OF SYSTEM: 5.9345E-04 [m] 6 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: GAMMA CPU time used in timestep 2 seconds 5.854279026172617E-011 5.855086696652707E-011 5.420389057329046E-011 2.553044102880157E-013 2.360884395957356E-013 1.999059139758058E-013 1.366015832688479E-013 2.200408254797064E-013 5.381151624427943E-

Page 153: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

012 1.442051570399685E-012 1.094469981250754E-013 1.949830035367267E-013 8.529228999477698E-014 5.376639659022812E-012 1.330740273223822E-012 1.689861349391349E-013 7.435148617746459E-014 6.414973480054908E-014 5.374087301676602E-012 1.483172189203149E-013 1.273442952915936E-012 5.966224959789681E-012 9.205326497461081E-013 5.889663490577106E-012 2.153487904221881E-013 9.287593806566650E-014 5.925912990172716E-012 1.072003961884869E-013 9.902133179601092E-014 9.173762161443951E-014 1.186401789874109E-013 5.861610062230590E-012

ERROR RETURN FROM NS01A BECAUSE 6 CALLS OF CALFUN FAILED TO IMPROVE THE RESIDUALS

*** ERROR 1890 IN DCNS01 *** ERROR RETURN FROM NS01A 5.854279026142006E-011 5.854279146485342E-011 5.854213129724272E-011 5.854279026131726E-011 1.448213891703216E-017 1.448213893676626E-017 7.293715461412117E-023 7.293760245336630E-023 TIME = 3600000.0 DT = 215891.85 SUM OF SQUARES = 0.32350051E-23 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.47777233E-11 AND -0.47777233E-11 POSITION OF INTERFACE ALFA / GAMMA IS 0.87526888E-04 U-FRACTION IN SYSTEM: CR = .305309892556834 FE = .47157202262308 NI = .223118084820086 TOTAL SIZE OF SYSTEM: 5.9345E-04 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.73315652E-04 DELETING TIME-RECORD FOR TIME 0.21974695E-03 DELETING TIME-RECORD FOR TIME 0.51260956E-03 DELETING TIME-RECORD FOR TIME 0.10983348E-02 DELETING TIME-RECORD FOR TIME 0.22697852E-02 DELETING TIME-RECORD FOR TIME 0.46126861E-02 DELETING TIME-RECORD FOR TIME 0.89023013E-02 DELETING TIME-RECORD FOR TIME 0.16890895E-01 DELETING TIME-RECORD FOR TIME 0.25822078E-01 DELETING TIME-RECORD FOR TIME 0.33114019E-01 DELETING TIME-RECORD FOR TIME 0.47697902E-01 DELETING TIME-RECORD FOR TIME 0.76865667E-01 DELETING TIME-RECORD FOR TIME 0.13520120 DELETING TIME-RECORD FOR TIME 0.20569816 DELETING TIME-RECORD FOR TIME 0.34669209 DELETING TIME-RECORD FOR TIME 0.50480028 DELETING TIME-RECORD FOR TIME 0.82101666 DELETING TIME-RECORD FOR TIME 1.0430852 DELETING TIME-RECORD FOR TIME 1.4872222 DELETING TIME-RECORD FOR TIME 2.3754963 DELETING TIME-RECORD FOR TIME 3.7765573 DELETING TIME-RECORD FOR TIME 6.1843052 DELETING TIME-RECORD FOR TIME 10.999801 DELETING TIME-RECORD FOR TIME 14.091011 DELETING TIME-RECORD FOR TIME 20.273432 DELETING TIME-RECORD FOR TIME 32.638273 DELETING TIME-RECORD FOR TIME 48.195808 DELETING TIME-RECORD FOR TIME 56.717021 DELETING TIME-RECORD FOR TIME 73.759448 DELETING TIME-RECORD FOR TIME 107.84430 DELETING TIME-RECORD FOR TIME 176.01401 DELETING TIME-RECORD FOR TIME 275.69604 DELETING TIME-RECORD FOR TIME 441.99832 DELETING TIME-RECORD FOR TIME 720.56092 DELETING TIME-RECORD FOR TIME 1277.6861 DELETING TIME-RECORD FOR TIME 2261.6988 DELETING TIME-RECORD FOR TIME 4229.7241 DELETING TIME-RECORD FOR TIME 8165.7746 DELETING TIME-RECORD FOR TIME 16037.876 DELETING TIME-RECORD FOR TIME 31782.078 DELETING TIME-RECORD FOR TIME 63270.483 DELETING TIME-RECORD FOR TIME 126247.29 DELETING TIME-RECORD FOR TIME 252200.91 DELETING TIME-RECORD FOR TIME 504108.15 DELETING TIME-RECORD FOR TIME 864108.15 DELETING TIME-RECORD FOR TIME 1224108.1 DELETING TIME-RECORD FOR TIME 1584108.1 DELETING TIME-RECORD FOR TIME 1944108.1 DELETING TIME-RECORD FOR TIME 2304108.1 DELETING TIME-RECORD FOR TIME 2664108.1 DELETING TIME-RECORD FOR TIME 3024108.1 KEEPING TIME-RECORD FOR TIME 3384108.1 AND FOR TIME 3600000.0 WORKSPACE RECLAIMED DIC> set-inter --OK--- DIC>

Page 154: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb5-plot

MACRO exb5\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb5\plot.DCM"DIC> DIC> DIC> @@ exb5_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE b5 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 3.60000E+06 DIC> read exb5 OK DIC> DIC> @@ DIC> @@ ENTER THE POST PROCESSOR, PLOT SOME QUANTITIES AND COMPARE WITH EXPERIMENTS DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: set-title Diffusion Couple A POST-1: POST-1: @@ POST-1: @@ WE ARE INTERESTED IN THE POSITION OF THE UPPER INTERFACE OF REGION ALFA POST-1: @@ POST-1: s-p-c interf alfa upper POST-1: POST-1: @@ POST-1: @@ l0 IS THE INITIAL THICKNESS USED FOR NORMALIZATION POST-1: @@ POST-1: enter func l0=186.9e-6; POST-1: enter func aa=2*poi(alfa,u)/l0; POST-1: enter func ab=time/l0**2; POST-1: s-i-v time POST-1: POST-1: s-d-a x ab POST-1: s-s-s x n 1e10 1e15 POST-1: s-ax-ty x log POST-1: POST-1: s-d-a y aa POST-1: s-s-s y n 0 2 POST-1: POST-1: app y exb5.exp PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 7 POST-1: POST-1: plo

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ LET US PLOT CONCENTRATION PROFILES FOR SOME DIFFERENT ANNEALING TIMES POST-1: @@ POST-1: s-d-a x dist glo INFO: Distance is set as independent variable POST-1: s-ax-ty x lin POST-1: s-s-s x n 0 350e-6 POST-1: POST-1: s-d-a y w(*) POST-1: s-s-s y n 0 1 POST-1: POST-1: s-p-c time 3600 POST-1: POST-1: app y exb5.exp 0; 1 POST-1: plo

Page 155: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-p-c time 36000 POST-1: app y exb5.exp 0; 2 POST-1: plo

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-p-c time 360000 POST-1: app y exb5.exp 0; 3 POST-1: plo

Page 156: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-p-c time 3600000 POST-1: app y exb5.exp 0; 4 POST-1: plo

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ FINALLY PLOT SOME DIFFERENT DIFFUSION PATHS. POST-1: @@ POST-1: s-d-a x w(ni) POST-1: s-s-s x n .00 .40 POST-1: POST-1: s-d-a y w(cr) POST-1: s-s-s y n .20 .45 POST-1: POST-1: s-i-v dist glob POST-1: POST-1: s-p-c time 3600,36000,360000,3600000 POST-1: POST-1: app y exb5.exp 0; 5 6 POST-1: plo

Page 157: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 158: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb6-setup

MACRO exb6\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb6\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ This example illustrates the effect of microsegregation SYS: @@ of phosphorus during peritectic solidification in steel. SYS: @@ SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ LET US USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: def-sys fe c si mn p FE C SI MN P DEFINED TDB_TCFE7: TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: rej ph /all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 RED_P WHITE_P GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 M3SI G_PHASE CR3SI FE2SI MSI M5SI3 AL4C3 FE8SI2C SIC FEP CU3P M2P M3P REJECTED TDB_TCFE7: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED TDB_TCFE7: TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn' 'J. Grobner, H.L. Lukas and F. Aldinger, Calphad, 20 (1996), 247-254; Si-C and Al-Si-C' 'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN' 'J.-H. Shim, C.-S. Oh and D.N. Lee, J. Korean Inst. Met. Mater., 34 (1996), 1385-1393; Fe-P' 'J. Lacaze and B. Sundman, Metall. Mater. Trans. A, 22A (1991), 2211-2223; Fe-Si and Fe-Si-C' 'J. Miettinen and B. Hallstedt, Calphad, 22 (1998), 231-256; Fe-Si and Fe -Si-C' 'J.E. Tibballs, SI Norway (1991) Rep. 890221-5; Mn-Si' 'P. Franke, estimated parameter within SGTE, 2008; Fe-Mn-C' 'J.-H. Shim, H.-J. Chung and D.N. Lee, Z. fur Metallkde., (1999); Fe-C-P' 'B. Sundman, 1999, revision of the liquid Fe-Si-C description' 'NPL, unpublished work (1989); C-Mn-Si' 'A. Forsberg and J. Agren, J. Phase Equil., 14 (1993), 354-363; Fe-Mn-Si' 'B. Uhrenius (1993-1994), International journal of refractory metals and hard mater, Vol. 12, pp. 121-127; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'W. Huang, Metall. Trans. A, 21A (1990), 2115-2123; TRITA-MAC 411 (Rev 1989); C-FE-MN' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE AND APPEND DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0

Page 159: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe c si mn p FE C SI MN P DEFINED APP: rej ph /all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc liq bcc FCC_A1 LIQUID:L BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'Bae et al.: Z. Metallkunde 91(2000)672-674; fcc Fe-Mn Mn-Ni' 'V. V. Mural and P. L. Gruzin, Phys. Met. Metallogr. (English Transl.) 17 (5) (1964)154.; Impurity diff of P in fcc Fe.' 'D. Bergner et al., Defect and Diffusion Forum 66-69(1989)409. Impurity diffusion of Si in fcc Fe.' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' 'B. Jonsson: Unpublished research bcc Fe-Si 1994' 'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H. Mehrer, springer (1990); Impurity diff of Mn in bcc Fe.' 'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H. Mehrer, springer (1990); Impurity diff of P in bcc Fe.'

Page 160: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

-OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> @@ LET US LOWER THE TEMPERATURE WITH A RATE OF 0.2 K/S DIC> @@ DIC> set-cond glob T 0 1780-0.2*TIME; * N DIC> DIC> @@ DIC> @@ ENTER A REGION CALLED smalta DIC> @@ DIC> enter-region smalta DIC> DIC> @@ DIC> @@ ENTER A DOUBLE GEOMETRIC GRID INTO THE REGION. DIC> @@ DIC> enter-grid REGION NAME : /SMALTA/: smalta WIDTH OF REGION /1/: 1e-4 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 50 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.11 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.9 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /SMALTA/: smalta PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: liq DIC> DIC> @@ DIC> @@ ENTER INACTIVE PHASES INTO REGION, BOTH PHASES ON THE SAME SIDE OF DIC> @@ THE LIQUID REGION IN ORDER TO GET A PERITECTIC REACTION. DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: no PHASE NAME: /NONE/: fcc#1 DEPENDENT COMPONENT ? /SI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: inact ATTACH TO REGION NAMED /SMALTA/: smalta ATTACHED TO THE RIGHT OF SMALTA /YES/: no PHASE NAME: /NONE/: bcc#1 DEPENDENT COMPONENT ? /SI/: fe REQUIRED DRIVING FORCE FOR PRECIPITATION: /1E-05/: 1e-5 CONDITION TYPE /CLOSED_SYSTEM/: closed DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR THE LIQUID DIC> @@ DIC> enter-composition REGION NAME : /SMALTA/: smalta PHASE NAME: /LIQUID/: liq DEPENDENT COMPONENT ? /SI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: c lin 0.4 0.4 PROFILE FOR /MN/: si lin 0.7 0.7 PROFILE FOR /P/: mn lin 0.8 0.8 PROFILE FOR /SI/: p lin 0.03 0.03 DIC> DIC> @@ DIC> @@ BOUNDARY CONDITION WILL BE A CLOSED SYSTEM (DEFAULT) AS WE DO NOT SPECIFY DIC> @@ ANYTHING ELSE. DIC> @@ DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 3000 AUTOMATIC TIMESTEP CONTROL /YES/: yes MAX TIMESTEP DURING INTEGRATION /300/: 15 INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ CHECK INTERFACE POSSITION DIC> @@ DIC> @@ THIS IN ORDER TO MAKE SURE THAT THE LIQUID REGION DOESN'T SHRINK DIC> @@ TO MUCH DURING A TIMESTEP. THE TIMESTEP WILL NOW IN ADDITION BE DIC> @@ CONTROLLED BY THE PHASE INTERFACE DISPLACEMENT DURING THE SIMULATION. DIC> @@ DIC> s-s-c NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: yes VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/:

Page 161: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA DIC> @@ DIC> save exb6 Y DIC> DIC> set-inter --OK--- DIC>

Page 162: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb6-run

MACRO exb6\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb6\run.DCM"DIC> DIC> DIC> @@ exb6_run.DCM DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exb6 OK DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: SMALTA TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.92411922E-04 DT = 0.92311922E-04 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.27703577E-03 DT = 0.18462384E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.64628345E-03 DT = 0.36924769E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.13847788E-02 DT = 0.73849537E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.28617696E-02 DT = 0.14769907E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.58157511E-02 DT = 0.29539815E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.2932119056092E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.11723714E-01 DT = 0.59079630E-02 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.2932119056092E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.23539640E-01 DT = 0.11815926E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.47171492E-01 DT = 0.23631852E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.2932119056092E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.94435196E-01 DT = 0.47263704E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.2932119056092E-04

Page 163: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.18896260 DT = 0.94527408E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198536 P = 5.2932119056092E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.37801742 DT = 0.18905482 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198537 P = 5.29321190560921E-04 SI = .0136208267339645 TOTAL SIZE OF SYSTEM: 1E-04 [m] CPU time used in timestep 0 seconds TIME = 0.75612705 DT = 0.37810963 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0182001993244348 FE = .959691496499054 MN = .00795815625198538 P = 5.2932119056092E-04

output ignored...

... output resumed

DELETING TIME-RECORD FOR TIME 854.70672 DELETING TIME-RECORD FOR TIME 869.70672 DELETING TIME-RECORD FOR TIME 884.70672 DELETING TIME-RECORD FOR TIME 899.70672 DELETING TIME-RECORD FOR TIME 914.70672 DELETING TIME-RECORD FOR TIME 929.70672 DELETING TIME-RECORD FOR TIME 944.70672 DELETING TIME-RECORD FOR TIME 959.70672 DELETING TIME-RECORD FOR TIME 974.70672 DELETING TIME-RECORD FOR TIME 989.70672 DELETING TIME-RECORD FOR TIME 1004.7067 DELETING TIME-RECORD FOR TIME 1019.7067 DELETING TIME-RECORD FOR TIME 1034.7067 DELETING TIME-RECORD FOR TIME 1049.7067 DELETING TIME-RECORD FOR TIME 1064.7067 DELETING TIME-RECORD FOR TIME 1079.7067 DELETING TIME-RECORD FOR TIME 1094.7067 DELETING TIME-RECORD FOR TIME 1109.7067 DELETING TIME-RECORD FOR TIME 1124.7067 DELETING TIME-RECORD FOR TIME 1139.7067 DELETING TIME-RECORD FOR TIME 1154.7067 DELETING TIME-RECORD FOR TIME 1169.7067 DELETING TIME-RECORD FOR TIME 1184.7067 DELETING TIME-RECORD FOR TIME 1199.7067 DELETING TIME-RECORD FOR TIME 1214.7067 DELETING TIME-RECORD FOR TIME 1229.7067 DELETING TIME-RECORD FOR TIME 1244.7067 DELETING TIME-RECORD FOR TIME 1259.7067 DELETING TIME-RECORD FOR TIME 1274.7067 DELETING TIME-RECORD FOR TIME 1289.7067 DELETING TIME-RECORD FOR TIME 1304.7067 DELETING TIME-RECORD FOR TIME 1319.7067 DELETING TIME-RECORD FOR TIME 1334.7067 DELETING TIME-RECORD FOR TIME 1349.7067 DELETING TIME-RECORD FOR TIME 1364.7067 DELETING TIME-RECORD FOR TIME 1379.7067 DELETING TIME-RECORD FOR TIME 1394.7067 DELETING TIME-RECORD FOR TIME 1409.7067 DELETING TIME-RECORD FOR TIME 1424.7067 DELETING TIME-RECORD FOR TIME 1439.7067 DELETING TIME-RECORD FOR TIME 1454.7067 DELETING TIME-RECORD FOR TIME 1469.7067 DELETING TIME-RECORD FOR TIME 1484.7067 DELETING TIME-RECORD FOR TIME 1499.7067 DELETING TIME-RECORD FOR TIME 1514.7067 DELETING TIME-RECORD FOR TIME 1529.7067 DELETING TIME-RECORD FOR TIME 1544.7067 DELETING TIME-RECORD FOR TIME 1559.7067 DELETING TIME-RECORD FOR TIME 1574.7067 DELETING TIME-RECORD FOR TIME 1589.7067 DELETING TIME-RECORD FOR TIME 1604.7067 DELETING TIME-RECORD FOR TIME 1619.7067 DELETING TIME-RECORD FOR TIME 1634.7067 DELETING TIME-RECORD FOR TIME 1649.7067 DELETING TIME-RECORD FOR TIME 1664.7067 DELETING TIME-RECORD FOR TIME 1679.7067 DELETING TIME-RECORD FOR TIME 1694.7067 DELETING TIME-RECORD FOR TIME 1709.7067 DELETING TIME-RECORD FOR TIME 1724.7067 DELETING TIME-RECORD FOR TIME 1739.7067 DELETING TIME-RECORD FOR TIME 1754.7067 DELETING TIME-RECORD FOR TIME 1769.7067 DELETING TIME-RECORD FOR TIME 1784.7067 DELETING TIME-RECORD FOR TIME 1799.7067 DELETING TIME-RECORD FOR TIME 1814.7067 DELETING TIME-RECORD FOR TIME 1829.7067 DELETING TIME-RECORD FOR TIME 1844.7067 DELETING TIME-RECORD FOR TIME 1859.7067 DELETING TIME-RECORD FOR TIME 1874.7067 DELETING TIME-RECORD FOR TIME 1889.7067 DELETING TIME-RECORD FOR TIME 1904.7067 DELETING TIME-RECORD FOR TIME 1919.7067 DELETING TIME-RECORD FOR TIME 1934.7067 DELETING TIME-RECORD FOR TIME 1949.7067 DELETING TIME-RECORD FOR TIME 1964.7067 DELETING TIME-RECORD FOR TIME 1979.7067 DELETING TIME-RECORD FOR TIME 1994.7067 DELETING TIME-RECORD FOR TIME 2009.7067 DELETING TIME-RECORD FOR TIME 2024.7067 DELETING TIME-RECORD FOR TIME 2039.7067 DELETING TIME-RECORD FOR TIME 2054.7067 DELETING TIME-RECORD FOR TIME 2069.7067 DELETING TIME-RECORD FOR TIME 2084.7067 DELETING TIME-RECORD FOR TIME 2099.7067

Page 164: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DELETING TIME-RECORD FOR TIME 2114.7067 DELETING TIME-RECORD FOR TIME 2129.7067 DELETING TIME-RECORD FOR TIME 2144.7067 DELETING TIME-RECORD FOR TIME 2159.7067 DELETING TIME-RECORD FOR TIME 2174.7067 DELETING TIME-RECORD FOR TIME 2189.7067 DELETING TIME-RECORD FOR TIME 2204.7067 DELETING TIME-RECORD FOR TIME 2219.7067 DELETING TIME-RECORD FOR TIME 2234.7067 DELETING TIME-RECORD FOR TIME 2249.7067 DELETING TIME-RECORD FOR TIME 2264.7067 DELETING TIME-RECORD FOR TIME 2279.7067 DELETING TIME-RECORD FOR TIME 2294.7067 DELETING TIME-RECORD FOR TIME 2309.7067 DELETING TIME-RECORD FOR TIME 2324.7067 DELETING TIME-RECORD FOR TIME 2339.7067 DELETING TIME-RECORD FOR TIME 2354.7067 DELETING TIME-RECORD FOR TIME 2369.7067 DELETING TIME-RECORD FOR TIME 2384.7067 DELETING TIME-RECORD FOR TIME 2399.7067 DELETING TIME-RECORD FOR TIME 2414.7067 DELETING TIME-RECORD FOR TIME 2429.7067 DELETING TIME-RECORD FOR TIME 2444.7067 DELETING TIME-RECORD FOR TIME 2459.7067 DELETING TIME-RECORD FOR TIME 2474.7067 DELETING TIME-RECORD FOR TIME 2489.7067 DELETING TIME-RECORD FOR TIME 2504.7067 DELETING TIME-RECORD FOR TIME 2519.7067 DELETING TIME-RECORD FOR TIME 2534.7067 DELETING TIME-RECORD FOR TIME 2549.7067 DELETING TIME-RECORD FOR TIME 2564.7067 DELETING TIME-RECORD FOR TIME 2579.7067 DELETING TIME-RECORD FOR TIME 2594.7067 DELETING TIME-RECORD FOR TIME 2609.7067 DELETING TIME-RECORD FOR TIME 2624.7067 DELETING TIME-RECORD FOR TIME 2639.7067 DELETING TIME-RECORD FOR TIME 2654.7067 DELETING TIME-RECORD FOR TIME 2669.7067 DELETING TIME-RECORD FOR TIME 2684.7067 DELETING TIME-RECORD FOR TIME 2699.7067 DELETING TIME-RECORD FOR TIME 2714.7067 DELETING TIME-RECORD FOR TIME 2729.7067 DELETING TIME-RECORD FOR TIME 2744.7067 DELETING TIME-RECORD FOR TIME 2759.7067 DELETING TIME-RECORD FOR TIME 2774.7067 DELETING TIME-RECORD FOR TIME 2789.7067 DELETING TIME-RECORD FOR TIME 2804.7067 DELETING TIME-RECORD FOR TIME 2819.7067 DELETING TIME-RECORD FOR TIME 2834.7067 DELETING TIME-RECORD FOR TIME 2849.7067 DELETING TIME-RECORD FOR TIME 2864.7067 DELETING TIME-RECORD FOR TIME 2879.7067 DELETING TIME-RECORD FOR TIME 2894.7067 DELETING TIME-RECORD FOR TIME 2909.7067 DELETING TIME-RECORD FOR TIME 2924.7067 DELETING TIME-RECORD FOR TIME 2939.7067 DELETING TIME-RECORD FOR TIME 2954.7067 DELETING TIME-RECORD FOR TIME 2969.7067 DELETING TIME-RECORD FOR TIME 2984.7067 KEEPING TIME-RECORD FOR TIME 2999.7067 AND FOR TIME 3000.0000 WORKSPACE RECLAIMED DIC> set-inter --OK--- DIC>

Page 165: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb6-plot

MACRO exb6\plot.DCMDIC> DIC> DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 3.00000E+03 DIC> read exb6 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: set-title Fe-0.4%C-0.7%Si-0.8%Mn-0.03%P POST-1: POST-1: s-d-a y t-c POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-p-c interf first POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ PLOT FRACTION SOLID POST-1: @@ POST-1: enter func fs=1-ivv(liq); POST-1: s-d-a x fs POST-1: s-s-s x n 0 1 POST-1: s-ax-te x n Fraction Solid POST-1: POST-1: s-d-a y t-c POST-1: POST-1: POST-1: s-p-c interf smalta lower POST-1: POST-1: POST-1: plot

Page 166: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1:Hit RETURN to continuePOST-1: s-d-a y ivv(bcc) POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-d-a y ivv(fcc) POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: ent table solid

Page 167: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Variable(s) ivv(bcc) ivv(fcc) POST-1: POST-1: s-d-a y solid COLUMN NUMBER /*/: POST-1: POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: s-d-a y w-p c POST-1: s-d-a x dis gl INFO: Distance is set as independent variable POST-1: s-p-c time 120,135,400,700,1500,3000 POST-1: POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: s-d-a y w-p mn POST-1: plot

Page 168: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1:Hit RETURN to continuePOST-1: s-d-a y w-p si POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: s-d-a y w-p p POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: ent function mnn FUNCTION: w(mn)/0.008 & POST-1: ent function sin

Page 169: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

FUNCTION: w(si)/0.007 & POST-1: ent function pn FUNCTION: w(p)/0.0003 & POST-1: ent function cn FUNCTION: w(c)/0.004 & POST-1: ent tabel segregation Variable(s) mnn sin pn cn POST-1: POST-1: POST-1: s-d-a y segregation COLUMN NUMBER /*/: POST-1: POST-1: POST-1: s-p-c time 610 POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-p-c time 800 POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-p-c time 1500 POST-1: plot

Page 170: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: s-p-c time 3000 POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: set-inter --OK--- POST-1:

Page 171: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb7-setup

MACRO exb7\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb7\setup.DCM"SYS: @@ SYS: @@ Moving boundary problems. SYS: @@ This example shows how to enter dispersed phases on either side SYS: @@ of a phase interface. The particular case shows how SYS: @@ the kinetics of a ferrite to austenite transformation is SYS: @@ affected by simultaneous precipitation of niobium carbide. SYS: @@ The transformation is caused by carburization. SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ LET US USE A TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: @@ TDB_TCFE7: def-species fe c nb FE C NB DEFINED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: @@ TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M6C M5C2 KSI_CARBIDE A1_KAPPA KAPPA Z_PHASE FE4N_LP1 FECN_CHI SIGMA MU_PHASE LAVES_PHASE_C14 G_PHASE CR3SI NBNI3 REJECTED TDB_TCFE7: res ph fcc bcc grap FCC_A1 BCC_A2 GRAPHITE RESTORED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: @@ TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'B.-J. Lee, estimated parameter 1999' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'S. Canderyd, Report IM-2005-109, Stockholm, Sweden; Fe-Nb-C' 'W. Huang, Zeitschrift fur Metallkunde, Vol. 6 (1990), pp. 397-404; Fe-Nb-C' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'B. Uhrenius (1993-1994), International journal of refractory metals and hard mater, Vol. 12, pp. 121-127; Molar volumes' 'B.-J. Lee, Metall. Mater. Trans. A, 32A, 2423-39(2001); Fe-Nb' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ NOW APPEND A SSUB DATABASE FROM WHICH WE READ THE THERMODYNAMIC TDB_TCFE7: @@ DESCRIPTION OF NIOBIUM CARBIDE TDB_TCFE7: @@ TDB_TCFE7: TDB_TCFE7: app SSUB5 Current database: SGTE Substances Database v5.1 VA DEFINED APP: def-sys fe c nb FE C NB DEFINED APP: rej ph * GAS:G GRAPHITE GRAPHITE_L DIAMOND C0_749NB1_S C0_877NB1_S C0_98NB1_S C1FE3_S C1NB1_S C1NB2_S C60_S FE_S FE_S2 FE_S3 FE_L FE2NB1_S NB_S NB_L REJECTED APP: rest ph c1nb1_s C1NB1_S RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

Page 172: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

List of references for assessed data

C1NB1 I. BARIN 3rd. Edition C1NB1 NbC Data taken from BARIN 3rd. Ed. (1995) -OK- APP: APP: APP: @@ APP: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. APP: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA APP: @@ APP: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe c nb FE C NB DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'J. Geise and Ch. Herzig, Z. Metallkd. 76(1985)622.; Impurity diffusion of Nb in fcc Fe.' 'Assessed from data presented by B. B. Yu and R. F. Davis J. Phys. Chem. Solids 40(1979)997.; C Self-Diff in NbC.' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' 'R. F. Peart, Acta Metall. 10(1962)519.; Impurity diffusion of Fe in bcc Nb.' 'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H. Mehrer, springer (1990); Impurity diff of Nb in bcc Fe.' 'R. E. Einziger et al., Phys. Rev. B 17(1978)440.; self-diffusion of Nb in bcc Nb.' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> set-cond glob T 0 1073.15; * N DIC> DIC> @@ DIC> @@ ENTER REGIONS ferr AND aus DIC> @@ DIC> enter-region REGION NAME : ferr DIC> DIC> ent-reg REGION NAME : aus ATTACH TO REGION NAMED /FERR/: ferr ATTACHED TO THE RIGHT OF FERR /YES/: n DIC> DIC> @@ DIC> @@ ENTER GRIDS INTO REGIONS DIC> @@ DIC> enter-grid REGION NAME : /AUS/: ferr WIDTH OF REGION /1/: 2.499999e-3 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 50 DIC> DIC> DIC> enter-grid REGION NAME : /AUS/: aus WIDTH OF REGION /1/: 1e-9 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 5 DIC> DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUS/: ferr PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: bcc DIC> DIC> DIC> en-ph ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: ferr

Page 173: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: c1nb1_s DIC> DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> DIC> en-ph ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: c1nb1_s DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS OF THE PHASES DIC> @@ DIC> enter-composition REGION NAME : /AUS/: ferr PHASE NAME: /BCC_A2/: bcc DEPENDENT COMPONENT ? /NB/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: lin VALUE OF FIRST POINT : 1e-3 VALUE OF LAST POINT : /1E-3/: 1e-3 PROFILE FOR /NB/: nb TYPE /LINEAR/: lin VALUE OF FIRST POINT : 0.28 VALUE OF LAST POINT : /0.28/: 0.28 DIC> DIC> en-co REGION NAME : /AUS/: ferr PHASE NAME: /BCC_A2/: c1nb1_s USE EQUILIBRIUM VALUE /Y/: y DIC> DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NB/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: lin VALUE OF FIRST POINT : 0.89 VALUE OF LAST POINT : /0.89/: 0.89 PROFILE FOR /NB/: nb TYPE /LINEAR/: lin VALUE OF FIRST POINT : 0.28 VALUE OF LAST POINT : /0.28/: 0.28 DIC> DIC> en-co REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: c1nb1_s USE EQUILIBRIUM VALUE /Y/: y DIC> DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 32400 AUTOMATIC TIMESTEP CONTROL /YES/: y MAX TIMESTEP DURING INTEGRATION /3240/: 3240 INITIAL TIMESTEP : /1E-07/: 1e-8 SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-15 DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ SET THE REFERENCE PHASE OF CARBON AS GRAPHITE DIC> @@ DIC> s-ref Component: c Reference state: grap Temperature /*/: * Pressure /100000/: 1e5 DIC> DIC> @@ DIC> @@ SET THE BOUNDARY CONDITION DIC> @@ THE CARBON ACTIVITY IS ONE ON THE BOUNDARY DIC> @@ DIC> s-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: bound BOUNDARY /LOWER/: low CONDITION TYPE /CLOSED_SYSTEM/: mix Dependent substitutional element:FE Dependent interstitial element:VA TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: act LOW TIME LIMIT /0/: 0 ACR(C)(TIME)= 1.0; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N TYPE OF CONDITION FOR COMPONENT NB /ZERO_FLUX/: zero DIC> DIC> @@ DIC> @@ ENABLE THE HOMOGENIZATION MODEL DIC> @@ DIC> ho y y HOMOGENIZATION ENABLED DIC> DIC> DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DICTRA

Page 174: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> save exb7 Y DIC> DIC> DIC> set-inter --OK--- DIC>

Page 175: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb7-run

MACRO exb7\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exb7\run.DCM"DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE DIC> read exb7 OK DIC> sim yes STARTING SIMULATION USING HOMOGENIZATION MODEL ---------------------------------------------- WARNING: ELEMENT C IS BOTH INTERSTITIAL AND SUBSTITUTIONAL AND RESULTS MUST BE INTERPRETED WITH CARE INFO: PHASE WITH LIMITED SOLUBILITY OF ELEMENT(S) EXIST A FALLBACK PHASE ZZDICTRA_GHOST WILL BE DEFINED ALONG WITH THE FOLLOWING PARAMETERS: G(ZZDICTRA_GHOST,C;0)-H298(GRAPHITE,C;0) G(ZZDICTRA_GHOST,FE;0)-H298(BCC_A2,FE;0) G(ZZDICTRA_GHOST,NB;0)-H298(BCC_A2,NB;0) L(ZZDICTRA_GHOST,C,FE;0) L(ZZDICTRA_GHOST,C,NB;0) L(ZZDICTRA_GHOST,FE,NB;0) Saving results ------------------------------------------------ WARNING:C1NB1_S HAS NO VOLUME FRACTION, CREATING ONE WARNING:C1NB1_S HAS NO VOLUME FRACTION, CREATING ONE Starting time-step t0= 0.000000000000000E+000 dt= 1.000000000000000E-008 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 761484143.600867 Iteration # 2 sum residual **2: 272521611.463422 Error 408 Reducing dt to 5.000000000000000E-009 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 86854830.3872002 Iteration # 2 sum residual **2: 15186837.0125629 Iteration # 3 sum residual **2: 2475650.44865618 Iteration # 4 sum residual **2: 367734.699643220 Iteration # 5 sum residual **2: 50581.0313455482 Iteration # 6 sum residual **2: 6556.96729626404 Iteration # 7 sum residual **2: 810.833950019362 Iteration # 8 sum residual **2: 96.2585474856122 Iteration # 9 sum residual **2: 10.6884134877324 Iteration # 10 sum residual **2: 0.856089223512080 Stage 2 Iteration # 1 sum residual **2: 48773046.9957205 Iteration # 2 sum residual **2: 10783248.0718347 Iteration # 3 sum residual **2: 2305081.09591607 Iteration # 4 sum residual **2: 466667.450512141 Iteration # 5 sum residual **2: 89929.3498828119 Iteration # 6 sum residual **2: 16641.6780366640 Iteration # 7 sum residual **2: 2978.93480949521 Iteration # 8 sum residual **2: 518.427577464409 Iteration # 9 sum residual **2: 87.8381290592130 Iteration # 10 sum residual **2: 14.2503495043070 Iteration # 11 sum residual **2: 1.96914022533882 Iteration # 12 sum residual **2: 5.583992191911839E-002 Stage 3 Iteration # 1 sum residual **2: 16731304.2175551 Iteration # 2 sum residual **2: 13288152.5208820 Iteration # 3 sum residual **2: 3235386.51283236 Iteration # 4 sum residual **2: 729331.639059452 Iteration # 5 sum residual **2: 154857.572119951 Iteration # 6 sum residual **2: 31164.4466297938 Iteration # 7 sum residual **2: 5987.76393588770 Iteration # 8 sum residual **2: 1104.77306030137 Iteration # 9 sum residual **2: 196.244929947586 Iteration # 10 sum residual **2: 33.3567652771319 Iteration # 11 sum residual **2: 5.15830679686436 Iteration # 12 sum residual **2: 0.502534226921674 Reducing dt to 2.500000000000000E-009 Stage 2 Iteration # 1 sum residual **2: 19124391.1735335 Iteration # 2 sum residual **2: 5418894.49468780 Iteration # 3 sum residual **2: 1462456.75364628 Iteration # 4 sum residual **2: 377052.931823163 Iteration # 5 sum residual **2: 93602.7851390764 Iteration # 6 sum residual **2: 22537.5494076056 Iteration # 7 sum residual **2: 5292.09730315031 Iteration # 8 sum residual **2: 1216.63377785119 Iteration # 9 sum residual **2: 274.444593354382 Iteration # 10 sum residual **2: 60.6514115442645 Iteration # 11 sum residual **2: 12.9463195383948 Iteration # 12 sum residual **2: 2.44996420228756 Iteration # 13 sum residual **2: 0.221490777949307 Stage 3 Iteration # 1 sum residual **2: 11721041.2302707 Iteration # 2 sum residual **2: 3342677.72389746 Iteration # 3 sum residual **2: 914207.559987675 Iteration # 4 sum residual **2: 240832.841336049 Iteration # 5 sum residual **2: 61409.8256782736 Iteration # 6 sum residual **2: 15238.0397451104 Iteration # 7 sum residual **2: 3695.52784862717 Iteration # 8 sum residual **2: 878.355965709476 Iteration # 9 sum residual **2: 204.869790215520 Iteration # 10 sum residual **2: 46.7800782558305 Iteration # 11 sum residual **2: 10.2661960931187 Iteration # 12 sum residual **2: 1.96507907290198 Iteration # 13 sum residual **2: 0.145181242124560 Reducing dt to 1.250000000000000E-009 Stage 2 Iteration # 1 sum residual **2: 6060946.48730088 Iteration # 2 sum residual **2: 2051441.21616307 Iteration # 3 sum residual **2: 653666.750955425 Iteration # 4 sum residual **2: 198902.543204315 Iteration # 5 sum residual **2: 58431.5087447917 Iteration # 6 sum residual **2: 16698.6510204835 Iteration # 7 sum residual **2: 4667.66016351647

Page 176: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Iteration # 8 sum residual **2: 1280.99548020213 Iteration # 9 sum residual **2: 345.743251527409 Iteration # 10 sum residual **2: 91.6910846910978 Iteration # 11 sum residual **2: 23.8078314256144 Iteration # 12 sum residual **2: 5.86482228352070 Iteration # 13 sum residual **2: 1.22626136538328 Stage 3 Iteration # 1 sum residual **2: 4487161.26802159 Iteration # 2 sum residual **2: 1503990.38762600 Iteration # 3 sum residual **2: 478848.625467493 Iteration # 4 sum residual **2: 146482.070971023 Iteration # 5 sum residual **2: 43427.9192383714 Iteration # 6 sum residual **2: 12558.4048158770 Iteration # 7 sum residual **2: 3559.00700255928 Iteration # 8 sum residual **2: 991.267386148905 Iteration # 9 sum residual **2: 271.711725154067 Iteration # 10 sum residual **2: 73.2816642442880 Iteration # 11 sum residual **2: 19.2985750377137 Iteration # 12 sum residual **2: 4.77538245395629 Iteration # 13 sum residual **2: 0.979041667562023 Moles of elements / mole fractions in system: C 1.164142616651208E-007 / 4.656353640216400E-005 FE 2.495787462274513E-003 / 0.998268499833665 NB 4.212537725487070E-006 / 1.684936629933338E-003 Time-step converged t0= 0.000000000000000E+000 dt= 1.250000000000000E-009 ------------------------------------------------ Saving results

output ignored...

... output resumed

DELETING TIME-RECORD FOR TIME 31700.699 DELETING TIME-RECORD FOR TIME 31706.067 DELETING TIME-RECORD FOR TIME 31711.436 DELETING TIME-RECORD FOR TIME 31716.805 DELETING TIME-RECORD FOR TIME 31722.173 DELETING TIME-RECORD FOR TIME 31727.542 DELETING TIME-RECORD FOR TIME 31732.911 DELETING TIME-RECORD FOR TIME 31738.280 DELETING TIME-RECORD FOR TIME 31743.648 DELETING TIME-RECORD FOR TIME 31749.017 DELETING TIME-RECORD FOR TIME 31754.386 DELETING TIME-RECORD FOR TIME 31759.754 DELETING TIME-RECORD FOR TIME 31765.123 DELETING TIME-RECORD FOR TIME 31770.492 DELETING TIME-RECORD FOR TIME 31775.860 DELETING TIME-RECORD FOR TIME 31781.229 DELETING TIME-RECORD FOR TIME 31786.598 DELETING TIME-RECORD FOR TIME 31791.967 DELETING TIME-RECORD FOR TIME 31797.335 DELETING TIME-RECORD FOR TIME 31802.704 DELETING TIME-RECORD FOR TIME 31808.073 DELETING TIME-RECORD FOR TIME 31813.441 DELETING TIME-RECORD FOR TIME 31818.810 DELETING TIME-RECORD FOR TIME 31824.179 DELETING TIME-RECORD FOR TIME 31829.548 DELETING TIME-RECORD FOR TIME 31834.916 DELETING TIME-RECORD FOR TIME 31840.285 DELETING TIME-RECORD FOR TIME 31845.654 DELETING TIME-RECORD FOR TIME 31851.022 DELETING TIME-RECORD FOR TIME 31856.391 DELETING TIME-RECORD FOR TIME 31861.760 DELETING TIME-RECORD FOR TIME 31867.129 DELETING TIME-RECORD FOR TIME 31872.497 DELETING TIME-RECORD FOR TIME 31877.866 DELETING TIME-RECORD FOR TIME 31883.235 DELETING TIME-RECORD FOR TIME 31888.603 DELETING TIME-RECORD FOR TIME 31893.972 DELETING TIME-RECORD FOR TIME 31899.341 DELETING TIME-RECORD FOR TIME 31904.710 DELETING TIME-RECORD FOR TIME 31910.078 DELETING TIME-RECORD FOR TIME 31915.447 DELETING TIME-RECORD FOR TIME 31920.816 DELETING TIME-RECORD FOR TIME 31926.184 DELETING TIME-RECORD FOR TIME 31931.553 DELETING TIME-RECORD FOR TIME 31936.922 DELETING TIME-RECORD FOR TIME 31942.290 DELETING TIME-RECORD FOR TIME 31947.659 DELETING TIME-RECORD FOR TIME 31953.028 DELETING TIME-RECORD FOR TIME 31958.397 DELETING TIME-RECORD FOR TIME 31963.765 DELETING TIME-RECORD FOR TIME 31969.134 DELETING TIME-RECORD FOR TIME 31974.503 DELETING TIME-RECORD FOR TIME 31979.871 DELETING TIME-RECORD FOR TIME 31985.240 DELETING TIME-RECORD FOR TIME 31990.609 DELETING TIME-RECORD FOR TIME 31995.978 DELETING TIME-RECORD FOR TIME 32001.346 DELETING TIME-RECORD FOR TIME 32006.715 DELETING TIME-RECORD FOR TIME 32012.084 DELETING TIME-RECORD FOR TIME 32017.452 DELETING TIME-RECORD FOR TIME 32022.821 DELETING TIME-RECORD FOR TIME 32028.190 DELETING TIME-RECORD FOR TIME 32033.559 DELETING TIME-RECORD FOR TIME 32038.927 DELETING TIME-RECORD FOR TIME 32044.296 DELETING TIME-RECORD FOR TIME 32049.665 DELETING TIME-RECORD FOR TIME 32055.033 DELETING TIME-RECORD FOR TIME 32060.402 DELETING TIME-RECORD FOR TIME 32065.771 DELETING TIME-RECORD FOR TIME 32071.139 DELETING TIME-RECORD FOR TIME 32076.508 DELETING TIME-RECORD FOR TIME 32081.877 DELETING TIME-RECORD FOR TIME 32087.246 DELETING TIME-RECORD FOR TIME 32092.614 DELETING TIME-RECORD FOR TIME 32097.983 DELETING TIME-RECORD FOR TIME 32103.352 DELETING TIME-RECORD FOR TIME 32108.720 DELETING TIME-RECORD FOR TIME 32114.089 DELETING TIME-RECORD FOR TIME 32119.458 DELETING TIME-RECORD FOR TIME 32124.827

Page 177: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DELETING TIME-RECORD FOR TIME 32130.195 DELETING TIME-RECORD FOR TIME 32135.564 DELETING TIME-RECORD FOR TIME 32140.933 DELETING TIME-RECORD FOR TIME 32146.301 DELETING TIME-RECORD FOR TIME 32151.670 DELETING TIME-RECORD FOR TIME 32157.039 DELETING TIME-RECORD FOR TIME 32162.408 DELETING TIME-RECORD FOR TIME 32167.776 DELETING TIME-RECORD FOR TIME 32173.145 DELETING TIME-RECORD FOR TIME 32178.514 DELETING TIME-RECORD FOR TIME 32183.882 DELETING TIME-RECORD FOR TIME 32189.251 DELETING TIME-RECORD FOR TIME 32194.620 DELETING TIME-RECORD FOR TIME 32199.989 DELETING TIME-RECORD FOR TIME 32205.357 DELETING TIME-RECORD FOR TIME 32210.726 DELETING TIME-RECORD FOR TIME 32216.095 DELETING TIME-RECORD FOR TIME 32221.463 DELETING TIME-RECORD FOR TIME 32226.832 DELETING TIME-RECORD FOR TIME 32232.201 DELETING TIME-RECORD FOR TIME 32237.569 DELETING TIME-RECORD FOR TIME 32242.938 DELETING TIME-RECORD FOR TIME 32248.307 DELETING TIME-RECORD FOR TIME 32253.676 DELETING TIME-RECORD FOR TIME 32259.044 DELETING TIME-RECORD FOR TIME 32264.413 DELETING TIME-RECORD FOR TIME 32269.782 DELETING TIME-RECORD FOR TIME 32275.150 DELETING TIME-RECORD FOR TIME 32280.519 DELETING TIME-RECORD FOR TIME 32285.888 DELETING TIME-RECORD FOR TIME 32291.257 DELETING TIME-RECORD FOR TIME 32296.625 DELETING TIME-RECORD FOR TIME 32301.994 DELETING TIME-RECORD FOR TIME 32307.363 DELETING TIME-RECORD FOR TIME 32312.731 DELETING TIME-RECORD FOR TIME 32318.100 DELETING TIME-RECORD FOR TIME 32323.469 DELETING TIME-RECORD FOR TIME 32328.838 DELETING TIME-RECORD FOR TIME 32334.206 DELETING TIME-RECORD FOR TIME 32339.575 DELETING TIME-RECORD FOR TIME 32344.944 DELETING TIME-RECORD FOR TIME 32350.312 DELETING TIME-RECORD FOR TIME 32355.681 DELETING TIME-RECORD FOR TIME 32361.050 DELETING TIME-RECORD FOR TIME 32366.418 DELETING TIME-RECORD FOR TIME 32371.787 DELETING TIME-RECORD FOR TIME 32377.156 DELETING TIME-RECORD FOR TIME 32382.525 DELETING TIME-RECORD FOR TIME 32387.893 DELETING TIME-RECORD FOR TIME 32393.262 KEEPING TIME-RECORD FOR TIME 32398.631 AND FOR TIME 32400.000 WORKSPACE RECLAIMED ------------------------------------------------ INTERPOLATION SCHEME USED THIS FRACTION OF THE ALLOCATED MEMORY: 0.364642341060312 EFFICIENCY FACTOR: 41.7960039209153 MEMORY FRACTION USAGE PER BRANCH: 0.423233475584851 0.189445263868403 0.404754862607569 ------------------------------------------------ DEALLOCATING ------------------------------------------------ DIC> DIC> set-inter --OK--- DIC>

Page 178: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exb7-plot

MACRO exb7\plot.DCMDIC> DIC> DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 3.24000E+04 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING C1NB1_S AS A DIFFUSION NONE PHASE DIC> read exb7 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ PLOT THE INTERFACE POSITION AS A FUNCTION OF TIME POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y po-o-in aus upp POST-1: POST-1: plot

POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ APPEND DATA FROM A CORRESPONDING SIMULATION POST-1: @@ WITHOUT NIOBIUM POST-1: @@ POST-1: POST-1: app y fec.exp 0 DATASET NUMBER(s): /-1/: 1 POST-1: POST-1: plot

POST-1: POST-1: set-inter

Page 179: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

--OK--- POST-1:

Page 180: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Cell calculations

ν

ν

ν

Σ J = 0i

µ − µ = consti ref

Page 181: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example c1

’Carbon cannon’ in Fe-C system, two-cell calculation α/γ

2E-7

l lll ll l

FCC

0.4% C

T = 673 K

2E-7

l lll ll l

BCC

0.4% C

Σ J = 0i

µ − µ = consti ref

Page 182: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exc1-setup

MACRO exc1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc1\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Cell calculations. SYS: @@ This example simulates what happens to a FERRITE plate that has SYS: @@ inherited the carbon content of its parent AUSTENITE. The FERRITE SYS: @@ plate formed is embedded in an AUSTENITE matrix. This setup SYS: @@ corresponds to a proposed mechanism for formation of WIDMANNSTÄTTEN SYS: @@ FERRITE or for the FERRITE phase of the BAINITE structure. It is SYS: @@ assumed that the phase boundary between FERRITE and AUSTENITE is SYS: @@ immobile, this is achieved in the simulation by putting the FERRITE SYS: @@ and the AUSTENITE in two different cells. See also M. Hillert, SYS: @@ L. Höglund and J. Ågren: Acta Metall. Mater. 41 (1993), pp.1951-1957. SYS: @@ SYS: SYS: @@ exc1_setup.DCM SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe c FE C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 REJECTED TDB_TCFE7: res ph fcc,bcc FCC_A1 BCC_A2 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe c FE C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc,bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T

Page 183: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> set-cond glob T 0 673; * N DIC> DIC> @@ DIC> @@ IN THE FIRST CELL DIC> @@ DIC> @@ ENTER REGION aus CONTAINING AUSTENITE DIC> @@ ENTER A GEOMETRICAL GRID INTO THAT REGION DIC> @@ ENTER THE INITIAL COMPOSITION INTO THE AUSTENITE DIC> @@ DIC> enter-region aus DIC> enter-grid aus 0.2e-6 geo 60 0.9 DIC> enter-phase act aus matrix fcc_a1#1 DIC> DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc_a1#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: c TYPE /LINEAR/: lin 0.4 0.4 DIC> DIC> @@ DIC> @@ IN THE SECOND CELL DIC> @@ DIC> create-new-cell CELL DISTRIBUTION FACTOR /1/: 1 CREATING NEW CELL, NUMBER: 2 CELL 2 SELECTED DIC-2> DIC-2> @@ DIC-2> @@ ENTER REGION fer CONTAINING FERRITE DIC-2> @@ ENTER A GEOMETRICAL GRID INTO THAT REGION DIC-2> @@ ENTER THE INITIAL COMPOSITION INTO THE FERRITE DIC-2> @@ DIC-2> enter-region fer DIC-2> DIC-2> DIC-2> DIC-2> enter-grid fer 0.2e-6 geo 60 0.9 DIC-2> enter-phase act fer matrix bcc_a2#1 DIC-2> DIC-2> enter-composition REGION NAME : /FER/: fer PHASE NAME: /BCC_A2/: bcc_a2#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: c TYPE /LINEAR/: lin 0.4 0.4 DIC-2> DIC-2> @@ DIC-2> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC-2> @@ DIC-2> set-simulation-time END TIME FOR INTEGRATION /.1/: 0.5 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /.05/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC-2> DIC-2> DIC-2> DIC-2> @@ DIC-2> @@ USE IMPLICIT ( 1 ) TIME INTEGRATION DIC-2> @@ DIC-2> set-simulation-cond NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /POTENTIAL/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1.0 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC-2> @@ DIC-2> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC-2> @@ DIC-2> save exc1 Y DIC-2> DIC-2> set-inter --OK--- DIC-2>

Page 184: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exc1-run

MACRO exc1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc1\run.DCM"DIC-2> DIC-2> DIC-2> @@ exc1_run.DCM DIC-2> DIC-2> @@ DIC-2> @@ READ THE WORKSPACE AND START THE SIMULATION DIC-2> @@ DIC-2> go d-m TIME STEP AT TIME 0.00000E+00 DIC-2> read exc1 OK DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] U-FRACTION IN SYSTEM: C = .018673311178274 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] 8 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUS 8 GRIDPOINT(S) ADDED TO CELL #2 REGION: FER 0.291957646701152 0.291967981400445 4.452942466211993E-003 1.056182702057677E-004 6.618962836891992E-008 1.065737783038557E-012 1.089065137005806E-020 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.10890651E-19 U-FRACTION IN SYSTEM: C = .0186733111782745 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUS 2 GRIDPOINT(S) ADDED TO CELL #2 REGION: FER 1.775713937712862E-002 1.775560509700572E-002 4.709366181155220E-005 1.077539395229455E-007 5.271722008217298E-013 1.300073830501569E-022 TIME = 0.20000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.13000738E-21 U-FRACTION IN SYSTEM: C = .0186733111782746 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 0 seconds 1.894086503563816E-002 1.893991060303749E-002 1.944845303613433E-004 1.534294189834762E-006 1.005901573414534E-010 5.954579121981513E-017 TIME = 0.40000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.59545791E-16 U-FRACTION IN SYSTEM: C = .0186733111783517 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 0 seconds 5.753927082142873E-003 5.753534277398328E-003 3.246413492771475E-005 1.496974220477658E-007 3.263926335714396E-012 3.323190699231719E-019 TIME = 0.80000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.33231907E-18 U-FRACTION IN SYSTEM: C = .0186733111783632 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 2.399446368407586E-003 2.399265821858272E-003 1.150456905549928E-005 4.591210758092814E-008 7.474865402637155E-013 4.908977804545285E-020 TIME = 0.16000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.49089778E-19 U-FRACTION IN SYSTEM: C = .0186733111783721 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 0 seconds 1.063842800641006E-003 1.063756933705778E-003 4.435487864103911E-006 1.560185168587246E-008 1.967700843935883E-013 8.811201997630363E-021 TIME = 0.32000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.88112020E-20 U-FRACTION IN SYSTEM: C = .0186733111783796 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 4.911339437171466E-002 4.910923484767850E-002 1.859900765037043E-004 5.994581629435414E-007 6.337183967850354E-012 2.177652672440453E-019 TIME = 0.64000000E-05 DT = 0.32000000E-05 SUM OF SQUARES = 0.21776527E-18 U-FRACTION IN SYSTEM: C = .0186733111783871 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 2.322711469145240E-002 2.322507934526504E-002 8.231128443784615E-005 2.496155905740787E-007 2.333460413034720E-012

output ignored...

... output resumed

1.299717826422561E-009 3.568911242631111E-014 1.042025498564197E-023 TIME = 0.22713652 DT = 0.28246019E-01 SUM OF SQUARES = 0.10420255E-22 U-FRACTION IN SYSTEM: C = .018673311173762 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 9.562458274913929E-005 9.568978669831512E-005 3.073800121062001E-009 1.389253440110022E-013 1.763688281274284E-022 TIME = 0.25944804 DT = 0.32311520E-01 SUM OF SQUARES = 0.17636883E-21 U-FRACTION IN SYSTEM: C = .0186733111737842 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 1.378748593893599E-004 1.379384518217050E-004 9.515228440263469E-009 8.693440440561522E-013 4.861201623042941E-021 TIME = 0.29844465 DT = 0.38996609E-01 SUM OF SQUARES = 0.48612016E-20 U-FRACTION IN SYSTEM: C = .0186733111739195 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 0 seconds 1.895926793149763E-004 1.896512949647019E-004 2.880981394015494E-008 5.365119208560109E-012 1.385445859249805E-019

Page 185: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 0.34844465 DT = 0.50000000E-01 SUM OF SQUARES = 0.13854459E-18 U-FRACTION IN SYSTEM: C = .0186733111748497 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 2.028903288074087E-005 2.030585721407329E-005 3.172581738387434E-010 9.282241683785022E-015 2.628617663895445E-024 TIME = 0.39844465 DT = 0.50000000E-01 SUM OF SQUARES = 0.26286177E-23 U-FRACTION IN SYSTEM: C = .0186733111748538 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 1.648563629436657E-006 1.644257878051604E-006 1.077064351971489E-011 3.019052027850228E-018 TIME = 0.44844465 DT = 0.50000000E-01 SUM OF SQUARES = 0.30190520E-17 U-FRACTION IN SYSTEM: C = .0186733111705096 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 0 seconds 2.590856712305113E-005 2.589294323468353E-005 1.118314403462673E-009 4.249018170221949E-014 2.042189453913243E-020 TIME = 0.49844465 DT = 0.50000000E-01 SUM OF SQUARES = 0.20421895E-19 U-FRACTION IN SYSTEM: C = .0186733111701528 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] CPU time used in timestep 1 seconds 2.695477343886611E-002 2.695216541416953E-002 3.899880468258554E-005 5.024304569429793E-008 1.905321032688952E-016 8.044771170452259E-022 TIME = 0.50000000 DT = 0.15553540E-02 SUM OF SQUARES = 0.80447712E-21 U-FRACTION IN SYSTEM: C = .0186733111701506 FE = 1 TOTAL SIZE OF SYSTEM: 4E-07 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.20000000E-06 DELETING TIME-RECORD FOR TIME 0.40000000E-06 DELETING TIME-RECORD FOR TIME 0.80000000E-06 DELETING TIME-RECORD FOR TIME 0.16000000E-05 DELETING TIME-RECORD FOR TIME 0.32000000E-05 DELETING TIME-RECORD FOR TIME 0.64000000E-05 DELETING TIME-RECORD FOR TIME 0.12800000E-04 DELETING TIME-RECORD FOR TIME 0.25600000E-04 DELETING TIME-RECORD FOR TIME 0.51200000E-04 DELETING TIME-RECORD FOR TIME 0.10240000E-03 DELETING TIME-RECORD FOR TIME 0.20480000E-03 DELETING TIME-RECORD FOR TIME 0.40960000E-03 DELETING TIME-RECORD FOR TIME 0.81920000E-03 DELETING TIME-RECORD FOR TIME 0.16384000E-02 DELETING TIME-RECORD FOR TIME 0.32768000E-02 DELETING TIME-RECORD FOR TIME 0.65536000E-02 DELETING TIME-RECORD FOR TIME 0.13107200E-01 DELETING TIME-RECORD FOR TIME 0.26214400E-01 DELETING TIME-RECORD FOR TIME 0.45260619E-01 DELETING TIME-RECORD FOR TIME 0.64862706E-01 DELETING TIME-RECORD FOR TIME 0.84942953E-01 DELETING TIME-RECORD FOR TIME 0.10563568 DELETING TIME-RECORD FOR TIME 0.12709395 DELETING TIME-RECORD FOR TIME 0.14953811 DELETING TIME-RECORD FOR TIME 0.17329951 DELETING TIME-RECORD FOR TIME 0.19889050 DELETING TIME-RECORD FOR TIME 0.22713652 DELETING TIME-RECORD FOR TIME 0.25944804 DELETING TIME-RECORD FOR TIME 0.29844465 DELETING TIME-RECORD FOR TIME 0.34844465 DELETING TIME-RECORD FOR TIME 0.39844465 DELETING TIME-RECORD FOR TIME 0.44844465 KEEPING TIME-RECORD FOR TIME 0.49844465 AND FOR TIME 0.50000000 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> set-inter --OK--- DIC>

Page 186: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exc1-plot

MACRO exc1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc1\plot.DCM"DIC> DIC> DIC> @@ exc1_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE c1 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 5.00000E-01 DIC> read exc1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET US PLOT CARBON CONCENTRATION PROFILES IN FERRITE (CELL-2) POST-1: @@ WE THEN SET DISTANCE AS X-AXIS (NOT THAT DISTANCE IS SET INDEPENDENT POST-1: @@ VARIABLE AUTOMATICALLY) AND W-FRACTION CARBON AS Y-AXIS POST-1: @@ REMEMBER THAT ONE ALSO HAS TO SET PLOT CONDITION POST-1: @@ POST-1: select-cell Number /NEXT/: 2 CELL 2 SELECTED POST-2: POST-2: @@ POST-2: @@ NOTICE THAT THE PROMPT INCLUDES THE CURRENT CELL NUMBER POST-2: @@ POST-2: s-d-a x dist glo INFO: Distance is set as independent variable POST-2: s-d-a y w(c) POST-2: s-p-c time .0001 .001 .01 .03 .1 .5 POST-2: POST-2: @@ POST-2: @@ SET TITLE ON DIAGRAMS POST-2: @@ POST-2: set-title Figure c1.1 POST-2: plo

POST-2: POST-2: POST-2: POST-2:@?<_hit_return_to_continue_>POST-2: POST-2: @@ POST-2: @@ DO THE SAME THING FOR THE AUSTENITE (CELL-1) POST-2: @@ POST-2: select-cell Number /NEXT/: 1 CELL 1 SELECTED POST-1: set-title Figure c1.2 POST-1: plo

Page 187: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ PLOT THE AVARAGE WEIGHT FRACTION OF CARBON IN FERRITE VS. SQUARE ROOT POST-1: @@ OF TIME. START BY DEFINING A "SQUARE-ROOT-OF-TIME" FUNCTION. POST-1: @@ POST-1: sel-cell 2 CELL 2 SELECTED POST-2: enter func sqrt=sqrt(time); POST-2: s-d-a x sqrt POST-2: s-d-a y iww(2,c) POST-2: s-i-v time POST-2: set-title Figure c1.3 POST-2: plo

POST-2: POST-2: POST-2: POST-2:@?<_hit_return_to_continue_>POST-2: POST-2: @@ POST-2: @@ DO THE SAME THING FOR THE AUSTENITE POST-2: @@ POST-2: sel-cell 1 CELL 1 SELECTED POST-1: s-d-a y iww(1,c) POST-1: set-title Figure c1.4 POST-1: plo

Page 188: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ PLOT HOW THE CONCENTRATION IN FERRITE AT THE FERRITE/AUSTENITE BOUNDARY POST-1: @@ V.S SQUARE ROOT OF TIME. THE FERRITE/AUSTENITE BOUNDARY IS REPRESENTED POST-1: @@ BY THE CELL BOUNDARY I.E. THE "LAST" INTERFACE. POST-1: @@ POST-1: sel-cell 2 CELL 2 SELECTED POST-2: s-d-a y w(c) POST-2: s-p-c interface last POST-2: set-title Figure c1.5 POST-2: plo

POST-2: POST-2: POST-2: POST-2:@?<_hit_return_to_continue_>POST-2: POST-2: @@ POST-2: @@ DO THE SAME THING FOR THE AUSTENITE POST-2: @@ POST-2: sel-cell 1 CELL 1 SELECTED POST-1: set-title Figure c1.6 POST-1: plo

Page 189: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: set-inter --OK--- POST-1:

Page 190: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example c2

Cementite disolution in an Fe-Cr-C alloy

( Three different particle sizes, Three cell problem )

Σ J = 0i

cem

FCC

cem

FCC

νcem

FCC

ν

T = 1183 K

µ − µ = consti ref

Page 191: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exc2-setup

MACRO exc2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc2\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Cell calculations. SYS: @@ Setup file for calculating the dissolution of CEMENTITE particles SYS: @@ in an AUSTENITE matrix. This case is identical to exb2 except SYS: @@ that we here have three different particle sizes. Altogether six SYS: @@ particles are considered using three different cells. This is in SYS: @@ order to represent some size distribution among the CEMENTITE SYS: @@ particles. See also Z.-K. Liu, L. Höglund, B. Jönsson and J. Ågren: SYS: @@ Metall.Trans.A, v. 22A (1991), pp. 1745-1752. SYS: @@ SYS: SYS: @@ exc2_setup.DCM SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE TCFE DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: switch tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe cr c FE CR C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 M3C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI REJECTED TDB_TCFE7: res ph fcc cementite FCC_A1 CEMENTITE RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'J. Bratberg, Z. Metallkd., Vol 96 (2005), 335-344; Fe-Cr-Mo-C' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'P. Villars and L.D. Calvert (1985). Pearsons handbook of crystallographic data for intermetallic phases. Metals park, Ohio. American Society for Metals; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe cr c FE CR C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc cementite FCC_A1 CEMENTITE RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'This parameter has been estimated' -OK- APP: APP: @@

Page 192: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob t 0 1183; * n DIC> DIC> @@------------------------------------------------------------------------ DIC> @@ CELL NUMBER ONE DIC> @@------------------------------------------------------------------------ DIC> DIC> @@ DIC> @@ ENTER REGIONS carb AND aus DIC> @@ DIC> enter-region carb DIC> enter-region aus ATTACH TO REGION NAMED /CARB/: ATTACHED TO THE RIGHT OF CARB /YES/: DIC> @@ DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS DIC> @@ DIC> DIC> @@ DIC> @@ THE SIZE OF THE CEMENTITE PARTICLES WE KNOW SINCE WE ASSUME DIC> @@ IT HAS BEEN MEASSURED. DIC> @@ DIC> enter-grid REGION NAME : /CARB/: carb WIDTH OF REGION /1/: 0.700000e-6 TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 16 VALUE OF R IN THE GEOMETRICAL SERIE : 0.80 DIC> DIC> @@ DIC> @@ THE SIZE OF THE FCC REGION WE MAY CALCULATE FROM A MASSBALANCE DIC> @@ AFTER ESTIMATING THE INITIAL COMPOSITIONS IN THE TWO PHASES. DIC> @@ DIC> enter-grid REGION NAME : /AUS/: aus WIDTH OF REGION /1/: 7.1832993E-7 TYPE /LINEAR/: dou NUMBER OF POINTS /50/: 20 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 1.25 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 0.8 DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /CARB/: carb PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: cementite DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES DIC> @@ DIC> enter-composition carb cementite w-f PROFILE FOR /CR/: cr lin 0.12423326 0.12423326 DIC> DIC> enter-composition aus fcc#1 fe w-f PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3 PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4 DIC> DIC> @@----------------------------------------------------------------- DIC> @@ CELL NUMBER TWO DIC> @@----------------------------------------------------------------- DIC> create-new-cell CELL DISTRIBUTION FACTOR /1/: 2 CREATING NEW CELL, NUMBER: 2 CELL 2 SELECTED DIC-2> DIC-2> @@ DIC-2> @@ ENTER REGIONS carb AND aus DIC-2> @@ DIC-2> enter-region carb DIC-2> enter-region aus ATTACH TO REGION NAMED /CARB/: ATTACHED TO THE RIGHT OF CARB /YES/: DIC-2> @@ DIC-2> @@ ENTER GRIDS GEOMTRICAL GRIDS INTO THE REGIONS DIC-2> @@ DIC-2> enter-grid carb 0.300000e-6 geo 16 0.80 DIC-2> enter-grid aus 3.0785568E-7 dou 20 1.25 0.80 DIC-2> DIC-2> @@ DIC-2> @@ ENTER PHASES INTO REGIONS DIC-2> @@ DIC-2> enter-phase act carb matrix cementite DIC-2> enter-phase act aus matrix fcc#1 DIC-2> DIC-2> @@ DIC-2> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES DIC-2> @@ DIC-2> enter-composition carb cementite w-f PROFILE FOR /CR/: cr lin 0.12423326 0.12423326 DIC-2> DIC-2> enter-composition aus fcc#1 fe w-f PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3 PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4

Page 193: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC-2> DIC-2> @@--------------------------------------------------------------- DIC-2> @@ CELL NUMBER THREE DIC-2> @@--------------------------------------------------------------- DIC-2> create-new-cell CELL DISTRIBUTION FACTOR /1/: 3 CREATING NEW CELL, NUMBER: 3 CELL 3 SELECTED DIC-3> DIC-3> @@ DIC-3> @@ ENTER REGIONS carb AND aus DIC-3> @@ DIC-3> enter-region carb DIC-3> enter-region aus ATTACH TO REGION NAMED /CARB/: ATTACHED TO THE RIGHT OF CARB /YES/: DIC-3> @@ DIC-3> @@ ENTER GRIDS GEOMTRICAL GRIDS INTO THE REGIONS DIC-3> @@ DIC-3> enter-grid carb 0.525500e-6 geo 16 0.80 DIC-3> enter-grid aus 5.3926054E-7 dou 20 1.25 0.80 DIC-3> DIC-3> @@ DIC-3> @@ ENTER PHASES INTO REGIONS DIC-3> @@ DIC-3> enter-phase act carb matrix cementite DIC-3> enter-phase act aus matrix fcc#1 DIC-3> DIC-3> @@ DIC-3> @@ ENTER INITIAL VALUES FOR THE COMPOSITIONS IN THE PHASES DIC-3> @@ DIC-3> enter-composition carb cementite w-f PROFILE FOR /CR/: cr lin 0.12423326 0.12423326 DIC-3> DIC-3> enter-composition aus fcc#1 fe w-f PROFILE FOR /C/: cr lin 4.6615447E-3 4.6615447E-3 PROFILE FOR /CR/: c lin 1.5135207E-4 1.5135207E-4 DIC-3> DIC-3> @@--------------------------------------------------------------- DIC-3> @@ GLOBAL CONDITIONS DIC-3> @@--------------------------------------------------------------- DIC-3> DIC-3> @@ DIC-3> @@ SET SPHERICAL GEOMETRY DIC-3> @@ DIC-3> enter-geo 2 DIC-3> DIC-3> s-n-l REQUIRED SUM OF SQUARES IN NS01A : /1E-16/: MAX NUMBER OF CALLS TO CALFUN OF NS01A : /300/: STEP USED BY NS01A : /1E-04/: MAX STEP USED BY NS01A : /1E+12/: MAX NUMBER OF EQUIDISTANT POINTS IN A REGION (-1 DISABLES GRIDPOINT REMOVAL) GRIDPOINT REMOVAL NUMBER : /75/: FRACTION OF REGION ASSIGNED TO THE INTERFACE : /.05/: SMALLEST NUMBER USED IN SCALING FLUX EQUATIONS : /1E-16/: DEFAULT DRIVING FORCE FOR INACTIVE PHASES : /.01/: 1E-3 DIC-3> DIC-3> DIC-3> DIC-3> DIC-3> @@ DIC-3> @@ SET THE SIMULATION TIME DIC-3> @@ DIC-3> set-simulation-time END TIME FOR INTEGRATION /.1/: 10000 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /1000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC-3> DIC-3> @@ DIC-3> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC-3> @@ DIC-3> save exc2 Y DIC-3> DIC-3> DIC-3> set-inter --OK--- DIC-3>

Page 194: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exc2-run

MACRO exc2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc2\run.DCM"DIC-3> DIC-3> DIC-3> @@ exc2_run.DCM DIC-3> DIC-3> @@ DIC-3> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC-3> @@ DIC-3> DIC-3> go d-m TIME STEP AT TIME 0.00000E+00 DIC-3> read exc2 OK DIC> sim yes Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS DONE 6 OUT OF 9 90445.3431211 Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 2 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS DONE 6 OUT OF 9 90445.3431211 Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 3 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS DONE 6 OUT OF 9 90445.3431211 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0406910187346776 CR = .0214382352304608 FE = .978561764900046 TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3] U-FRACTION IN SYSTEM: C = .0406910187346776 CR = .0214382352304608 FE = .978561764900046 TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3] 13 GRIDPOINT(S) ADDED TO CELL #1 REGION: CARB 12 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUS 13 GRIDPOINT(S) ADDED TO CELL #2 REGION: CARB 12 GRIDPOINT(S) ADDED TO CELL #2 REGION: AUS 13 GRIDPOINT(S) ADDED TO CELL #3 REGION: CARB 12 GRIDPOINT(S) ADDED TO CELL #3 REGION: AUS 0.554531681954655 0.554567480675658 0.554589499863892 0.554572221447398 0.554531505763472 0.554531431762965 002 3.576300040682906E-004 5.360866440804185E-005 1.012113318158805E-005 1.326508337030136E-005 4.870104298291606E-006 5.059690052455969E-006 4.621899570971407E-006 4.630784214210825E-006 4.582895886150748E-006 4.579953770683088E-006 4.606650646730465E-006 4.610375384318215E-006 4.585273984455962E-006 4.582897341046175E-006 4.582916902910096E-006 4.599867835758483E-006 4.510965086266615E-006 4.511132392568204E-006 4.498425903112486E-006 4.491061729413131E-006 4.499671268169157E-006 4.495392268910281E-006 4.493239884788908E-006 4.491820556526696E-006 4.492180574820510E-006 4.491557910140355E-006 4.491663375001367E-006 4.490925731057583E-006 4.491039171620601E-006 4.490927182417670E-006 4.490946743738308E-006 4.496937672335242E-006 4.484467703800908E-006 4.484665245691513E-006 4.484375486830423E-006 4.483992016575018E-006 4.483859718319426E-006 4.483480820395356E-006 4.483230945996525E-006 4.484059688560885E-006

output ignored...

... output resumed

6.920570362484212E-003 6.920499946758814E-003 6.920342052933263E-003 6.919756483371863E-003 3.098058520449391E-004 1.296356992228752E-007 3.917157842870373E-011 7.593557155621097E-015 2.483115580187522E-018 TIME = 7912.8235 DT = 1000.00000 SUM OF SQUARES = 0.24831156E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.87837351E-11 AND -0.87837351E-11 POSITION OF INTERFACE CARB / AUS IS 0.44403331E-06 CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.95350930E-11 AND -0.95350930E-11 POSITION OF INTERFACE CARB / AUS IS 0.27251396E-06 U-FRACTION IN SYSTEM: C = .040773066126075 CR = .0221610436037789 FE = .977838956526728 TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3] CPU time used in timestep 5 seconds 8.797385665174391E-003 8.797385618748307E-003 8.797385579921092E-003 8.797301174272916E-003 8.797241760775941E-003 8.797020156384188E-003 8.796305182840140E-003 2.875722549578110E-004 1.758283246381142E-007 6.964164830236587E-011 1.499469195446894E-014 5.535336829027822E-018 TIME = 8912.8235 DT = 1000.00000 SUM OF SQUARES = 0.55353368E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.78832250E-11 AND -0.78832250E-11 POSITION OF INTERFACE CARB / AUS IS 0.43615008E-06 CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.89978107E-11 AND -0.89978107E-11 POSITION OF INTERFACE CARB / AUS IS 0.26351615E-06 U-FRACTION IN SYSTEM: C = .0407730711774085 CR = .0221662684280764

Page 195: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

FE = .977833731702431 TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS 5 GRIDPOINT(S) REMOVED FROM CELL #3 REGION: AUS CPU time used in timestep 6 seconds 1.071877503144397E-002 1.071877499173175E-002 1.071877495163795E-002 1.071869750432614E-002 1.071865322081512E-002 1.071837061107872E-002 1.071754023482961E-002 2.883501430172470E-004 2.191718160934316E-007 1.126135832891216E-010 2.779436024492862E-014 9.692387490428569E-018 TIME = 9912.8235 DT = 1000.00000 SUM OF SQUARES = 0.96923875E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70942205E-11 AND -0.70942205E-11 POSITION OF INTERFACE CARB / AUS IS 0.42905586E-06 CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.85936570E-11 AND -0.85936570E-11 POSITION OF INTERFACE CARB / AUS IS 0.25492249E-06 U-FRACTION IN SYSTEM: C = .0407730658479598 CR = .0221685046525647 FE = .977831495477942 TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3] CPU time used in timestep 5 seconds 4.055311937845849E-003 4.055311978385242E-003 4.055312045618205E-003 4.055223751032636E-003 4.055173600805509E-003 4.055167128391832E-003 4.055042470302864E-003 4.125187845373604E-004 1.168017483653392E-006 5.718420994437329E-010 7.830648355576657E-013 3.875679695388341E-017 TIME = 10000.0000 DT = 87.176513 SUM OF SQUARES = 0.38756797E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.50513560E-11 AND -0.50513560E-11 POSITION OF INTERFACE CARB / AUS IS 0.42861550E-06 CELL # 3 VELOCITY AT INTERFACE # 2 IS -0.57192500E-11 AND -0.57192500E-11 POSITION OF INTERFACE CARB / AUS IS 0.25442391E-06 U-FRACTION IN SYSTEM: C = .0407730842038893 CR = .0221686010324642 FE = .977831399098043 TOTAL SIZE OF SYSTEM: 2.90023192349E-17 [m^3] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 4163.1700 DELETING TIME-RECORD FOR TIME 4570.6462 DELETING TIME-RECORD FOR TIME 4570.6462 DELETING TIME-RECORD FOR TIME 4570.6462 DELETING TIME-RECORD FOR TIME 4570.6463 DELETING TIME-RECORD FOR TIME 4570.6464 DELETING TIME-RECORD FOR TIME 4570.6465 DELETING TIME-RECORD FOR TIME 4570.6468 DELETING TIME-RECORD FOR TIME 4570.6475 DELETING TIME-RECORD FOR TIME 4570.6488 DELETING TIME-RECORD FOR TIME 4570.6513 DELETING TIME-RECORD FOR TIME 4570.6564 DELETING TIME-RECORD FOR TIME 4570.6667 DELETING TIME-RECORD FOR TIME 4570.6872 DELETING TIME-RECORD FOR TIME 4570.7281 DELETING TIME-RECORD FOR TIME 4570.8100 DELETING TIME-RECORD FOR TIME 4570.9739 DELETING TIME-RECORD FOR TIME 4571.3016 DELETING TIME-RECORD FOR TIME 4571.9569 DELETING TIME-RECORD FOR TIME 4573.2676 DELETING TIME-RECORD FOR TIME 4575.8891 DELETING TIME-RECORD FOR TIME 4581.1320 DELETING TIME-RECORD FOR TIME 4591.6177 DELETING TIME-RECORD FOR TIME 4612.5892 DELETING TIME-RECORD FOR TIME 4654.5323 DELETING TIME-RECORD FOR TIME 4738.4184 DELETING TIME-RECORD FOR TIME 4906.1905 DELETING TIME-RECORD FOR TIME 5241.7348 DELETING TIME-RECORD FOR TIME 5912.8235 DELETING TIME-RECORD FOR TIME 6912.8235 DELETING TIME-RECORD FOR TIME 7912.8235 DELETING TIME-RECORD FOR TIME 8912.8235 KEEPING TIME-RECORD FOR TIME 9912.8235 AND FOR TIME 10000.0000 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> DIC> DIC> set-inter --OK--- DIC>

Page 196: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exc2-plot

MACRO exc2\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exc2\plot.DCM"DIC> DIC> DIC> @@ exc2_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE c2 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+04 DIC> read exc2 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET US PLOT CHROMIUM CONCENTRATION PROFILES IN THE SAME WAY AS IN exb2 POST-1: @@ BUT NOW FOR EACH PARTICLE. LET'S LOOK AT THE PROFILES AFTER 1000S. POST-1: @@ POST-1: POST-1: @@ POST-1: @@ FIRST CELL POST-1: @@ POST-1: enter-symb Function or table /FUNCTION/: func NAME: rdist FUNCTION: gd-poi(carb,u); POST-1: POST-1: s-d-a x rdist POST-1: POST-1: s-d-a y uf(cr) POST-1: POST-1: s-i-v VARIABLE /TIME/: dist DISTANCE : /GLOBAL/: glo POST-1: POST-1: s-p-c time 1000 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-title Figure C2.1 POST-1: plo

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ SELECT CELL 2 POST-1: @@ POST-1: select-cell Number /NEXT/: 2 CELL 2 SELECTED POST-2: POST-2: enter-symb Function or table /FUNCTION/: func NAME: rdist2 FUNCTION: gd-poi(carb,u); POST-2: POST-2: s-d-a x rdist2 POST-2: POST-2: set-title Figure C2.2 POST-2: plo

Page 197: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-2: POST-2: POST-2: POST-2:@?<_hit_return_to_continue_>POST-2: POST-2: @@ POST-2: @@ SELECT CELL 3 POST-2: @@ POST-2: select-cell 3 CELL 3 SELECTED POST-3: POST-3: enter-symb Function or table /FUNCTION/: func NAME: rdist3 FUNCTION: gd-poi(carb,u); POST-3: POST-3: s-d-a x rdist3 POST-3: POST-3: set-title Figure C2.3 POST-3: plo

POST-3: POST-3: POST-3: POST-3: POST-3:@?<_hit_return_to_continue_>POST-3: POST-3: POST-3: @@ POST-3: @@ LET US ALSO PLOT HOW THE DIAMETER OF THE CEMENTITE PARTICLE VARIES POST-3: @@ WITH TIME IN THE THREE CELLS POST-3: @@ POST-3: POST-3: @@ POST-3: @@ SELECT FIRST CELL POST-3: @@ POST-3: sel-cell 1 CELL 1 SELECTED POST-1: POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-s-s x n .01 10000 POST-1: set-axis-type x log POST-1: POST-1: enter func diam1=2*poi(carb,u); POST-1: s-d-a y diam1 POST-1: s-s-s y n 0 1.5e-6 POST-1:

Page 198: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: s-p-c interf carb upp POST-1: POST-1: app n POST-1: set-title Figure C2.4 POST-1: plo

POST-1: POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: POST-1: @@ POST-1: @@ SELECT CELL 2 POST-1: @@ POST-1: sel-cell 2 CELL 2 SELECTED POST-2: POST-2: enter func diam2=2*poi(carb,u); POST-2: s-d-a y diam2 POST-2: s-s-s y n 0 1.5e-6 POST-2: POST-2: s-p-c interf carb upp POST-2: POST-2: set-title Figure C2.5 POST-2: plo

POST-2: POST-2: POST-2: POST-2: POST-2:@?<_hit_return_to_continue_>POST-2: POST-2: @@ POST-2: @@ SELECT CELL 3 POST-2: @@ POST-2: sel-cell 3 CELL 3 SELECTED POST-3: POST-3: enter func diam3=2*poi(carb,u); POST-3: s-d-a y diam3 POST-3: s-s-s y n 0 1.5e-6 POST-3: POST-3: s-p-c interf carb upp POST-3: POST-3: set-title Figure C2.6 POST-3: POST-3: plo

Page 199: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-3: POST-3: POST-3: POST-3: POST-3:@?<_hit_return_to_continue_>POST-3: POST-3: @@ POST-3: @@ LET US NOW PLOT THE VOLUME FRACTION OF CEMENTITE IN THE THREE POST-3: @@ CELLS. POST-3: @@ POST-3: s-d-a x time INFO: Time is set as independent variable POST-3: s-s-s x n .01 10000 POST-3: set-axis-type x log POST-3: POST-3: @@ POST-3: @@ CELL 1 POST-3: @@ POST-3: s-d-a y ivv(1,cem) POST-3: s-s-s y n 0 0.14 POST-3: POST-3: s-p-c integral POST-3: POST-3: set-title Figure C2.7 POST-3: plo

POST-3: POST-3: POST-3: POST-3: POST-3:@?<_hit_return_to_continue_>POST-3: POST-3: @@ POST-3: @@ CELL 2 POST-3: @@ POST-3: s-d-a y ivv(2,cem) POST-3: POST-3: set-title Figure C2.8 POST-3: plo

Page 200: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-3: POST-3: POST-3: POST-3: POST-3:@?<_hit_return_to_continue_>POST-3: POST-3: @@ POST-3: @@ CELL 3 POST-3: @@ POST-3: s-d-a y ivv(3,cem) POST-3: POST-3: set-title Figure C2.9 POST-3: plo

POST-3: POST-3: POST-3: POST-3: POST-3:@?<_hit_return_to_continue_>POST-3: POST-3: @@ POST-3: @@ FINALLY, LET US ALSO PLOT HOW THE TOTAL VOLUME FRACTION OF POST-3: @@ CEMENTITE VARIES WITH TIME. POST-3: @@ POST-3: s-d-a y ivv(cem) POST-3: POST-3: set-title Figure C2.10 POST-3: plo

Page 201: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-3: POST-3: POST-3: POST-3: POST-3:@?<_hit_return_to_continue_>POST-3: POST-3: set-inter --OK--- POST-3:

Page 202: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Diffusion in dispersed systems

Page 203: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example d1a

Carburization of a Ni-25% Cr alloy

3E-3

T = 1123 K

●● ● ●● ●●

a = 1c

FCC

Page 204: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd1a-setup

MACRO exd1a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1a\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Diffusion in dispersed systems. SYS: @@ Setup file for carburization of a Ni-25Cr alloy. SYS: @@ In this case the M3C2 and M7C3 carbides are entered as SYS: @@ spheroid phases in a FCC matrix. This case is from SYS: @@ A. Engström, L. Höglund and J. Ågren: Metall.Trans.A SYS: @@ v. 25A (1994), pp. 1127-1134. This simulation can be run SYS: @@ with either the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. SYS: @@ In this example the DISPERSED SYSTEM MODEL is used, which requires SYS: @@ that the default HOMOGENIZATION MODEL is disabled. SYS: @@ With the DISPERSED SYSTEM MODEL the command SYS: @@ ENTER_LABYRINTH_FUNCTION is used to take into account the SYS: @@ impeding effect of dispersed phases on long-range diffusion. SYS: @@ For the HOMOGENIZATION MODEL the command SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used. SYS: @@ SYS: SYS: @@ exd1_setup.DCM SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw ssol2 Current database: SGTE Alloy Solutions Database v2.1 VA DEFINED B2_BCC L12_FCC AL5FE4: REJECTED GAS:G AQUEOUS:A WATER:A REJECTED TDB_SSOL2: def-sys ni cr c NI CR C DEFINED TDB_SSOL2: rej ph * all LIQUID:L FCC_A1 BCC_A2 HCP_A3 DIAMOND_A4 CHI_A12 CBCC_A12 CUB_A13 SIGMA GRAPHITE CEMENTITE KSI_CARBIDE M23C6 M7C3 M3C2 FE4N AL3NI2 ALNI_B2 CR3SI CRSI2 REJECTED TDB_SSOL2: res ph fcc,m7c3,m3c2,grap FCC_A1 M7C3 M3C2 GRAPHITE RESTORED TDB_SSOL2: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'Byeong-Joo Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'Alan Dinsdale, SGTE Data for Pure Elements, NPL Report DMA(A)195 September 1989' 'Alan Dinsdale, SGTE Data for Pure Elements, Calphad Vol 15(1991) p 317-425, also in NPL Report DMA(A)195 Rev. August 1990' 'A. Gabriel, C. Chatillon, I. Ansara, to be published in High Temp. Sci. (parameters listed in Calphad Vol 11 (1987) pp 203-218); C-NI' 'A. Dinsdale, T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'NPL, unpublished work (1989); C-Cr-Ni' -OK- TDB_SSOL2: TDB_SSOL2: @@ TDB_SSOL2: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_SSOL2: @@ TDB_SSOL2: app mob2 Current database: Alloys Mobility v2.4 VA DEFINED GAS:G REJECTED APP: def-sys ni c cr NI C CR DEFINED APP: rej ph * all BCC_A2 CEMENTITE DIAMOND_A4 FCC_A1 FE4N GRAPHITE HCP_A3 KSI_CARBIDE LIQUID:L M23C6 M3C2 M7C3 SIGMA REJECTED APP: res ph fcc,m7c3,m3c2,grap FCC_A1 M7C3 M3C2 GRAPHITE RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Z. Metallkunde 85(1994)502-509;

Page 205: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING M3C2 AS A DIFFUSION NONE PHASE *** ENTERING M7C3 AS A DIFFUSION NONE PHASE DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1123; * N DIC> DIC> @@ DIC> @@ SET REFERENCE STATE FOR CARBON DIC> @@ DIC> set-reference-state Component: C Reference state: grap Temperature /*/: * Pressure /100000/: 101325 DIC> DIC> @@ DIC> @@ ENTER REGION aus DIC> @@ DIC> enter-region aus DIC> DIC> @@ DIC> @@ ENTER GEOMETRICAL GRID INTO THE REGION DIC> @@ DIC> enter-grid aus 3e-3 geo 100 1.02 DIC> DIC> @@ DIC> @@ ENTER MATRIX PHASE IN THE REGION DIC> @@ DIC> enter-phase act aus matrix fcc_a1#1 DIC> DIC> @@ DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE DIC> @@ DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: ni COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: cr TYPE /LINEAR/: lin 25 25 PROFILE FOR /CR/: c TYPE /LINEAR/: lin 1e-4 1e-4 DIC> DIC> @@ DIC> @@ ENTER SPHEROIDAL PHASES IN THE REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: m7c3 DIC> DIC> @@ DIC> @@ ENTER STOICHOMETRIC SPHEROIDAL PHASE IN THE REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: m3c2 DIC> DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR SPHEROIDAL PHASES DIC> @@ DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: m7c3 USE EQUILIBRIUM VALUE /Y/: Y DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: m3c2 USE EQUILIBRIUM VALUE /Y/: Y DIC> DIC> @@ DIC> @@ SET BOUNDARY CONDITION DIC> @@ DIC> set-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary BOUNDARY /LOWER/: lower CONDITION TYPE /CLOSED_SYSTEM/: mixed Dependent substitutional element:NI Dependent interstitial element:VA TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity LOW TIME LIMIT /0/: 0 ACR(C)(TIME)= 1; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N TYPE OF CONDITION FOR COMPONENT CR /ZERO_FLUX/: zero-flux DIC> DIC> @@ DIC> @@ ENTER LABYRINTH FACTOR

Page 206: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> enter-lab REGION NAME : aus f(T,P,VOLFR,X)= volfr**2; DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME. REMEMBER WE MUST BE CAREFUL WITH THE DIC> @@ TIMESTEP WHEN WE HAVE SPHEROIDAL PHASES PRESENT. IN THIS CASE DIC> @@ WE DON'T ALLOW THE TIMESTEP TO BE LARGER THAN 1800s. DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 3600000 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /360000/: 1800 INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ IN ORDER SO SAVE SOME SPACE ON THE DISK WE ONLY STORE THE RESULT DIC> @@ SELECTIVELY, ELSE THE STORE-RESULT-FILE FROM THIS EXAMPLE WOULD BE DIC> @@ VERY LARGE. DIC> @@ DIC> set-simulation-condition NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99 DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> DIC> @@ AS OF DICTRA VERSION 27 IT IS BY DEFAULT THE "HOMOGENIZATION MODEL" DIC> @@ THAT IS USED WHEN MULTIPLE PHASES ARE ENTERED IN A SINGLE REGION DIC> @@ DISABLE THE HOMOGENIZATION MODEL: DIC> ho n HOMOGENIZATION DISABLED DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exd1 y DIC> DIC> set-inter --OK--- DIC>

Page 207: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd1a-run

MACRO exd1a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1a\run.DCM"DIC> DIC> DIC> @@ exd1_run.DCM DIC> DIC> @@ DIC> @@ READ THE SETUP FILE AND START THE SIMULATION DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING M3C2 AS A DIFFUSION NONE PHASE *** ENTERING M7C3 AS A DIFFUSION NONE PHASE DIC> read exd1 OK DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = 4.73399698964897E-06 CR = .273386070506604 NI = .726613929493396 TOTAL SIZE OF SYSTEM: .003 [m] WARNING:M7C3 HAS NO VOLUME FRACTION, CREATING ONE WARNING:M3C2 HAS NO VOLUME FRACTION, CREATING ONE U-FRACTION IN SYSTEM: C = 4.73399698964897E-06 CR = .273386070506604 NI = .726613929493396 TOTAL SIZE OF SYSTEM: .003 [m] TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 7.37829265031515E-05 CR = .273386070506603 NI = .726613929493397 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 1.07765273658405E-04 CR = .273386070506579 NI = .726613929493421 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 1.29844980713892E-04 CR = .273386070500949 NI = .726613929499051 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 61.221707 DT = 60.821607 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 1.67985911285439E-04 CR = .273386069358852 NI = .726613930641148 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 135.34814 DT = 74.126429 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 2.08836403949598E-04 CR = .273386068335923 NI = .726613931664077 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 242.67634 DT = 107.32821 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 2.57253556459831E-04 CR = .273386067317191 NI = .726613932682809 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 1 seconds TIME = 408.61790 DT = 165.94156 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 3.16829365327127E-04 CR = .273386066351576 NI = .726613933648424 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 677.99375 DT = 269.37585 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 3.91398501422713E-04 CR = .273386065452223 NI = .726613934547777 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 1140.3108 DT = 462.31701 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 4.86579533187524E-04 CR = .273386064383138 NI = .726613935616862 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 2003.0736 DT = 862.76284 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 6.16999894543281E-04 CR = .273386063110096 NI = .726613936889904 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds

Page 208: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 3701.3810 DT = 1698.3074 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 8.03308317133787E-04 CR = .273386061634911 NI = .726613938365089 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 5501.3810 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = 9.81626963664712E-04 CR = .27338606076244 NI = .72661393923756 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 7301.3810 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00114736292032063 CR = .273386060181809 NI = .726613939818191 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 9101.3810 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00130395620915012 CR = .273386059222276 NI = .726613940777724 TOTAL SIZE OF SYSTEM: .003 [m]

output ignored...

... output resumed

CPU time used in timestep 0 seconds TIME = 3574559.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0315697587477024 CR = .273385942664622 NI = .726614057335378 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 1 seconds TIME = 3576359.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0315776966548907 CR = .273385942634954 NI = .726614057365046 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3578159.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0315856327218463 CR = .273385942605054 NI = .726614057394946 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3579959.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0315935669657689 CR = .273385942574922 NI = .726614057425078 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3581759.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316014994038047 CR = .273385942544559 NI = .726614057455441 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3583559.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316094300530421 CR = .273385942513963 NI = .726614057486037 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3585359.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316173589305067 CR = .273385942483135 NI = .726614057516865 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 1 seconds TIME = 3587159.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316252860531568 CR = .273385942452074 NI = .726614057547926 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3588959.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316332114378795 CR = .27338594242078 NI = .726614057579219 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3590759.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316411351014865 CR = .273385942389253 NI = .726614057610747 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3592559.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316490570607107 CR = .273385942357493 NI = .726614057642508 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3594359.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316569773322022 CR = .273385942325498 NI = .726614057674502

Page 209: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3596159.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316648959325255 CR = .27338594229327 NI = .72661405770673 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 1 seconds TIME = 3597959.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316728128781563 CR = .273385942260807 NI = .726614057739193 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3599759.7 DT = 1800.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0316807281854781 CR = .273385942228109 NI = .726614057771891 TOTAL SIZE OF SYSTEM: .003 [m] CPU time used in timestep 0 seconds TIME = 3600000.0 DT = 240.30748 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .031681789133322 CR = .273385942223668 NI = .726614057776332 TOTAL SIZE OF SYSTEM: .003 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 163559.69 DELETING TIME-RECORD FOR TIME 341759.69 DELETING TIME-RECORD FOR TIME 519959.69 DELETING TIME-RECORD FOR TIME 698159.69 DELETING TIME-RECORD FOR TIME 876359.69 DELETING TIME-RECORD FOR TIME 1054559.7 DELETING TIME-RECORD FOR TIME 1232759.7 DELETING TIME-RECORD FOR TIME 1410959.7 DELETING TIME-RECORD FOR TIME 1589159.7 DELETING TIME-RECORD FOR TIME 1767359.7 DELETING TIME-RECORD FOR TIME 1945559.7 DELETING TIME-RECORD FOR TIME 2123759.7 DELETING TIME-RECORD FOR TIME 2301959.7 DELETING TIME-RECORD FOR TIME 2480159.7 DELETING TIME-RECORD FOR TIME 2658359.7 DELETING TIME-RECORD FOR TIME 2836559.7 DELETING TIME-RECORD FOR TIME 3014759.7 DELETING TIME-RECORD FOR TIME 3192959.7 DELETING TIME-RECORD FOR TIME 3371159.7 DELETING TIME-RECORD FOR TIME 3549359.7 DELETING TIME-RECORD FOR TIME 3596159.7 DELETING TIME-RECORD FOR TIME 3597959.7 KEEPING TIME-RECORD FOR TIME 3599759.7 AND FOR TIME 3600000.0 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 210: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd1a-plot

MACRO exd1a\plot.DCMDIC> DIC> DIC> @@ exd1_plot.DCM DIC> DIC> @@ DIC> @@ FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 3.60000E+06 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING M3C2 AS A DIFFUSION NONE PHASE *** ENTERING M7C3 AS A DIFFUSION NONE PHASE DIC> read exd1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET US PLOT THE TOTAL CARBON CONCENTRATION PROFILE. POST-1: @@ POST-1: s-d-a y w-p c POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-s-s x n 0 2e-3 POST-1: s-p-c time 3600000 POST-1: POST-1: app y exd1.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 1 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-tit d1.1 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ LET US NOW PLOT THE AMOUNT OF CARBIDES FORMED. POST-1: @@ POST-1: s-d-a y npm(*) POST-1: s-s-s y n 0 0.4 POST-1: app n POST-1: POST-1: set-tit d1.2 POST-1: plot

Page 211: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: set-inter --OK--- POST-1:

Page 212: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example d1b

Carburization of a Ni-25% Cr alloy

using homogenization model

3E-3

T = 1123 K

●● ● ●● ●●

a = 1c

FCC

Page 213: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd1b-setup

MACRO exd1b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1b\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Diffusion in dispersed systems. SYS: @@ Setup file for carburization of a Ni-25Cr alloy. SYS: @@ In this case the M3C2 and M7C3 carbides are entered as SYS: @@ spheroid phases in a FCC matrix. This case is from SYS: @@ A. Engström, L. Höglund and J. Ågren: Metall.Trans. A, SYS: @@ v.25A (1994), pp. 1127-1134. This simulation can be run SYS: @@ with either the DISPERSED SYSTEM MODEL or the SYS: @@ HOMOGENIZATION MODEL. The default HOMOGENIZATION MODEL is used SYS: @@ and then ENTER_HOMOGENIZATION_FUNCTION should be used instead of SYS: @@ ENTER_LABYRINTH_FUNCTION. SYS: @@ SYS: SYS: @@ exd1b_setup.DCM SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE SSOL DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw ssol2 Current database: SGTE Alloy Solutions Database v2.1 VA DEFINED B2_BCC L12_FCC AL5FE4: REJECTED GAS:G AQUEOUS:A WATER:A REJECTED TDB_SSOL2: def-sys ni cr c NI CR C DEFINED TDB_SSOL2: rej ph * all LIQUID:L FCC_A1 BCC_A2 HCP_A3 DIAMOND_A4 CHI_A12 CBCC_A12 CUB_A13 SIGMA GRAPHITE CEMENTITE KSI_CARBIDE M23C6 M7C3 M3C2 FE4N AL3NI2 ALNI_B2 CR3SI CRSI2 REJECTED TDB_SSOL2: res ph fcc,m7c3,m3c2,grap FCC_A1 M7C3 M3C2 GRAPHITE RESTORED TDB_SSOL2: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'Byeong-Joo Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'Alan Dinsdale, SGTE Data for Pure Elements, NPL Report DMA(A)195 September 1989' 'Alan Dinsdale, SGTE Data for Pure Elements, Calphad Vol 15(1991) p 317-425, also in NPL Report DMA(A)195 Rev. August 1990' 'A. Gabriel, C. Chatillon, I. Ansara, to be published in High Temp. Sci. (parameters listed in Calphad Vol 11 (1987) pp 203-218); C-NI' 'A. Dinsdale, T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'NPL, unpublished work (1989); C-Cr-Ni' -OK- TDB_SSOL2: TDB_SSOL2: @@ TDB_SSOL2: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_SSOL2: @@ TDB_SSOL2: app mob2 Current database: Alloys Mobility v2.4 VA DEFINED GAS:G REJECTED APP: def-sys ni c cr NI C CR DEFINED APP: rej ph * all BCC_A2 CEMENTITE DIAMOND_A4 FCC_A1 FE4N GRAPHITE HCP_A3 KSI_CARBIDE LIQUID:L M23C6 M3C2 M7C3 SIGMA REJECTED APP: res ph fcc,m7c3,m3c2,grap FCC_A1 M7C3 M3C2 GRAPHITE RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni'

Page 214: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING M3C2 AS A DIFFUSION NONE PHASE *** ENTERING M7C3 AS A DIFFUSION NONE PHASE DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1123; * N DIC> DIC> @@ DIC> @@ SET REFERENCE STATE FOR CARBON DIC> @@ DIC> set-reference-state Component: C Reference state: grap Temperature /*/: * Pressure /100000/: 101325 DIC> DIC> @@ DIC> @@ ENTER REGION aus DIC> @@ DIC> enter-region aus DIC> DIC> @@ DIC> @@ ENTER GEOMETRICAL GRID INTO THE REGION DIC> @@ DIC> enter-grid aus 3e-3 geo 100 1.02 DIC> DIC> @@ DIC> @@ ENTER MATRIX PHASE IN THE REGION DIC> @@ DIC> enter-phase act aus matrix fcc_a1#1 DIC> DIC> @@ DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE DIC> @@ DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: ni COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: cr TYPE /LINEAR/: lin 25 25 PROFILE FOR /CR/: c TYPE /LINEAR/: lin 1e-4 1e-4 DIC> DIC> @@ DIC> @@ ENTER SPHEROIDAL PHASES IN THE REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: m7c3 DIC> DIC> @@ DIC> @@ ENTER STOICHOMETRIC SPHEROIDAL PHASE IN THE REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /AUS/: aus PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: m3c2 DIC> DIC> DIC> @@ DIC> @@ ENTER START COMPOSITION FOR SPHEROIDAL PHASES DIC> @@ DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: m7c3 USE EQUILIBRIUM VALUE /Y/: Y DIC> enter-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: m3c2 USE EQUILIBRIUM VALUE /Y/: Y DIC> DIC> @@ DIC> @@ SET BOUNDARY CONDITION DIC> @@ DIC> set-cond GLOBAL OR BOUNDARY CONDITION /GLOBAL/: boundary BOUNDARY /LOWER/: lower CONDITION TYPE /CLOSED_SYSTEM/: mixed Dependent substitutional element:NI Dependent interstitial element:VA TYPE OF CONDITION FOR COMPONENT C /ZERO_FLUX/: activity LOW TIME LIMIT /0/: 0 ACR(C)(TIME)= 1; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N TYPE OF CONDITION FOR COMPONENT CR /ZERO_FLUX/: zero-flux DIC> DIC> @@ DIC> @@ SELECT A HOMOGENIZATION FUNCTION DIC> @@ DIC> enter-homo INFO: ENABLING HOMOGENIZATION MODEL ENTER HOMOGENIZATION FUNCTION # /5/: 8

Page 215: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SELECTED FUNCTION IS LABYRINTH FACTOR f**2 WITH PRESCRIBED MATRIX PHASE PHASE NAME:: fcc#1 DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME. REMEMBER WE MUST BE CAREFUL WITH THE DIC> @@ TIMESTEP WHEN WE HAVE SPHEROIDAL PHASES PRESENT. IN THIS CASE DIC> @@ WE DON'T ALLOW THE TIMESTEP TO BE LARGER THAN 1800s. DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 3600000 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /360000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> DIC> @@ DIC> @@ IN ORDER SO SAVE SOME SPACE ON THE DISK WE ONLY STORE THE RESULT DIC> @@ SELECTIVELY, ELSE THE STORE-RESULT-FILE FROM THIS EXAMPLE WOULD BE DIC> @@ VERY LARGE. DIC> @@ DIC> set-simulation-condition NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99 DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exd1 y DIC> DIC> set-inter --OK--- DIC>

Page 216: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd1b-run

MACRO exd1b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1b\run.DCM"DIC> DIC> DIC> @@ exd1_run.DCM DIC> DIC> @@ DIC> @@ READ THE SETUP FILE AND START THE SIMULATION DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING M3C2 AS A DIFFUSION NONE PHASE *** ENTERING M7C3 AS A DIFFUSION NONE PHASE DIC> read exd1 OK DIC> sim STARTING SIMULATION USING HOMOGENIZATION MODEL ---------------------------------------------- INFO: PHASE WITH LIMITED SOLUBILITY OF ELEMENT(S) EXIST A FALLBACK PHASE ZZDICTRA_GHOST WILL BE DEFINED ALONG WITH THE FOLLOWING PARAMETERS: G(ZZDICTRA_GHOST,C;0)-H298(GRAPHITE,C;0) G(ZZDICTRA_GHOST,CR;0)-H298(BCC_A2,CR;0) G(ZZDICTRA_GHOST,NI;0)-H298(FCC_A1,NI;0) L(ZZDICTRA_GHOST,C,CR;0) L(ZZDICTRA_GHOST,C,NI;0) L(ZZDICTRA_GHOST,CR,NI;0) Saving results ------------------------------------------------ WARNING:M7C3 HAS NO VOLUME FRACTION, CREATING ONE WARNING:M3C2 HAS NO VOLUME FRACTION, CREATING ONE Starting time-step t0= 0.000000000000000E+000 dt= 1.000000000000000E-007 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420199165858907E-008 / 4.733974808906108E-006 CR 8.201582115198115E-004 / 0.273384776303833 NI 2.179841788480188E-003 / 0.726610489721358 Time-step converged t0= 0.000000000000000E+000 dt= 1.000000000000000E-007 ------------------------------------------------ Saving results ------------------------------------------------ Starting time-step t0= 1.000000000000000E-007 dt= 2.000000000000000E-007 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420199303787341E-008 / 4.733975268663203E-006 CR 8.201582115198115E-004 / 0.273384776303707 NI 2.179841788480188E-003 / 0.726610489721024 Time-step converged t0= 1.000000000000000E-007 dt= 2.000000000000000E-007 ------------------------------------------------ Starting time-step t0= 3.000000000000000E-007 dt= 4.000000000000000E-007 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 8.592925588816543E-004 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420199579644213E-008 / 4.733976188177402E-006 CR 8.201582115198115E-004 / 0.273384776303456 NI 2.179841788480188E-003 / 0.726610489720356 Time-step converged t0= 3.000000000000000E-007 dt= 4.000000000000000E-007 ------------------------------------------------ Starting time-step t0= 7.000000000000000E-007 dt= 8.000000000000000E-007 Stage 1 Iteration # 1 sum residual **2: 1.435648489343165E-004 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420200131357960E-008 / 4.733978027205813E-006 CR 8.201582115198115E-004 / 0.273384776302953 NI 2.179841788480188E-003 / 0.726610489719020 Time-step converged t0= 7.000000000000000E-007 dt= 8.000000000000000E-007 ------------------------------------------------ Starting time-step t0= 1.500000000000000E-006 dt= 1.600000000000000E-006 Stage 1 Iteration # 1 sum residual **2: 6.186519495508916E-005 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420201234785418E-008 / 4.733981705262516E-006 CR 8.201582115198115E-004 / 0.273384776301948 NI 2.179841788480188E-003 / 0.726610489716347 Time-step converged t0= 1.500000000000000E-006 dt= 1.600000000000000E-006 ------------------------------------------------ Starting time-step t0= 3.100000000000000E-006 dt= 3.200000000000000E-006 Stage 1 Iteration # 1 sum residual **2: 4.261106992515092E-005 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420203441639994E-008 / 4.733989061374788E-006 CR 8.201582115198115E-004 / 0.273384776299937 NI 2.179841788480188E-003 / 0.726610489711002 Time-step converged t0= 3.100000000000000E-006 dt= 3.200000000000000E-006 ------------------------------------------------ Starting time-step t0= 6.300000000000000E-006 dt= 6.400000000000000E-006 Stage 1 Iteration # 1 sum residual **2: 3.571801231626558E-005 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420207855351028E-008 / 4.734003773605606E-006 CR 8.201582115198115E-004 / 0.273384776295914 NI 2.179841788480188E-003 / 0.726610489700312

Page 217: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Time-step converged t0= 6.300000000000000E-006 dt= 6.400000000000000E-006 ------------------------------------------------ Starting time-step t0= 1.270000000000000E-005 dt= 1.280000000000000E-005 Stage 1 Iteration # 1 sum residual **2: 3.276725225871970E-005 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420216682766344E-008 / 4.734033198044733E-006 CR 8.201582115198115E-004 / 0.273384776287870 NI 2.179841788480188E-003 / 0.726610489678932 Time-step converged t0= 1.270000000000000E-005 dt= 1.280000000000000E-005 ------------------------------------------------ Starting time-step t0= 2.550000000000000E-005 dt= 2.560000000000000E-005 Stage 1 Iteration # 1 sum residual **2: 3.138169207816513E-005 Stage 2 Stage 3 Moles of elements / mole fractions in system: C 1.420234337570845E-008 / 4.734092046835878E-006 CR 8.201582115198115E-004 / 0.273384776271782 NI 2.179841788480188E-003 / 0.726610489636171

output ignored...

... output resumed

------------------------------------------------ Starting time-step t0= 3599860.60328877 dt= 139.396711231209 Stage 1 Iteration # 1 sum residual **2: 3034.82389596271 Iteration # 2 sum residual **2: 1159.44358151116 Iteration # 3 sum residual **2: 443.317656209093 Iteration # 4 sum residual **2: 169.419789193486 Iteration # 5 sum residual **2: 64.5951002739962 Iteration # 6 sum residual **2: 24.4724721299679 Iteration # 7 sum residual **2: 9.13969600884041 Iteration # 8 sum residual **2: 3.38427234845210 Iteration # 9 sum residual **2: 1.20148931924190 Iteration # 10 sum residual **2: 0.351609750865291 Stage 2 Iteration # 1 sum residual **2: 158.379323323045 Iteration # 2 sum residual **2: 92.7895813656680 Iteration # 3 sum residual **2: 54.2954569811537 Iteration # 4 sum residual **2: 31.7019034130323 Iteration # 5 sum residual **2: 18.4355566997660 Iteration # 6 sum residual **2: 10.6635048651363 Iteration # 7 sum residual **2: 6.16133651136274 Iteration # 8 sum residual **2: 3.54575453732810 Iteration # 9 sum residual **2: 2.01771583932736 Iteration # 10 sum residual **2: 1.12179899502801 Iteration # 11 sum residual **2: 0.590881299438492 Stage 3 Iteration # 1 sum residual **2: 336.945485443411 Iteration # 2 sum residual **2: 197.832125755300 Iteration # 3 sum residual **2: 116.034613252757 Iteration # 4 sum residual **2: 67.9659842110170 Iteration # 5 sum residual **2: 39.7313958334749 Iteration # 6 sum residual **2: 23.1490726561094 Iteration # 7 sum residual **2: 13.4134616987171 Iteration # 8 sum residual **2: 7.74793926116461 Iteration # 9 sum residual **2: 4.46773988695486 Iteration # 10 sum residual **2: 2.55536337698932 Iteration # 11 sum residual **2: 1.43662815417144 Iteration # 12 sum residual **2: 0.778031835165766 Moles of elements / mole fractions in system: C 1.045622037563976E-004 / 3.368017675080932E-002 CR 8.201582115198121E-004 / 0.264178379330732 NI 2.179841788480189E-003 / 0.702141443918458 Time-step converged t0= 3599860.60328877 dt= 139.396711231209 ------------------------------------------------ Saving results ------------------------------------------------ MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 18931.620 DELETING TIME-RECORD FOR TIME 75410.440 DELETING TIME-RECORD FOR TIME 152934.60 DELETING TIME-RECORD FOR TIME 204259.46 DELETING TIME-RECORD FOR TIME 246779.64 DELETING TIME-RECORD FOR TIME 289299.81 DELETING TIME-RECORD FOR TIME 331819.99 DELETING TIME-RECORD FOR TIME 374340.16 DELETING TIME-RECORD FOR TIME 416860.34 DELETING TIME-RECORD FOR TIME 459380.52 DELETING TIME-RECORD FOR TIME 501900.69 DELETING TIME-RECORD FOR TIME 544420.87 DELETING TIME-RECORD FOR TIME 586941.05 DELETING TIME-RECORD FOR TIME 629461.22 DELETING TIME-RECORD FOR TIME 671981.40 DELETING TIME-RECORD FOR TIME 714501.57 DELETING TIME-RECORD FOR TIME 757021.75 DELETING TIME-RECORD FOR TIME 799541.93 DELETING TIME-RECORD FOR TIME 842062.10 DELETING TIME-RECORD FOR TIME 884582.28 DELETING TIME-RECORD FOR TIME 927102.45 DELETING TIME-RECORD FOR TIME 969622.63 DELETING TIME-RECORD FOR TIME 1012142.8 DELETING TIME-RECORD FOR TIME 1054663.0 DELETING TIME-RECORD FOR TIME 1097183.2 DELETING TIME-RECORD FOR TIME 1139703.3 DELETING TIME-RECORD FOR TIME 1182223.5 DELETING TIME-RECORD FOR TIME 1224743.7 DELETING TIME-RECORD FOR TIME 1267263.9 DELETING TIME-RECORD FOR TIME 1309784.0 DELETING TIME-RECORD FOR TIME 1352304.2

Page 218: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DELETING TIME-RECORD FOR TIME 1394824.4 DELETING TIME-RECORD FOR TIME 1437344.6 DELETING TIME-RECORD FOR TIME 1479864.7 DELETING TIME-RECORD FOR TIME 1522384.9 DELETING TIME-RECORD FOR TIME 1564905.1 DELETING TIME-RECORD FOR TIME 1607425.3 DELETING TIME-RECORD FOR TIME 1649945.5 DELETING TIME-RECORD FOR TIME 1692465.6 DELETING TIME-RECORD FOR TIME 1734985.8 DELETING TIME-RECORD FOR TIME 1777506.0 DELETING TIME-RECORD FOR TIME 1820026.2 DELETING TIME-RECORD FOR TIME 1862546.3 DELETING TIME-RECORD FOR TIME 1905066.5 DELETING TIME-RECORD FOR TIME 1947586.7 DELETING TIME-RECORD FOR TIME 1990106.9 DELETING TIME-RECORD FOR TIME 2032627.0 DELETING TIME-RECORD FOR TIME 2075147.2 DELETING TIME-RECORD FOR TIME 2117667.4 DELETING TIME-RECORD FOR TIME 2160187.6 DELETING TIME-RECORD FOR TIME 2202707.7 DELETING TIME-RECORD FOR TIME 2245227.9 DELETING TIME-RECORD FOR TIME 2287748.1 DELETING TIME-RECORD FOR TIME 2330268.3 DELETING TIME-RECORD FOR TIME 2372788.4 DELETING TIME-RECORD FOR TIME 2415308.6 DELETING TIME-RECORD FOR TIME 2457828.8 DELETING TIME-RECORD FOR TIME 2500349.0 DELETING TIME-RECORD FOR TIME 2542869.2 DELETING TIME-RECORD FOR TIME 2585389.3 DELETING TIME-RECORD FOR TIME 2627909.5 DELETING TIME-RECORD FOR TIME 2670429.7 DELETING TIME-RECORD FOR TIME 2712949.9 DELETING TIME-RECORD FOR TIME 2755470.0 DELETING TIME-RECORD FOR TIME 2797990.2 DELETING TIME-RECORD FOR TIME 2840510.4 DELETING TIME-RECORD FOR TIME 2883030.6 DELETING TIME-RECORD FOR TIME 2925550.7 DELETING TIME-RECORD FOR TIME 2968070.9 DELETING TIME-RECORD FOR TIME 3010591.1 DELETING TIME-RECORD FOR TIME 3053111.3 DELETING TIME-RECORD FOR TIME 3095631.4 DELETING TIME-RECORD FOR TIME 3138151.6 DELETING TIME-RECORD FOR TIME 3180671.8 DELETING TIME-RECORD FOR TIME 3223192.0 DELETING TIME-RECORD FOR TIME 3265712.1 DELETING TIME-RECORD FOR TIME 3308232.3 DELETING TIME-RECORD FOR TIME 3350752.5 DELETING TIME-RECORD FOR TIME 3393272.7 DELETING TIME-RECORD FOR TIME 3435792.9 DELETING TIME-RECORD FOR TIME 3478313.0 DELETING TIME-RECORD FOR TIME 3520833.2 KEEPING TIME-RECORD FOR TIME 3563353.4 AND FOR TIME 3600000.0 WORKSPACE RECLAIMED ------------------------------------------------ INTERPOLATION SCHEME USED THIS FRACTION OF THE ALLOCATED MEMORY: 0.111958041667877 EFFICIENCY FACTOR: 92.8628488500846 ------------------------------------------------ DEALLOCATING ------------------------------------------------ DIC> DIC> set-inter --OK--- DIC>

Page 219: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd1b-plot

MACRO exd1b\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd1b\plot.DCM"DIC> DIC> DIC> @@ exd1_plot.DCM DIC> DIC> @@ DIC> @@ FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 3.60000E+06 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE *** ENTERING M3C2 AS A DIFFUSION NONE PHASE *** ENTERING M7C3 AS A DIFFUSION NONE PHASE DIC> read exd1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET US PLOT THE TOTAL CARBON CONCENTRATION PROFILE. POST-1: @@ POST-1: s-d-a y w-p c POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-s-s x n 0 2e-3 POST-1: s-p-c time 3600000 POST-1: POST-1: app y exd1.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 1 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-tit d1.1 POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: @@ POST-1: @@ LET US NOW PLOT THE AMOUNT OF CARBIDES FORMED. POST-1: @@ POST-1: s-d-a y npm(*) POST-1: s-s-s y n 0 0.4 POST-1: app n POST-1: POST-1: set-tit d1.2 POST-1: plot

Page 220: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: POST-1: set-inter --OK--- POST-1:

Page 221: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example d2a

diffusion couple of Fe-Ni-Cr alloys

(Initially we have a step-profile)

4E-3

T = 1473 K

FCC FCC+BCC

●● ●●● ●●

10.0% Ni

16.2% Cr

29.4% Ni

40.0% Cr

Page 222: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd2a-setup

MACRO exd2a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2a\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Diffusion in dispersed systems. SYS: @@ Setup file for calculating the interdiffusion in a diffusion SYS: @@ couple between a two-phase (FCC+BCC) and a single-phase (FCC) SYS: @@ Fe-Ni-Cr alloy.@@ This case is from A. Engström: Scand. J. Met., v. 24, SYS: @@ 1995, pp.12-20. This simulation can be run with either the DISPERSED SYS: @@ SYSTEM MODEL or the HOMOGENIZATION MODEL. SYS: @@ In this example the DISPERSED SYSTEM MODEL is used, which requires SYS: @@ that the default HOMOGENIZATION MODEL is disabled. SYS: @@ With the DISPERSED SYSTEM MODEL the command SYS: @@ ENTER_LABYRINTH_FUNCTION is used to take into account the SYS: @@ impeding effect of dispersed phases on long-range diffusion. SYS: @@ For the HOMOGENIZATION MODEL the command SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used. SYS: @@ SYS: SYS: @@ exd2_setup.DCM SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe ni cr FE NI CR DEFINED TDB_TCFE7: rej ph * all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc,bcc FCC_A1 BCC_A2 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni cr FE NI CR DEFINED APP: rej ph * all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc,bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@

Page 223: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 1473; * N DIC> DIC> @@ DIC> @@ ENTER REGION fer DIC> @@ DIC> enter-region fer DIC> DIC> DIC> @@ DIC> @@ ENTER DOUBLE-GEOMETRICAL GRID INTO THE REGION DIC> @@ THIS WILL GIVE A SHORT DISTANCE BETWEEN THE GRIDPOINTS DIC> @@ IN THE MIDDLE OF THE REGION WHERE THE INITIAL INTERFACE IS DIC> @@ DIC> enter-grid fer WIDTH OF REGION /1/: 4e-3 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 200 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.97 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.03093 DIC> DIC> @@ DIC> @@ ENTER MATRIX PHASE IN THE REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act fer matrix fcc DIC> DIC> @@ DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE FROM FILES DIC> @@ DIC> enter-composition REGION NAME : /FER/: fer PHASE NAME: /FCC_A1/: fcc DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr TYPE /LINEAR/: read d2cr.dat PROFILE FOR /NI/: ni TYPE /LINEAR/: read d2ni.dat DIC> DIC> @@ DIC> @@ ENTER FERRITE AS SPHEROIDAL PHASE IN THE REGION DIC> @@ SINCE THE FRACTION OF FERRITE IS SMALL AND THEY APPEAR DIC> @@ AS ISOLATED PARTICLES WE ENTER FERRITE AS A SPHEROIDAL PHASE DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /FER/: fer PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: bcc DIC> DIC> @@ DIC> @@ ENTER COMPOSITION FOR THE SPHEROIDAL PHASE DIC> @@ WE USE THE EQUILIBRIUM VALUE DIC> @@ DIC> enter-composition REGION NAME : /FER/: fer PHASE NAME: /FCC_A1/: bcc USE EQUILIBRIUM VALUE /Y/: y DIC> DIC> DIC> @@ DIC> @@ ENTER LABYRINTH FACTOR DIC> @@ IN THIS CASE THE LOW DIFFUSIVITY PHASE IS THE MATRIX AND THE DIC> @@ "EFFECTIVE" DIFFUSIVITY IN THE AUSTENITE+FERRITE TWO-PHASE DIC> @@ REGION IS EXPECTED TO BE HIGHER THAN THE DIFFUSIVITY IN THE DIC> @@ AUSTENITE. DIC> enter-lab REGION NAME : fer f(T,P,VOLFR,X)= 1+3*(1-volfr)/volfr; DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 720000 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /72000/: 5000 INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> set-simulation-condition NS01A PRINT CONTROL : /0/: FLUX CORRECTION FACTOR : /1/: NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: CHECK INTERFACE POSITION /NO/: VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99 DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: MAX TIMESTEP CHANGE PER TIMESTEP : /2/: USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> @@ AS OF DICTRA VERSION 27 IT IS BY DEFAULT THE "HOMOGENIZATION MODEL" DIC> @@ THAT IS USED WHEN MULTIPLE PHASES ARE ENTERED IN A SINGLE REGION DIC> @@ DISABLE THE HOMOGENIZATION MODEL: DIC> ho n HOMOGENIZATION DISABLED DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC>

Page 224: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> save exd2 y DIC> DIC> set-inter --OK--- DIC>

Page 225: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd2a-run

MACRO exd2a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2a\run.DCM"DIC> DIC> DIC> @@ exd2_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING THE SIMULATION OF EXAMPLE D2 DIC> @@ DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exd2 OK DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: CR = .297842647391913 FE = .517227320517284 NI = .184930032090802 TOTAL SIZE OF SYSTEM: .004 [m] WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE U-FRACTION IN SYSTEM: CR = .297842647391914 FE = .517227320517284 NI = .184930032090802 TOTAL SIZE OF SYSTEM: .004 [m] TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297842647356821 FE = .517227320600574 NI = .184930032042606 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297842648005431 FE = .517227319061159 NI = .18493003293341 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297842676377595 FE = .517227251840506 NI = .184930071781899 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 281.72200 DT = 281.32190 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297847760270075 FE = .517216317308819 NI = .184935922421105 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 1 seconds TIME = 844.36579 DT = 562.64380 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297849615184743 FE = .517212946633452 NI = .184937438181806 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 1969.6534 DT = 1125.2876 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297850550731974 FE = .517211426818696 NI = .184938022449329 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 4220.2286 DT = 2250.5752 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297851119000641 FE = .517210569323811 NI = .184938311675548 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 8721.3789 DT = 4501.1504 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297851494954336 FE = .517210020163941 NI = .184938484881723 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 13721.379 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297851732113691 FE = .517209740277052 NI = .184938527609257 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 18721.379 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .29785188345351 FE = .517209584045532 NI = .184938532500958 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 23721.379 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297851977657557 FE = .517209483265971 NI = .184938539076472 TOTAL SIZE OF SYSTEM: .004 [m]

Page 226: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

CPU time used in timestep 1 seconds TIME = 28721.379 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852029985829 FE = .517209412426188 NI = .184938557587983 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 33721.379 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852049766013 FE = .517209361691075 NI = .184938588542912 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 38721.379 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852045015472 FE = .517209326359907 NI = .184938628624621 TOTAL SIZE OF SYSTEM: .004 [m]

output ignored...

... output resumed

CPU time used in timestep 0 seconds TIME = 638721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .29785207139255 FE = .517209093083929 NI = .18493883552352 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 1 seconds TIME = 643721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852073681695 FE = .517209091807032 NI = .184938834511272 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 648721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852074518782 FE = .517209091190445 NI = .184938834290772 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 653721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852073880061 FE = .517209091158173 NI = .184938834961767 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 658721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852071737297 FE = .51720909167323 NI = .184938836589473 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 663721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852068061711 FE = .51720909271906 NI = .184938839219229 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 1 seconds TIME = 668721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .29785206282505 FE = .517209094290037 NI = .184938842884913 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 673721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852056000146 FE = .51720909638732 NI = .184938847612534 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 678721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852047560723 FE = .517209099016376 NI = .184938853422902 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 683721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852037481164 FE = .517209102185645 NI = .184938860333193 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 1 seconds TIME = 688721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852031720922 FE = .517209104528001 NI = .184938863751077 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 693721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852035107033 FE = .517209102778461 NI = .184938862114505 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 698721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852041265684 FE = .517209100862437

Page 227: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

NI = .184938857871879 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 703721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852048239018 FE = .517209099115001 NI = .184938852645982 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 708721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852055131712 FE = .517209097666818 NI = .18493884720147 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 1 seconds TIME = 713721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852061470743 FE = .517209096580471 NI = .184938841948786 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 718721.38 DT = 5000.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852066979963 FE = .517209095891388 NI = .184938837128649 TOTAL SIZE OF SYSTEM: .004 [m] CPU time used in timestep 0 seconds TIME = 720000.00 DT = 1278.6211 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: CR = .297852071767323 FE = .517209095429354 NI = .184938832803323 TOTAL SIZE OF SYSTEM: .004 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 468721.38 DELETING TIME-RECORD FOR TIME 708721.38 DELETING TIME-RECORD FOR TIME 713721.38 KEEPING TIME-RECORD FOR TIME 718721.38 AND FOR TIME 720000.00 WORKSPACE RECLAIMED DIC> DIC> DIC> DIC> DIC> set-inter --OK--- DIC>

Page 228: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd2a-plot

MACRO exd2a\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2a\plot.DCM"DIC> DIC> DIC> @@ exd2_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D2 DIC> @@ DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 7.20000E+05 DIC> read exd2 OK DIC> DIC> @@ DIC> @@ ENTER THE DICTRA POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ LET US FIRST SEE HOW THE FRACTION OF FERRITE HAS CHANGED POST-1: @@ AS A RESULT OF THE DIFFUSION POST-1: @@ POST-1: s-d-a y npm(bcc) POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-p-c time 0 720000 POST-1: set-tit Figure D2.1 POST-1: pl

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ LET US NOW PLOT HOW THE AVERAGE CR-CONCENTRATION VARIES WITH DISTANCE POST-1: @@ POST-1: s-d-a y w-p cr POST-1: s-p-c time last POST-1: set-tit Figure D2.2 POST-1: pl

Page 229: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ WE SELECT A BETTER SCALING AND APPEND EXPERIMENTAL DATA POST-1: @@ POST-1: POST-1: app y exd2.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 4 POST-1: POST-1: s-s-s y n 0 50 POST-1: s-s-s x n 10e-4 30e-4 POST-1: POST-1: set-tit Figure D2.3 POST-1: pl

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ NOW WE DO THE SAME FOR NICKEL POST-1: @@ POST-1: POST-1: s-d-a y w-p ni POST-1: POST-1: app y exd2.exp PROLOGUE NUMBER: /1/: 1 DATASET NUMBER(s): /-1/: 5 POST-1: POST-1: s-s-s x n 10e-4 30e-4 POST-1: s-s-s y n 0 40 POST-1: POST-1: set-tit Figure D2.4 POST-1: pl

Page 230: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ LET US PLOT THE DIFFUSION PATH FOR THE COUPLE POST-1: @@ WE APPEND THE TERNARY PHASE-DIAGRAM CALCULATED IN THERMO-CALC POST-1: @@ AND THE EXPERIMENTAL DATA POST-1: @@ POST-1: s-d-a x w-p cr POST-1: s-d-a y w-p ni POST-1: s-i-v dis gl POST-1: s-p-c time last POST-1: POST-1: app y exd2.exp PROLOGUE NUMBER: /1/: 1 DATASET NUMBER(s): /-1/: 6 7 8 POST-1: POST-1: s-s-s x n 10 50 POST-1: s-s-s y n 5 35 POST-1: POST-1: set-tit Figure D2.5 POST-1: pl

POST-1: POST-1: POST-1: POST-1: POST-1: set-interactive --OK--- POST-1:

Page 231: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example d2b

diffusion couple of Fe-Ni-Cr alloys

using homogenization model

(Initially we have a step-profile)

4E-3

T = 1473 K

FCC FCC+BCC

●● ●●● ●●

10.0% Ni

16.2% Cr

29.4% Ni

40.0% Cr

Page 232: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd2b-setup

MACRO exd2b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2b\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Diffusion in dispersed systems. SYS: @@ Setup file for calculating the interdiffusion in a diffusion SYS: @@ couple between a two-phase (FCC+BCC) and a single-phase (FCC) SYS: @@ Fe-Ni-Cr alloy. This case is from A. Engström: Scand. J. Met., SYS: @@ v. 24, 1995, pp.12-20. This simulation can be run with either SYS: @@ the DISPERSED SYSTEM MODEL or the HOMOGENIZATION MODEL. SYS: @@ Here the default HOMOGENIZATION MODEL is used and then SYS: @@ ENTER_HOMOGENIZATION_FUNCTION should be used instead of SYS: @@ ENTER_LABYRINTH_FUNCTION. SYS: @@ SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe ni cr FE NI CR DEFINED TDB_TCFE7: rej ph * all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc,bcc FCC_A1 BCC_A2 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni cr FE NI CR DEFINED APP: rej ph * all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc,bcc FCC_A1 BCC_A2 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@

Page 233: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> set-cond glob T 0 1473; * N DIC> DIC> @@ DIC> @@ ENTER REGION fer DIC> @@ DIC> enter-region fer DIC> DIC> DIC> @@ DIC> @@ ENTER DOUBLE-GEOMETRICAL GRID INTO THE REGION DIC> @@ THIS WILL GIVE A SHORT DISTANCE BETWEEN THE GRIDPOINTS DIC> @@ IN THE MIDDLE OF THE REGION WHERE THE INITIAL INTERFACE IS DIC> @@ DIC> enter-grid fer WIDTH OF REGION /1/: 4e-3 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 200 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.97 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.03093 DIC> DIC> @@ DIC> @@ ENTER MATRIX PHASE IN THE REGION DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act fer matrix fcc DIC> DIC> @@ DIC> @@ ENTER THE START COMPOSITION FOR THE MATRIX PHASE FROM FILES DIC> @@ DIC> enter-composition REGION NAME : /FER/: fer PHASE NAME: /FCC_A1/: fcc DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /CR/: cr TYPE /LINEAR/: read d2cr.dat PROFILE FOR /NI/: ni TYPE /LINEAR/: read d2ni.dat DIC> DIC> @@ DIC> @@ ENTER FERRITE AS SPHEROIDAL PHASE IN THE REGION DIC> @@ SINCE THE FRACTION OF FERRITE IS SMALL AND THEY APPEAR DIC> @@ AS ISOLATED PARTICLES WE ENTER FERRITE AS A SPHEROIDAL PHASE DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /FER/: fer PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: bcc DIC> DIC> @@ DIC> @@ ENTER COMPOSITION FOR THE SPHEROIDAL PHASE DIC> @@ WE USE THE EQUILIBRIUM VALUE DIC> @@ DIC> enter-composition REGION NAME : /FER/: fer PHASE NAME: /FCC_A1/: bcc USE EQUILIBRIUM VALUE /Y/: y DIC> DIC> @@ SELECT A HOMOGENIZATION FUNCTION DIC> @@ IN THIS CASE THE LOWER HASHIN-SHTRIKMAN BOUND DIC> en-ho 1 INFO: ENABLING HOMOGENIZATION MODEL SELECTED FUNCTION IS HASHIN-SHTRIKMAN BOUND: GENERAL LOWER DIC> DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 720000 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /72000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> set-simulation-condition NS01A PRINT CONTROL : /0/: 0 FLUX CORRECTION FACTOR : /1/: 1 NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: 2 CHECK INTERFACE POSITION /NO/: n VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: act ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: y SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99 DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: 1 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: 2 USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: n ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: y CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: n DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> DIC> save exd2 y DIC> DIC> set-inter --OK--- DIC>

Page 234: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd2b-run

MACRO exd2b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd2b\run.DCM"DIC> DIC> DIC> @@ exd2_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING THE SIMULATION OF EXAMPLE D2 DIC> @@ DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exd2 OK DIC> sim STARTING SIMULATION USING HOMOGENIZATION MODEL ---------------------------------------------- Saving results ------------------------------------------------ WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE Starting time-step t0= 0.000000000000000E+000 dt= 1.000000000000000E-007 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 0.000000000000000E+000 dt= 1.000000000000000E-007 ------------------------------------------------ Saving results ------------------------------------------------ Starting time-step t0= 1.000000000000000E-007 dt= 2.000000000000000E-007 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 1.000000000000000E-007 dt= 2.000000000000000E-007 ------------------------------------------------ Starting time-step t0= 3.000000000000000E-007 dt= 4.000000000000000E-007 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 3.000000000000000E-007 dt= 4.000000000000000E-007 ------------------------------------------------ Starting time-step t0= 7.000000000000000E-007 dt= 8.000000000000000E-007 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 7.000000000000000E-007 dt= 8.000000000000000E-007 ------------------------------------------------ Starting time-step t0= 1.500000000000000E-006 dt= 1.600000000000000E-006 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 1.500000000000000E-006 dt= 1.600000000000000E-006 ------------------------------------------------ Starting time-step t0= 3.100000000000000E-006 dt= 3.200000000000000E-006 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 3.100000000000000E-006 dt= 3.200000000000000E-006 ------------------------------------------------ Starting time-step t0= 6.300000000000000E-006 dt= 6.400000000000000E-006 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 6.300000000000000E-006 dt= 6.400000000000000E-006 ------------------------------------------------ Starting time-step t0= 1.270000000000000E-005 dt= 1.280000000000000E-005 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 1.270000000000000E-005 dt= 1.280000000000000E-005 ------------------------------------------------

Page 235: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Starting time-step t0= 2.550000000000000E-005 dt= 2.560000000000000E-005 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 2.550000000000000E-005 dt= 2.560000000000000E-005 ------------------------------------------------ Starting time-step t0= 5.110000000000000E-005 dt= 5.120000000000000E-005 Stage 1 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802

output ignored...

... output resumed

Iteration # 8 sum residual **2: 203258.607725639 Reducing dt to 27487.7906944000 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 831466.030879433 Iteration # 2 sum residual **2: 7983473.86629958 Evaluating Jacobian Iteration # 3 sum residual **2: 684162.093803402 Iteration # 4 sum residual **2: 686295.673624685 Reducing dt to 13743.8953472000 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 169276.146125021 Iteration # 2 sum residual **2: 110251.860529170 Iteration # 3 sum residual **2: 390394.022782019 Evaluating Jacobian Iteration # 4 sum residual **2: 3561.27730260060 Iteration # 5 sum residual **2: 167.776428538954 Iteration # 6 sum residual **2: 7.30088751020015 Iteration # 7 sum residual **2: 2.753237614476837E-002 Stage 2 Iteration # 1 sum residual **2: 59814.1795277212 Iteration # 2 sum residual **2: 60122.8389390526 Evaluating Jacobian Iteration # 3 sum residual **2: 32834.4655664678 Iteration # 4 sum residual **2: 18241.1957542826 Iteration # 5 sum residual **2: 15116.9960701884 Iteration # 6 sum residual **2: 2380.81624259528 Iteration # 7 sum residual **2: 1873.53992374841 Iteration # 8 sum residual **2: 2569.94502835430 Evaluating Jacobian Iteration # 9 sum residual **2: 98.4579992591595 Iteration # 10 sum residual **2: 3.99071721503402 Iteration # 11 sum residual **2: 7.283723101384035E-003 Stage 3 Iteration # 1 sum residual **2: 786.284934457136 Iteration # 2 sum residual **2: 92.1863322532699 Iteration # 3 sum residual **2: 3.31537008161831 Iteration # 4 sum residual **2: 7.843614362314693E-003 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391913 FE 2.068909282069138E-003 / 0.517227320517285 NI 7.397201283632083E-004 / 0.184930032090802 Time-step converged t0= 628407.402495900 dt= 13743.8953472000 ------------------------------------------------ Starting time-step t0= 642151.297843100 dt= 13743.8953472000 Stage 1 Iteration # 1 sum residual **2: 17104.1192725741 Iteration # 2 sum residual **2: 751.595335741003 Iteration # 3 sum residual **2: 46.0701155378701 Iteration # 4 sum residual **2: 1.35634451430566 Stage 2 Iteration # 1 sum residual **2: 3.870163373112630E-002 Stage 3 Iteration # 1 sum residual **2: 9.964827969280103E-003 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069138E-003 / 0.517227320517284 NI 7.397201283632085E-004 / 0.184930032090802 Time-step converged t0= 642151.297843100 dt= 13743.8953472000 ------------------------------------------------ Starting time-step t0= 655895.193190300 dt= 27487.7906944000 Stage 1 Iteration # 1 sum residual **2: 596457.262440395 Iteration # 2 sum residual **2: 45866.6288227245 Iteration # 3 sum residual **2: 14738.0462297679 Iteration # 4 sum residual **2: 6992.29139967807 Iteration # 5 sum residual **2: 933.702937849485 Iteration # 6 sum residual **2: 431.435735559867 Iteration # 7 sum residual **2: 38.9354462199352 Iteration # 8 sum residual **2: 6.61722461172414 Iteration # 9 sum residual **2: 7.936849589233788E-002 Stage 2 Iteration # 1 sum residual **2: 7.90486718786478 Iteration # 2 sum residual **2: 0.562821331341239 Stage 3 Iteration # 1 sum residual **2: 19.9525932435355 Iteration # 2 sum residual **2: 2.21966270338752 Iteration # 3 sum residual **2: 0.264561138053278 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391913 FE 2.068909282069138E-003 / 0.517227320517284 NI 7.397201283632083E-004 / 0.184930032090802 Time-step converged t0= 655895.193190300 dt= 27487.7906944000 ------------------------------------------------

Page 236: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Starting time-step t0= 683382.983884700 dt= 36617.0161153004 Stage 1 Iteration # 1 sum residual **2: 1418597.36959368 Iteration # 2 sum residual **2: 1351912.47501260 Iteration # 3 sum residual **2: 1285450.21665684 Iteration # 4 sum residual **2: 815543.946112943 Iteration # 5 sum residual **2: 20767.6419557718 Iteration # 6 sum residual **2: 14308.4307521629 Iteration # 7 sum residual **2: 12105.2829342820 Iteration # 8 sum residual **2: 2432.42468386528 Iteration # 9 sum residual **2: 19.6980499078557 Iteration # 10 sum residual **2: 16.7553684382103 Iteration # 11 sum residual **2: 16.5885863623907 Evaluating Jacobian Iteration # 12 sum residual **2: 2.641898651755886E-003 Stage 2 Iteration # 1 sum residual **2: 660.937731538268 Iteration # 2 sum residual **2: 143.926833741535 Iteration # 3 sum residual **2: 28.0110434242570 Iteration # 4 sum residual **2: 4.81595354209370 Iteration # 5 sum residual **2: 0.488136089230660 Stage 3 Iteration # 1 sum residual **2: 87.0940420842275 Iteration # 2 sum residual **2: 41.0545363864839 Iteration # 3 sum residual **2: 8.77263388202189 Iteration # 4 sum residual **2: 1.30526771779996 Moles of elements / mole fractions in system: CR 1.191370589567654E-003 / 0.297842647391914 FE 2.068909282069137E-003 / 0.517227320517284 NI 7.397201283632084E-004 / 0.184930032090802 Time-step converged t0= 683382.983884700 dt= 36617.0161153004 ------------------------------------------------ Saving results ------------------------------------------------ MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 KEEPING TIME-RECORD FOR TIME 188602.75 AND FOR TIME 720000.00 WORKSPACE RECLAIMED ------------------------------------------------ INTERPOLATION SCHEME USED THIS FRACTION OF THE ALLOCATED MEMORY: 7.391347451088573E-002 EFFICIENCY FACTOR: 36.9481572195008 ------------------------------------------------ DEALLOCATING ------------------------------------------------ DIC> DIC> DIC> DIC> DIC> set-inter --OK--- DIC>

Page 237: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd2b-plot

MACRO exd2b\plot.DCMDIC> DIC> DIC> @@ exd2_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D2 DIC> @@ DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 7.20000E+05 DIC> read exd2 OK DIC> DIC> @@ DIC> @@ ENTER THE DICTRA POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ LET US FIRST SEE HOW THE FRACTION OF FERRITE HAS CHANGED POST-1: @@ AS A RESULT OF THE DIFFUSION POST-1: @@ POST-1: s-d-a y npm(bcc) POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-p-c time 0 720000 POST-1: set-tit Figure D2.1 POST-1: pl

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ LET US NOW PLOT HOW THE AVERAGE CR-CONCENTRATION VARIES WITH DISTANCE POST-1: @@ POST-1: s-d-a y w-p cr POST-1: s-p-c time last POST-1: set-tit Figure D2.2 POST-1: pl

Page 238: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ WE SELECT A BETTER SCALING AND APPEND EXPERIMENTAL DATA POST-1: @@ POST-1: POST-1: app y exd2.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 4 POST-1: POST-1: s-s-s y n 0 50 POST-1: s-s-s x n 10e-4 30e-4 POST-1: POST-1: set-tit Figure D2.3 POST-1: pl

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ NOW WE DO THE SAME FOR NICKEL POST-1: @@ POST-1: POST-1: s-d-a y w-p ni POST-1: POST-1: app y exd2.exp PROLOGUE NUMBER: /1/: 1 DATASET NUMBER(s): /-1/: 5 POST-1: POST-1: s-s-s x n 10e-4 30e-4 POST-1: s-s-s y n 0 40 POST-1: POST-1: set-tit Figure D2.4 POST-1: pl

Page 239: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ LET US PLOT THE DIFFUSION PATH FOR THE COUPLE POST-1: @@ WE APPEND THE TERNARY PHASE-DIAGRAM CALCULATED IN THERMO-CALC POST-1: @@ AND THE EXPERIMENTAL DATA POST-1: @@ POST-1: s-d-a x w-p cr POST-1: s-d-a y w-p ni POST-1: s-i-v dis gl POST-1: s-p-c time last POST-1: POST-1: app y exd2.exp PROLOGUE NUMBER: /1/: 1 DATASET NUMBER(s): /-1/: 6 7 8 POST-1: POST-1: s-s-s x n 10 50 POST-1: s-s-s y n 5 35 POST-1: POST-1: set-tit Figure D2.5 POST-1: pl

POST-1: POST-1: POST-1: POST-1: POST-1: set-interactive --OK--- POST-1:

Page 240: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially
Page 241: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd3-setup

MACRO exd3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd3\setup.DCM" ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Diffusion in dispersed systems. SYS: @@ This example shows the use of the homogenization model. SYS: @@ It is taken from H. Larsson and A. Engström, Acta. Mater. v.54 SYS: @@ (2006), pp. 2431-2439. Experimental data from A. Engström, SYS: @@ Scand J Metall, v.243 (1995), p.12. SYS: @@ The homogenization model can be used for multiphase simulations SYS: @@ like the dispersed system model, but unlike the dispersed system model SYS: @@ there is no need to have a single continuous matrix phase and, furthermore, SYS: @@ there is no need to limit the size of time-steps. SYS: @@ The set-up is performed in the same manner as for the dispersed system SYS: @@ model, which means that a certain phase is entered as the matrix phase SYS: @@ and the other phases are entered as spheroidal, but the choice of matrix SYS: @@ phase will not affect the simulation. SYS: @@ SYS: SYS: @@ exd3_setup.DCM SYS: SYS: SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe cr ni FE CR NI DEFINED TDB_TCFE7: rej-ph * LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA SIGMA CHI_A12 LAVES_PHASE_C14 CR3SI NBNI3 NI3TI REJECTED TDB_TCFE7: rest-ph bcc,fcc BCC_A2 FCC_A1 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'J-O. Andersson and B. Sundman, Calphad, 11 (1987), 83-92; TRITA 0270 (1986); CR-FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Dinsdale and T. Chart, MTDS NPL, Unpublished work (1986); CR-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe cr ni FE CR NI DEFINED APP: rej-ph * BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: rest-ph bcc,fcc BCC_A2 FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Fe diffusion fcc Cr-Fe' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Cr and Ni diffusion fcc Cr-Ni' 'B. Jonsson: Z. Metallkunde 86(1995)686-692; Cr, Fe and Ni diffusion fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: go -m NO TIME STEP DEFINED DIC> DIC> set-cond glob T 0 1373.15; * N DIC> DIC> ent-geo 0 DIC>

Page 242: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> ent-reg REGION NAME : fecrni DIC> DIC> ent-grid REGION NAME : /FECRNI/: fecrni WIDTH OF REGION /1/: 3e-3 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 60 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.85 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.15 DIC> DIC> ent-ph ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /FECRNI/: fecrni PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> ent-ph ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /FECRNI/: fecrni PHASE TYPE /MATRIX/: sph PHASE NAME: /NONE/: bcc DIC> DIC> ent-comp REGION NAME : /FECRNI/: fecrni PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: m-f PROFILE FOR /CR/: cr TYPE /LINEAR/: read cr.dat PROFILE FOR /NI/: ni TYPE /LINEAR/: read ni.dat DIC> DIC> ent-comp REGION NAME : /FECRNI/: fecrni PHASE NAME: /FCC_A1/: bcc USE EQUILIBRIUM VALUE /Y/: y DIC> DIC> se-si-ti END TIME FOR INTEGRATION /.1/: 3.6e5 AUTOMATIC TIMESTEP CONTROL /YES/: yes MAX TIMESTEP DURING INTEGRATION /36000/: 3.6e4 INITIAL TIMESTEP : /1E-07/: 1 SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1e-7 DIC> DIC> @@ Simulations will run faster if results are not saved every DIC> @@ time-step DIC> s-s-c NS01A PRINT CONTROL : /0/: 0 FLUX CORRECTION FACTOR : /1/: 1 NUMBER OF DELTA TIMESTEPS IN CALLING MULDIF: /2/: 2 CHECK INTERFACE POSITION /NO/: n VARY POTENTIALS OR ACTIVITIES : /ACTIVITIES/: act ALLOW AUTOMATIC SWITCHING OF VARYING ELEMENT : /YES/: y SAVE WORKSPACE ON FILE (YES,NO,0-999) /YES/: 99 DEGREE OF IMPLICITY WHEN INTEGRATING PDEs (0 -> 0.5 -> 1): /.5/: .5 MAX TIMESTEP CHANGE PER TIMESTEP : /2/: 2 USE FORCED STARTING VALUES IN EQUILIBRIUM CALCULATION /NO/: n ALWAYS CALCULATE STIFFNES MATRIX IN MULDIF /YES/: y CALCULATE RESIDUAL FOR DEPENDENT COMPONENT /NO/: DIC> DIC> @@ There are a certain number of options available for the DIC> @@ homogenization model. In particular, an interpolation DIC> @@ scheme has been implemented that may drastically reduce DIC> @@ simulation times. Here, however, default settings are DIC> @@ chosen and the interpolation scheme is then turned off. DIC> homogen yes yes HOMOGENIZATION ENABLED DIC> DIC> @@ There are a large number of homogenization functions DIC> @@ available. These determine how the average kinetics DIC> @@ of the multiphase mixture is evaluated. For this example DIC> @@ the General lower Hashin-Shtrikman bound is a good choice. DIC> en-ho ENTER HOMOGENIZATION FUNCTION # /5/: 1 SELECTED FUNCTION IS HASHIN-SHTRIKMAN BOUND: GENERAL LOWER DIC> DIC> DIC> DIC> save exd3 Y DIC> DIC> DIC> set-inter --OK--- DIC>

Page 243: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd3-run

MACRO exd3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd3\run.DCM"DIC> DIC> DIC> @@ exd3_run.DCM DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exd3 OK DIC> DIC> sim STARTING SIMULATION USING HOMOGENIZATION MODEL ---------------------------------------------- Saving results ------------------------------------------------ WARNING:BCC_A2 HAS NO VOLUME FRACTION, CREATING ONE Starting time-step t0= 0.000000000000000E+000 dt= 1.00000000000000 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 9.120180692446643E-004 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 0.000000000000000E+000 dt= 1.00000000000000 ------------------------------------------------ Saving results ------------------------------------------------ Starting time-step t0= 1.00000000000000 dt= 2.00000000000000 Stage 1 Iteration # 1 sum residual **2: 4.906132675411064E-004 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088492E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 1.00000000000000 dt= 2.00000000000000 ------------------------------------------------ Starting time-step t0= 3.00000000000000 dt= 4.00000000000000 Stage 1 Iteration # 1 sum residual **2: 3.518450668995808E-004 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 3.00000000000000 dt= 4.00000000000000 ------------------------------------------------ Starting time-step t0= 7.00000000000000 dt= 8.00000000000000 Stage 1 Iteration # 1 sum residual **2: 3.227494705941410E-003 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 7.00000000000000 dt= 8.00000000000000 ------------------------------------------------ Starting time-step t0= 15.0000000000000 dt= 16.0000000000000 Stage 1 Iteration # 1 sum residual **2: 0.824146500758431 Stage 2 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 15.0000000000000 dt= 16.0000000000000 ------------------------------------------------ Starting time-step t0= 31.0000000000000 dt= 32.0000000000000 Stage 1 Iteration # 1 sum residual **2: 22.4929239936594 Iteration # 2 sum residual **2: 4.124859032892367E-003 Stage 2 Iteration # 1 sum residual **2: 2.468606119331676E-003 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 31.0000000000000 dt= 32.0000000000000 ------------------------------------------------ Starting time-step t0= 63.0000000000000 dt= 64.0000000000000 Stage 1 Iteration # 1 sum residual **2: 318.007588767526 Iteration # 2 sum residual **2: 1.143675460546489E-002 Stage 2 Iteration # 1 sum residual **2: 1.198981658997104E-003 Stage 3 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 63.0000000000000 dt= 64.0000000000000 ------------------------------------------------ Starting time-step t0= 127.000000000000 dt= 128.000000000000 Stage 1

Page 244: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Iteration # 1 sum residual **2: 3329.18606784344 Iteration # 2 sum residual **2: 7.78905658057673 Iteration # 3 sum residual **2: 3.277409706968439E-003 Stage 2 Iteration # 1 sum residual **2: 0.131821299548065 Stage 3 Iteration # 1 sum residual **2: 2.021182073547698E-003 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 127.000000000000 dt= 128.000000000000 ------------------------------------------------ Starting time-step t0= 255.000000000000 dt= 256.000000000000 Stage 1 Iteration # 1 sum residual **2: 24934.0181206181 Iteration # 2 sum residual **2: 200.021723873599 Iteration # 3 sum residual **2: 2.78303386047289 Iteration # 4 sum residual **2: 1.436363601993135E-003 Stage 2 Iteration # 1 sum residual **2: 6.61692545486211 Iteration # 2 sum residual **2: 1.134594314761221E-003

output ignored...

... output resumed

Iteration # 1 sum residual **2: 13655.9639290068 Iteration # 2 sum residual **2: 6475.00102925700 Iteration # 3 sum residual **2: 3965.11859733405 Iteration # 4 sum residual **2: 1996.92274973293 Iteration # 5 sum residual **2: 1107.49003319401 Iteration # 6 sum residual **2: 539.306484071880 Iteration # 7 sum residual **2: 276.738330196162 Iteration # 8 sum residual **2: 129.107419349482 Iteration # 9 sum residual **2: 61.9956402763803 Iteration # 10 sum residual **2: 27.0800714064624 Iteration # 11 sum residual **2: 11.9172786028644 Iteration # 12 sum residual **2: 4.09789335108518 Iteration # 13 sum residual **2: 1.63120658462706 Iteration # 14 sum residual **2: 0.121451111843551 Stage 2 Iteration # 1 sum residual **2: 5434.70524430049 Iteration # 2 sum residual **2: 1078.30689166348 Iteration # 3 sum residual **2: 212.998929828111 Iteration # 4 sum residual **2: 40.5561458644670 Iteration # 5 sum residual **2: 7.39845157557391 Iteration # 6 sum residual **2: 1.47744461934400 Stage 3 Iteration # 1 sum residual **2: 16571.9037332633 Iteration # 2 sum residual **2: 3291.53522325984 Iteration # 3 sum residual **2: 659.156535582426 Iteration # 4 sum residual **2: 131.361260911548 Iteration # 5 sum residual **2: 31.8564332612383 Iteration # 6 sum residual **2: 9.61577979719794 Iteration # 7 sum residual **2: 2.71258885179893 Iteration # 8 sum residual **2: 0.397930253238309 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 294911.000000000 dt= 16384.0000000000 ------------------------------------------------ Starting time-step t0= 311295.000000000 dt= 16384.0000000000 Stage 1 Evaluating Jacobian Iteration # 1 sum residual **2: 5.27039921357063 Iteration # 2 sum residual **2: 7.159967769966637E-003 Stage 2 Iteration # 1 sum residual **2: 6435.85538245050 Iteration # 2 sum residual **2: 1364.36098596646 Iteration # 3 sum residual **2: 287.019661257604 Iteration # 4 sum residual **2: 58.9585781824738 Iteration # 5 sum residual **2: 11.2571513001234 Iteration # 6 sum residual **2: 1.59881546230279 Stage 3 Iteration # 1 sum residual **2: 19691.8598240832 Iteration # 2 sum residual **2: 4174.79444119640 Iteration # 3 sum residual **2: 882.537657876792 Iteration # 4 sum residual **2: 184.858302139656 Iteration # 5 sum residual **2: 37.4129054134817 Iteration # 6 sum residual **2: 6.87473816433940 Iteration # 7 sum residual **2: 0.744738051091054 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696164 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 311295.000000000 dt= 16384.0000000000 ------------------------------------------------ Starting time-step t0= 327679.000000000 dt= 16384.0000000000 Stage 1 Iteration # 1 sum residual **2: 176835.296233280 Iteration # 2 sum residual **2: 24172.1835970822 Iteration # 3 sum residual **2: 7148.58476451709 Iteration # 4 sum residual **2: 569.981591890298 Iteration # 5 sum residual **2: 106.269053356745 Iteration # 6 sum residual **2: 5.684607595464755E-002 Stage 2 Iteration # 1 sum residual **2: 11104.0538679634 Iteration # 2 sum residual **2: 3040.14613267801 Iteration # 3 sum residual **2: 862.414367640503 Iteration # 4 sum residual **2: 235.196069878964 Iteration # 5 sum residual **2: 64.5126896356297 Iteration # 6 sum residual **2: 16.0238535837918 Iteration # 7 sum residual **2: 3.37028237795913 Iteration # 8 sum residual **2: 0.297237912017114 Stage 3 Iteration # 1 sum residual **2: 22815.8208660278 Iteration # 2 sum residual **2: 4906.71346820302 Iteration # 3 sum residual **2: 1092.76374704571

Page 245: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Iteration # 4 sum residual **2: 264.897188155683 Iteration # 5 sum residual **2: 74.5261739623531 Iteration # 6 sum residual **2: 19.5566233476854 Iteration # 7 sum residual **2: 4.48213556790957 Iteration # 8 sum residual **2: 0.469535690378270 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088491E-003 / 0.489930073696163 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 327679.000000000 dt= 16384.0000000000 ------------------------------------------------ Starting time-step t0= 344063.000000000 dt= 15937.0000000000 Stage 1 Iteration # 1 sum residual **2: 10946.6167863779 Iteration # 2 sum residual **2: 155.426954430152 Iteration # 3 sum residual **2: 1.54475665633901 Iteration # 4 sum residual **2: 9.339032915760354E-003 Stage 2 Iteration # 1 sum residual **2: 7842.67524892009 Iteration # 2 sum residual **2: 1748.74421212992 Iteration # 3 sum residual **2: 392.975619747945 Iteration # 4 sum residual **2: 88.0040660811491 Iteration # 5 sum residual **2: 19.7954669508743 Iteration # 6 sum residual **2: 4.23850661231605 Iteration # 7 sum residual **2: 0.419238607540761 Stage 3 Iteration # 1 sum residual **2: 23989.8203616302 Iteration # 2 sum residual **2: 5334.31296893841 Iteration # 3 sum residual **2: 1183.91699058663 Iteration # 4 sum residual **2: 260.791165969814 Iteration # 5 sum residual **2: 56.1644157391815 Iteration # 6 sum residual **2: 11.2458728660036 Iteration # 7 sum residual **2: 1.71560212484594 Moles of elements / mole fractions in system: CR 1.020229808644575E-003 / 0.340076602881525 FE 1.469790221088490E-003 / 0.489930073696163 NI 5.099799702669341E-004 / 0.169993323422311 Time-step converged t0= 344063.000000000 dt= 15937.0000000000 ------------------------------------------------ Saving results ------------------------------------------------ MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 KEEPING TIME-RECORD FOR TIME 1.00000000 AND FOR TIME 360000.00 WORKSPACE RECLAIMED ------------------------------------------------ INTERPOLATION SCHEME USED THIS FRACTION OF THE ALLOCATED MEMORY: 4.744378654030481E-002 EFFICIENCY FACTOR: 7.14806716809515 ------------------------------------------------ DEALLOCATING ------------------------------------------------ DIC> DIC> DIC> set-inter --OK--- DIC>

Page 246: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exd3-plot

MACRO exd3\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exd3\plot.DCM"DIC> DIC> DIC> @@ exd3_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE D3 DIC> @@ DIC> @@ ENTER THE DICTRA MODULE AND SPECIFY THE STORE-RESULT FILE DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 3.60000E+05 DIC> read exd3 OK DIC> DIC> @@ DIC> @@ ENTER THE DICTRA POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ First study the composition profiles of Cr and Ni POST-1: @@ POST-1: s-d-a x distance global INFO: Distance is set as independent variable POST-1: s-d-a y w-p Cr POST-1: s-p-c time 0 360000 POST-1: set-tit Figure D3.1 POST-1: POST-1: app yes k5k7cr.exp 0; 1 POST-1: POST-1: s-s-s x n 1e-3 2e-3 POST-1: POST-1: s-s-s y n 20 45 POST-1: POST-1: plot

POST-1: POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: s-d-a y w-p Ni POST-1: set-tit Figure D3.2 POST-1: POST-1: app yes k5k7ni.exp 0; 1 POST-1: POST-1: s-s-s y n 0 35 POST-1: POST-1: plot

Page 247: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ then study the amount of FCC and BCC POST-1: @@ POST-1: app no POST-1: s-d-a y npm(fcc) POST-1: set-tit Figure D3.3 POST-1: plot

POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: s-d-a y npm(bcc) POST-1: set-tit Figure D3.4 POST-1: plot

POST-1:

Page 248: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: set-interactive --OK--- POST-1:

Page 249: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

ν

Cooperative growth

Page 250: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example e1

Growth of pearlite in an Fe-Mn-C alloy

4E-5

νT = 900 - Time 10*

pearliteaustenite

Page 251: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exe1-setup

MACRO exe1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exe1\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Cooperative growth. SYS: @@ This is an example file for a setup and a calculation of PEARLITE SYS: @@ growth in an Fe-0.50wt%C - 0.91wt%Mn steel. SYS: @@ SYS: SYS: @@ exe1_setup.DCM SYS: SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ DEFINE THE SYSTEM TDB_TCFE7: @@ TDB_TCFE7: def-sys fe c mn FE C MN DEFINED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ KEEP ONLY THE AUSTENITE, FERRITE AND CEMENTITE PHASES TDB_TCFE7: @@ TDB_TCFE7: rej-ph /all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 G_PHASE REJECTED TDB_TCFE7: rest-ph fcc,bcc,cem FCC_A1 BCC_A2 CEMENTITE RESTORED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ GET THE THERMODYNAMIC DATA TDB_TCFE7: @@ TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'W. Huang, Metall. Trans. A, 21A (1990), 2115-2123; TRITA-MAC 411 (Rev 1989); C-FE-MN' 'W. Huang, Calphad, 13 (1989), 243-252; TRITA-MAC 388 (rev 1989); FE-MN' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'P. Villars and L.D. Calvert (1985). Pearsons handbook of crystallographic data for intermetallic phases. Metals park, Ohio. American Society for Metals; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ APPEND THE KINETIC DATA FROM THE MOBILITY DATABASE TDB_TCFE7: @@ TDB_TCFE7: append mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe c mn FE C MN DEFINED APP: rej-ph /all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: rest-ph bcc,fcc,cem BCC_A2 FCC_A1 CEMENTITE RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni'

Page 252: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

'Bae et al.: Z. Metallkunde 91(2000)672-674; fcc Fe-Mn Mn-Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' 'Assessed from data presented in Landholt-Bornstein, Vol. 26, ed. H. Mehrer, springer (1990); Impurity diff of Mn in bcc Fe.' -OK- APP: APP: @@ APP: @@ OK, ALL THERMODYNAMIC AND KINETIC DATA HAVE BEEN FETCHED APP: @@ GO TO THE DICTRA MONITOR TO SETUP YOUR PROBLEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ SET CONDITION ON TEMPERATURE DIC> @@ DIC> set-cond glob t 0 900-time*10; * n DIC> DIC> @@ DIC> @@ ENTER REGIONS DIC> @@ DIC> enter-reg pearlite DIC> DIC> @@ DIC> @@ ENTER A SMALL INITIAL SIZE OF THE GRID IN THE 'PEARLITE' REGION DIC> @@ DIC> enter-grid pearlite 5e-10 lin 5 DIC> DIC> @@ DIC> @@ ENTER INTO THE 'PEARLITE' REGION THE PHASES 'BCC' AND 'CEM' AND SPECIFY DIC> @@ THAT THEY WILL BE PRESENT IN THE FORM OF A 'LAMELLAR AGGREGATE. SET THEIR DIC> @@ STATUS TO 'ACTIVE'. A LOT OF QUESTIONS FOLLOWS CONCERNING THE VALUES OF DIC> @@ THE PARAMETERS PRESENT IN THE PEARLITE GROWTH MODEL SUCH AS SURFACE DIC> @@ TENSION, OPTIMUM GROWTH RATE FACTOR, BOUNDARY DIFFUSION COEFFICIENTS. DIC> @@ CARBON(C) IS TREATED IN A SPECIAL WAY INSIDE THE PROGRAM, IF AUTOMATIC DIC> @@ IS ENTERED THE DIFFUSION OF C IS CALCULATED ACCORDING TO AN EQUATION DIC> @@ FOR MIXED BOUNDARY AND VOLUME DIFFUSION. YOU MAY CHOOSE BETWEEN DIC> @@ MANUAL OR AUTOMATIC START VALUES FOR ALL VARIABLES EXCEPT THE GROWTH DIC> @@ RATE, LET US TRY 1E-6 DIC> @@ DIC> @@ FOR MORE INFORMATION ABOUT THE PEARLITE GROWTH MODEL CONSULT DIC> @@ B. JÖNSSON: INTERNAL REPORT, TRITA-MAC-0478, DIVISION OF DIC> @@ PHYSICAL METALLURGY, ROYAL INSTITUTE OF TECHNOLOGY, S-10044 DIC> @@ STOCKHOLM, SWEDEN, 1992. DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /PEARLITE/: pearlite PHASE TYPE /MATRIX/: lam Eutectiod reaction is "GAMMA" ==> "ALPHA" + "BETA" Enter name of "ALPHA" phase /BCC_A2/: bcc_a2 Enter name of "BETA" phase /CEMENTITE/: cementite Enter name of "GAMMA" phase /FCC_A1/: fcc_a1 Enter "ALPHA"/"BETA" surface tension LOW TIME LIMIT /0/: 0 Surface tension(T,P,TIME)= 1; HIGH TIME LIMIT /*/: 1000 ANY MORE RANGES /N/: N Enter "ALPHA"/"GAMMA" surface tension LOW TIME LIMIT /0/: 0 Surface tension(T,P,TIME)= 1; HIGH TIME LIMIT /*/: 1000 ANY MORE RANGES /N/: N Enter "BETA"/"GAMMA" surface tension LOW TIME LIMIT /0/: 0 Surface tension(T,P,TIME)= 1; HIGH TIME LIMIT /*/: 1000 ANY MORE RANGES /N/: N Optimum growth condition factor /2/: 2 Name of dependent element /FE/: fe INPUT OF DIFFUSION DATA Growth model (VOLUME/BOUNDARY/KIRKALDY) for element C /BOUNDARY/: boundary DF(C) = /value/AUTOMATIC/MIXED/: auto Growth model (VOLUME/BOUNDARY/KIRKALDY) for element MN /BOUNDARY/: boundary DF(MN) = /value/MIXED/: 5.4e-14 DQ(MN): 155000 Automatic start values for the S0 determination /Y/: Y Growth rate V: 1E-6 Automatic start values on other variables /Y/: Y DIC> DIC> @@ DIC> @@ INITIATE THE COMPOSITION RECORDS FOR THE 'PEARLITE' DIC> @@ DIC> enter-composition REGION NAME : /PEARLITE/: pearlite DIC> DIC> @@ DIC> @@ WE WILL NOW CONTINUE BY DEFINING A MATRIX PHASE INTO WHICH THE PEARLITE DIC> @@ WILL GROW. START BY ENTERING A REGION NAME, LET US CALL IT 'AUSTENITE' DIC> @@ DIC> enter-region austenite ATTACH TO REGION NAMED /PEARLITE/: ATTACHED TO THE RIGHT OF PEARLITE /YES/: DIC> @@ DIC> @@ SPECIFY WHAT PHASE 'FCC' WILL BE PRESENT IN THE 'AUSTENITE' REGION DIC> @@ AND WHAT TYPE OF PHASE 'MATRIX' IT IS AND ITS INITIAL STATE 'ACTIVE' DIC> @@ DIC> enter-phase act austenite matrix fcc DIC> DIC> @@ DIC> @@ WE ALSO NEED TO HAVE A SPATIAL GRID IN THE 'AUSTENITE' REGION. DIC> @@ CHOSE SIZE '4E-5' GRIDTYPE 'GEOMETRICAL', '30' GRIDPOINTS AND '1.5' DIC> @@ AS VALUE FOR THE GEOMETRICAL FACTOR OF THE GRID. DIC> @@

Page 253: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> enter-grid austenite 4e-5 geo 30 1.5 DIC> DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL CONCENTRATION PROFILES IN THE 'FCC' PHASE OF THE DIC> @@ 'AUSTENITE' REGION. CONCENTRATIONS MUST BE GIVEN IN Y-FRACTIONS. DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc DEPENDENT COMPONENT ? /MN/: fe COMPOSITION TYPE /MOLE_FRACTION/: site-fraction PROFILE FOR MN TYPE /LINEAR/: lin 9.29232973E-3 9.29232973E-3 PROFILE FOR C TYPE /LINEAR/: lin 2.3384332E-2 2.3384332E-2 DIC> DIC> @@ DIC> @@ WE ARE NOW FINNISHED WHITH THE MATRIX PHASE DIC> @@ DIC> DIC> @@ DIC> @@ SPECIFY A SPHERICAL '2' GEOMETRY DIC> @@ DIC> enter-geo 2 DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 5 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /.5/: 0.1 INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exe1 Y DIC> DIC> set-inter --OK--- DIC>

Page 254: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exe1-run

MACRO exe1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exe1\run.DCM"DIC> DIC> DIC> @@ exe1_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE e1 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> DIC> @@ DIC> @@ READ SETUP FROM FILE DIC> @@ DIC> read exe1 OK DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> simulate Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399293 MN = .0092923297312127 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399293 MN = .0092923297312127 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] 17 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.76465982E-05 AND 0.76465982E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.50076466E-09 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294 MN = .00929232973121271 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] 10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE CPU time used in timestep 0 seconds 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.76468335E-05 AND 0.76468335E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.12654480E-08 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399295 MN = .00929232973121271 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 0 seconds 1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1 TIME = 0.13026424E-02 DT = 0.12025424E-02 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.76496630E-05 AND 0.76496630E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.10464492E-07 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294 MN = .00929232973121272 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 1 seconds 2 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1 TIME = 0.37077272E-02 DT = 0.24050848E-02 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.76553232E-05 AND 0.76553232E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.28876193E-07 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294 MN = .00929232973121272 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 0 seconds 1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1 TIME = 0.85178967E-02 DT = 0.48101695E-02 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.76666480E-05 AND 0.76666480E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.65754070E-07 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399295 MN = .00929232973121272 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 0 seconds 1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1 TIME = 0.18138236E-01 DT = 0.96203391E-02 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.76893156E-05 AND 0.76893156E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.13972789E-06 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294 MN = .00929232973121272 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 0 seconds TIME = 0.37378914E-01 DT = 0.19240678E-01 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.77347217E-05 AND 0.77347217E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.28854918E-06 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294 MN = .00929232973121272 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 0 seconds

Page 255: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 0.75860270E-01 DT = 0.38481356E-01 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.78258159E-05 AND 0.78258159E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.58969719E-06 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399294 MN = .00929232973121272 TOTAL SIZE OF SYSTEM: 2.68092626329E-13 [m^3] CPU time used in timestep 0 seconds 1 GRIDPOINT(S) REMOVED FROM CELL# 1 REGION # 1 TIME = 0.15282298 DT = 0.76962713E-01 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.80091146E-05 AND 0.80091146E-05 POSITION OF INTERFACE PEARLITE / AUSTENITE IS 0.12061004E-05 U-FRACTION IN SYSTEM: C = .0233843320030519 FE = .990707670399294

output ignored...

... output resumed

TIME = 3.5362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 3.6362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 3.7362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 3.8362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 3.9362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.0362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.1362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.2362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.3362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.4362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.5362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.6362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.7362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.8362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277

Page 256: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 4.9362705 DT = 0.10000000E+00 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] CPU time used in timestep 0 seconds TIME = 5.0000000 DT = 0.63729517E-01 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0233843320030518 FE = .990707670399277 MN = .00929232973122968 TOTAL SIZE OF SYSTEM: 2.67725268543E-13 [m^3] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 3.2528230 DELETING TIME-RECORD FOR TIME 3.3262605 DELETING TIME-RECORD FOR TIME 3.3262705 DELETING TIME-RECORD FOR TIME 3.3362705 DELETING TIME-RECORD FOR TIME 3.4362705 DELETING TIME-RECORD FOR TIME 3.5362705 DELETING TIME-RECORD FOR TIME 3.6362705 DELETING TIME-RECORD FOR TIME 3.7362705 DELETING TIME-RECORD FOR TIME 3.8362705 DELETING TIME-RECORD FOR TIME 3.9362705 DELETING TIME-RECORD FOR TIME 4.0362705 DELETING TIME-RECORD FOR TIME 4.1362705 DELETING TIME-RECORD FOR TIME 4.2362705 DELETING TIME-RECORD FOR TIME 4.3362705 DELETING TIME-RECORD FOR TIME 4.4362705 DELETING TIME-RECORD FOR TIME 4.5362705 DELETING TIME-RECORD FOR TIME 4.6362705 DELETING TIME-RECORD FOR TIME 4.7362705 DELETING TIME-RECORD FOR TIME 4.8362705 KEEPING TIME-RECORD FOR TIME 4.9362705 AND FOR TIME 5.0000000 WORKSPACE RECLAIMED DIC> DIC> @@ DIC> @@ THE SIMULATION IS FINISHED DIC> @@ DIC> DIC> set-inter --OK--- DIC>

Page 257: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exe1-plot

MACRO exe1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exe1\plot.DCM"DIC> DIC> DIC> @@ exe1_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 5.00000E+00 DIC> read exe1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ PLOT THE TEMPERATURE AS FUNCTION OF TIME. POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y t POST-1: s-p-c interface first POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ NOW LETS PLOT THE FRACTION OF PEARLITE VS. TIME. POST-1: @@ POST-1: s-d-a y ivv(pearlite) POST-1: POST-1: plot

Page 258: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ THE LAMELLAR SPACING AS FUNCTION OF TIME. POST-1: @@ POST-1: s-d-a AXIS (X, Y OR Z) : y VARIABLE : lamellar-sp IN REGION: /*/: pearlite POST-1: POST-1: s-p-c CONDITION /INTEGRAL/: interface INTERFACE : pearlite UPPER OR LOWER INTERFACE OF REGION PEARLITE#1 /LOWER/: upper POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ LET'S LOOK AT THE LAMELLAR SPACING VS. TEMPERATURE INSTEAD. POST-1: @@ POST-1: s-d-a x t POST-1: POST-1: s-p-c interface pearlite upper POST-1: POST-1: plot

Page 259: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ AND THE C COMPOSITION IN THE FERRITE VS. TEMP. POST-1: @@ POST-1: s-d-a y w(bcc,c) POST-1: POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: @@ POST-1: @@ FINALLY, LETS LOOK AT THE VELOCITY OF THE INTERFACE VS. TEMP. POST-1: @@ POST-1: s-d-a y t POST-1: s-d-a x velocity INTERFACE : pearlite UPPER OR LOWER INTERFACE OF REGION PEARLITE#1 /LOWER/: upper POST-1: set-ax-ty x log POST-1: s-s-s x n 1e-6 1e-4 POST-1: POST-1: plot

Page 260: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: POST-1:Hit RETURN to continuePOST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 261: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Particle

Matrix

α

β

r = 1.5 rp

_

Moving phase interfacewith α and β in local equilibrium.

interfacial energy contribution for α- phase

Equilibrium as defined by the average composition inthe system.

interfacial energy contribution for α- phase

Coarsening

2σV r _ m2σV

rm

p

Page 262: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

r = 0.228 µmp

FCC

6M C

Coarsening of a 6M C precipitate in an Fe-Mo-C alloy

T = 1173K

Example f1

Page 263: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exf1-setup

MACRO exf1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exf1\setup.DCM"SYS: @@ SYS: @@ Coarsening. SYS: @@ Setup file for calculating the Ostwald-ripening SYS: @@ of a spherical M6C carbide in an AUSTENITE matrix. SYS: @@ SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: switch tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe mo c FE MO C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M6C M5C2 M3C2 MC_ETA MC_SHP KSI_CARBIDE A1_KAPPA KAPPA Z_PHASE FE4N_LP1 FECN_CHI SIGMA MU_PHASE P_PHASE R_PHASE CHI_A12 LAVES_PHASE_C14 REJECTED TDB_TCFE7: res ph fcc m6c FCC_A1 M6C RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'J-O. Andersson, Calphad, 12 (1988), 1-8; TRITA 0317 (1986); C-MO' 'A. Fernandez Guillermet, Calphad, 6 (1982), 127-140; (sigma phase revised 1986); TRITA-MAC 200 (1982); FE-MO' 'J-O. Andersson, Calphad, 12 (1988), 9-23; TRITA 0321 (1986); C-FE-MO' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'S. Nagakura (1968), Transactions of the Iron and Steel Institute of Japan, Vol.8, pp. 265-294; Molar volumes' 'Kupalova, IK and Pavlova, VI (988); High speed steels: Physical Properties, Prop. Data Update, 2, 67-78; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2 SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0

Page 264: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe mo c FE MO C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc m6c *** M6C INPUT IGNORED FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'H. Oikawa, Tech. Rept. Tohoku Univ., 48(1983)7.; Impurity diffusion of Mo in fcc Fe.' -OK- APP: APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED *** ENTERING M6C AS A DIFFUSION NONE PHASE DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> s-cond glob t 0 1173; * N DIC> DIC> @@ DIC> @@ ENTER REGIONS part AND aus DIC> @@ DIC> enter-region REGION NAME : part DIC> enter-region aus ATTACH TO REGION NAMED /PART/: ATTACHED TO THE RIGHT OF PART /YES/: DIC> @@ DIC> @@ ENTER GEOMTRICAL GRIDS INTO THE REGIONS DIC> @@ DIC> DIC> @@ DIC> @@ THE INITIAL SIZE OF THE CARBIDE PARTICLE IS ASSUMED TO BE KNOWN DIC> @@ (IN THIS CASE WE TAKE OUR VALUE FROM NISHIZAWA ET. AL.) THE DIC> @@ AVERAGE PARTICLE SIZE IS ASSUMED TO BE 0.152E-6 METERS, WE WILL HOWEVER DIC> @@ PERFORM THE CALCULATIONS ON A MAXIMUM SIZE PARTICLE WHICH IS ASSUMED TO DIC> @@ 1.5 TIMES THE AVERAGE SIZE. THE SURROUNDING AUSTENITIC MATRIX SIZE IS DIC> @@ CHOOSEN TO MAINTAIN THE AVERAGE COMPOSITION.

Page 265: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> enter-grid REGION NAME : /PART/: part WIDTH OF REGION /1/: 0.228E-6 TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 12 VALUE OF R IN THE GEOMETRICAL SERIE : 0.8 DIC> DIC> enter-grid REGION NAME : /AUS/: aus WIDTH OF REGION /1/: 4.53147041E-7 TYPE /LINEAR/: lin NUMBER OF POINTS /50/: 100 DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGIONS DIC> @@ DIC> enter-phase active part matrix m6c DIC> DIC> enter-phase active aus matrix fcc#1 DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES DIC> @@ DIC> enter-composition REGION NAME : /PART/: part PHASE NAME: /M6C/: m6c DEPENDENT COMPONENT ? /MO/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-f PROFILE FOR /MO/: mo lin 6.20117E-01 6.20117E-01 DIC> DIC> ent-composition REGION NAME : /AUS/: aus PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /MO/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-f PROFILE FOR /C/: mo lin 1.82099E-02 1.82099E-02 PROFILE FOR /MO/: c lin 2.83351E-03 2.83351E-03 DIC> DIC> DIC> @@ DIC> @@ SET SPHERICAL GEOMETRY DIC> @@ DIC> ent-geo 2 DIC> DIC> @@ DIC> @@ ENTER THE SURFACE TENSION ENERGY CONTRIBUTION AS A FUNCTION OF DIC> @@ THE INTERFACE POSITION (THE RADIUS OF THE PARTICLE) DIC> @@ WE WILL ALSO ENTER THE MOLAR VOLUME OF THE PHASE CORRECTED DIC> @@ TO BE THE MOLAR VOLUME PER SUBSTITIONAL ATOM DIC> @@ THE SURFACE TENSION IS 0.7, THE MOLAR VOLUME IS 0.71 AND THE DIC> @@ TRANSFORMATION TO MOLAR VOLUME PER SUBSTITIONAL ATOM IS 7/6 DIC> @@ DIC> set-surf 2*0.7*0.71*(7/6)/X; ENTERED FUNCTION :2*.7*.71*7/6/X FOR CELL #1 DIC> DIC> DIC> @@ DIC> @@ ENABLE THE SIMPLIFIED MODEL THE COARSENING (OSTWALD-RIPENING) DIC> @@ DIC> coarse YES DIC> DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME AND VARIOUS SIMULATION PARAMETERS DIC> @@ DIC> set-simulation-time 1E6 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /100000/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exf1 Y DIC> DIC> set-inter --OK--- DIC>

Page 266: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exf1-run

MACRO exf1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exf1\run.DCM"DIC> @@ exf1_run.DCM DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING M6C AS A DIFFUSION NONE PHASE DIC> read exf1 OK DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS DONE 6 OUT OF 9 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .0190652843033664 FE = .970761291162785 MO = .0292387089677228 TOTAL SIZE OF SYSTEM: 1.32376603026E-18 [m^3] U-FRACTION IN SYSTEM: C = .0190652843033664 FE = .970761291162785 MO = .0292387089677228 TOTAL SIZE OF SYSTEM: 1.32376603026E-18 [m^3] 13 GRIDPOINT(S) ADDED TO CELL #1 REGION: PART 0.610226592285138 0.610394670658709 0.610220653636068 2.577463539896956E-002 2.200891894408349E-003 2.478460851859301E-005 5.184921859420048E-008 1.780847860365745E-009 4.549279086541271E-010 3.919748330625496E-010 3.000877739652543E-009 2.993970972330437E-010 2.168192534687207E-010 9.104389372577615E-011 2.190546157852105E-014 3.670092674869471E-019 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.36700927E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.35788519E-05 AND -0.35788519E-05 POSITION OF INTERFACE PART / AUS IS 0.22799964E-06 U-FRACTION IN SYSTEM: C = .0190656979973028 FE = .970759618269961 MO = .0292403818605463 TOTAL SIZE OF SYSTEM: 1.32375979663E-18 [m^3] CPU time used in timestep 0 seconds 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: PART 3.008074578885135E-006 3.008676244819642E-006 3.009754725617872E-006 1.376680982020104E-006 1.011983359465107E-006 4.731025891306668E-007 8.406400667681804E-008 5.127667259388998E-010 4.656525308209799E-013 7.583893567968713E-018 SWITCHING ACTIVITIES FOR INTERFACE #2, CELL #1 FROM: C TO: MO TIME = 0.13425812E-05 DT = 0.12425812E-05 SUM OF SQUARES = 0.75838936E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.51213559E-08 AND -0.51213559E-08 POSITION OF INTERFACE PART / AUS IS 0.22799964E-06 U-FRACTION IN SYSTEM: C = .0190661091620437 FE = .970759599121351 MO = .0292404010091561 TOTAL SIZE OF SYSTEM: 1.32375968579E-18 [m^3] CPU time used in timestep 1 seconds 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: PART 6.146371057362382E-012 6.147600882243979E-012 2.831717587224274E-012 1.205831176419811E-013 1.204963269274197E-013 1.203239571633284E-013 1.199795743691517E-013 7.744460722165853E-013 1.192922861153524E-013 1.179236402632697E-013 1.152099533962736E-013 7.698634095603651E-013 1.098771218852313E-013 9.958964997264487E-014 8.052809113470314E-014 7.349891036545323E-013 4.846364763050947E-014 8.610458667478386E-015 2.892429135437437E-020 TIME = 0.38277435E-05 DT = 0.24851623E-05 SUM OF SQUARES = 0.28924291E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.76134953E-09 AND -0.76134953E-09 POSITION OF INTERFACE PART / AUS IS 0.22799963E-06 U-FRACTION IN SYSTEM: C = .019066553042663 FE = .970759593802221 MO = .0292404063282867 TOTAL SIZE OF SYSTEM: 1.32375965283E-18 [m^3] CPU time used in timestep 0 seconds 1.632778463579170E-013 1.633044876960578E-013 5.746975806178693E-013 7.255842732915395E-014 7.257692573744666E-014 7.253992413653068E-014 1.091881235630359E-012 7.252143243509147E-014 7.248444725808901E-014 7.241051392529642E-014 1.091831904471844E-012 7.226275174755050E-014 7.196768878376014E-014 7.137936512527487E-014 1.090725438220920E-012

output ignored...

... output resumed

1.086537964317685E-012 3.194166124332671E-012 1.153114345955236E-014 1.128526734309709E-014 1.080155017897460E-014 9.865845319153401E-015 5.715241080280748E-013 8.121747769778714E-015 5.142205953233471E-015 1.217506507548199E-015 1.654300044062119E-022 TIME = 770779.05 DT = 100000.000 SUM OF SQUARES = 0.16543000E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.42272006E-13 AND 0.42272006E-13 POSITION OF INTERFACE PART / AUS IS 0.26496464E-06 U-FRACTION IN SYSTEM: C = .0195388088573575 FE = .970701109834737 MO = .0292988902957705 TOTAL SIZE OF SYSTEM: 2.07764070011E-18 [m^3] 22 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART 23 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS CPU time used in timestep 1 seconds 8.914295684492852E-013 8.953346599800800E-013 2.820862731818084E-012 8.322611127223334E-015 8.136404059517922E-015 7.770370019213560E-015 7.063534607889043E-015 5.508812012737562E-013 5.751069717264901E-015 3.530549875076759E-015 7.069390688297672E-016 6.915574824475560E-023 TIME = 870779.05 DT = 100000.000 SUM OF SQUARES = 0.69155748E-22 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.40957063E-13 AND 0.40957063E-13 POSITION OF INTERFACE PART / AUS IS 0.26906034E-06 U-FRACTION IN SYSTEM: C = .0195406086355324 FE = .970703584996729 MO = .0292964151337797 TOTAL SIZE OF SYSTEM: 2.17548339865E-18 [m^3] 21 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART 21 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS

Page 267: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

CPU time used in timestep 0 seconds 7.395355620749628E-013 7.429667632161040E-013 2.510382312292295E-012 5.969060195253678E-015 5.827862510340339E-015 5.550591997254795E-015 5.016284338397679E-015 5.323632719608335E-013 4.028862241105141E-015 2.378392231067868E-015 3.749612957663170E-016 1.170894637051278E-023 TIME = 970779.05 DT = 100000.000 SUM OF SQUARES = 0.11708946E-22 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.39739819E-13 AND 0.39739819E-13 POSITION OF INTERFACE PART / AUS IS 0.27303433E-06 U-FRACTION IN SYSTEM: C = .0195423374033332 FE = .97070594027618 MO = .0292940598543277 TOTAL SIZE OF SYSTEM: 2.27330885877E-18 [m^3] 20 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: PART 20 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUS CPU time used in timestep 1 seconds 9.273045311109096E-014 9.381276807094345E-014 1.050634756435667E-012 1.744740353090811E-016 TIME = 1000000.00 DT = 29220.946 SUM OF SQUARES = 0.17447404E-15 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.38948549E-13 AND 0.38948549E-13 POSITION OF INTERFACE PART / AUS IS 0.27417244E-06 U-FRACTION IN SYSTEM: C = .0195443354401897 FE = .970707192072036 MO = .0292928080584711 TOTAL SIZE OF SYSTEM: 2.3018556344E-18 [m^3] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.13425812E-05 DELETING TIME-RECORD FOR TIME 0.38277435E-05 DELETING TIME-RECORD FOR TIME 0.87980681E-05 DELETING TIME-RECORD FOR TIME 0.18738717E-04 DELETING TIME-RECORD FOR TIME 0.38620016E-04 DELETING TIME-RECORD FOR TIME 0.78382613E-04 DELETING TIME-RECORD FOR TIME 0.15790781E-03 DELETING TIME-RECORD FOR TIME 0.31695819E-03 DELETING TIME-RECORD FOR TIME 0.63505897E-03 DELETING TIME-RECORD FOR TIME 0.12712605E-02 DELETING TIME-RECORD FOR TIME 0.25436636E-02 DELETING TIME-RECORD FOR TIME 0.50884698E-02 DELETING TIME-RECORD FOR TIME 0.10178082E-01 DELETING TIME-RECORD FOR TIME 0.20357307E-01 DELETING TIME-RECORD FOR TIME 0.40715757E-01 DELETING TIME-RECORD FOR TIME 0.81432656E-01 DELETING TIME-RECORD FOR TIME 0.16286645 DELETING TIME-RECORD FOR TIME 0.32573405 DELETING TIME-RECORD FOR TIME 0.65146925 DELETING TIME-RECORD FOR TIME 1.3029396 DELETING TIME-RECORD FOR TIME 2.6058804 DELETING TIME-RECORD FOR TIME 5.2117620 DELETING TIME-RECORD FOR TIME 10.423525 DELETING TIME-RECORD FOR TIME 20.847051 DELETING TIME-RECORD FOR TIME 41.694104 DELETING TIME-RECORD FOR TIME 83.388209 DELETING TIME-RECORD FOR TIME 166.77642 DELETING TIME-RECORD FOR TIME 333.55284 DELETING TIME-RECORD FOR TIME 667.10568 DELETING TIME-RECORD FOR TIME 1334.2114 DELETING TIME-RECORD FOR TIME 2668.4227 DELETING TIME-RECORD FOR TIME 5336.8454 DELETING TIME-RECORD FOR TIME 10673.691 DELETING TIME-RECORD FOR TIME 21347.382 DELETING TIME-RECORD FOR TIME 42694.763 DELETING TIME-RECORD FOR TIME 85389.527 DELETING TIME-RECORD FOR TIME 170779.05 DELETING TIME-RECORD FOR TIME 270779.05 DELETING TIME-RECORD FOR TIME 370779.05 DELETING TIME-RECORD FOR TIME 470779.05 DELETING TIME-RECORD FOR TIME 570779.05 DELETING TIME-RECORD FOR TIME 670779.05 DELETING TIME-RECORD FOR TIME 770779.05 DELETING TIME-RECORD FOR TIME 870779.05 KEEPING TIME-RECORD FOR TIME 970779.05 AND FOR TIME 1000000.00 WORKSPACE RECLAIMED DIC> DIC> DIC> set-inter --OK--- DIC>

Page 268: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exf1-plot

MACRO exf1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exf1\plot.DCM"DIC> @@ exf1_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE f1 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 1.00000E+06 *** ENTERING M6C AS A DIFFUSION NONE PHASE DIC> read exf1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ WE WILL NOW PLOT THE AVERAGE PARTICLE SIZE CUBED AS THIS ASSUMED POST-1: @@ TO SCALE LINEARLY WITH TIME, WE MUST THEN ENTER A FUNCTION TO BE POST-1: @@ ABLE TO ACCESS THIS QUANTITY POST-1: @@ WE ALSO WANT TO PLOT THIS QUANTITY VERSUS TIME IN HOURS SO WILL POST-1: @@ ENTER A FUNCTION FOR THIS POST-1: @@ POST-1: enter-symbol func rr3=(poi(part,u)/1.5)**3; POST-1: enter-symbol func hours=time/3600; POST-1: s-d-a x hours POST-1: s-d-a y rr3 POST-1: POST-1: @@ POST-1: @@ AS WE ARE PLOTTING FUNCTIONS ON BOTH AXIS WE MUST EXPLICITLY POST-1: @@ DEFINE THE INDEPENDENT VARIABLE AND THE PLOT CONDITION POST-1: @@ POST-1: s-ind time POST-1: s-p-c inter INTERFACE : part upper POST-1: POST-1: POST-1: set-axis-text-status x n AXIS TEXT : Time (hours) POST-1: POST-1: @@ POST-1: @@ THIS FAIRLY CRYPTICAL AXIS TEXT WILL GIVE A NICE NOTATION FOR POST-1: @@ THE AVERAGE RADIUS CUBED ONCE THE PLOT IS PRINTED. FOR MORE POST-1: @@ INFORMATION ON TEXT MANIPULATION IN THE POST PROCESSOR THE READER POST-1: @@ IS REFERRED TO THE SECTION ON DATAPLOT GRAPHICAL LANGUAGE IN THE POST-1: @@ THERMO-CALC USERS GUIDE. POST-1: @@ POST-1: POST-1: POST-1: set-axis-text-status y n AXIS TEXT : ^CCrm ^UP3$ (m^UP3$) POST-1: POST-1: POST-1: @@ POST-1: @@ WE ALSO WANT TO COMPARE WITH EXPERIMENTAL DATA FROM NISHIZAWA ET AL. POST-1: @@ TRANS. JPN. INST. MET. VOL. 22 1981 PP. 733-742. POST-1: @@ POST-1: POST-1: app y exf1 PROLOGUE NUMBER: /0/: 0 DATASET NUMBER(s): /-1/: 1 POST-1: POST-1: s-s-s y n 0 6e-21 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-title Figure f1.1 POST-1: POST-1: plot

Page 269: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1:@?<_hit_return_to_continue_>POST-1: @@ POST-1: @@ THE DIFFENCE BETWEEN THE CALCULATION AND THE EQUATION USED BY POST-1: @@ NISHIZAWA ET AL IS MAINLY DUE TO DIFFERENT THERMODYNAMIC DESCRIPTIONS POST-1: @@ AND DIFFERENT DIFFUSIVITIES. POST-1: @@ POST-1: POST-1: set-inter --OK--- POST-1:

Page 270: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Kinetic data

-16

-15

-14

-13

-12

-11

-10

-9

-8

log(

DF

eN

iNi /

[m2 s

-1] )

+ M

0 0.2 0.4 0.6 0.8 1.0

xNi

1356 oC

1315 oC

1258 oC

1200 oC

1136 oC

M=4

M=3

M=2

M=1

M=0

Experimental

data

Parrot

Poly

Thermodynamic

description

500

600

700

800

900

1000

1100

1200

1300

1400

Tem

pera

ture

K

0 0.2 0.4 0.6 0.8 1.0

Mole fraction CuAl

Research Normal user

- activity meassurements

- enthalpy meassurements

- cp meassurements

- etc.

DICTRAMobility

database

Thermodatabase

Kineticdescription

Experimental

data

- tracer diffusivities

- chemical diffusivities

- etc.

- phase diagram data

Page 271: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example g1

Checking diffusivities in an Fe-Ni alloy

-16

-15

-14

-13

-12

-11

-10

-9

-8

log(

DF

eN

iNi /

[m2 s

-1] )

+ M

0 0.2 0.4 0.6 0.8 1.0

xNi

1356 oC

1315 oC

1258 oC

1200 oC

1136 oC

M=4

M=3

M=2

M=1

M=0

Page 272: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exg1-setup

MACRO exg1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg1\setup.DCM"SYS: @@ SYS: @@ Kinetic data. SYS: @@ A file for checking mobilities and diffusivities in an Fe-Ni alloy. SYS: @@ SYS: SYS: @@ exg1_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE. SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ SELECT DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ DEFINE WHAT SYSTEM WE WANT TO WORK WITH TDB_TCFE7: @@ TDB_TCFE7: def-sys fe ni FE NI DEFINED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ EXCLUDE THE THERMODYNAMIC DATA FOR THE PHASES THAT IS NOT NEEDED TDB_TCFE7: @@ TDB_TCFE7: rej ph * all LIQUID:L BCC_A2 FCC_A1 HCP_A3 A1_KAPPA KAPPA LAVES_PHASE_C14 NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc FCC_A1 RESTORED TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ RETRIEVE DATA FROM DATABASE FILE TDB_TCFE7: @@ TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ MOBILITY/DIFFUSIVITY DATA ARE STORED ON A SEPARATE DATABASE FILE. TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE DATA TDB_TCFE7: @@ TDB_TCFE7: app Use one of these databases TCFE8 = Steels/Fe-Alloys v8.0 TCFE7 = Steels/Fe-Alloys v7.0 TCFE6 = Steels/Fe-Alloys v6.2 TCFE5 = Steels/Fe-Alloys v5.0 TCFE4 = Steels/Fe-Alloys v4.1 TCFE3 = Steels/Fe-Alloys v3.1 TCFE2 = Steels/Fe-Alloys v2.1 TCFE1 = Steels/Fe-Alloys v1.0 TCNI8 = Ni-Alloys v8.0 TCNI7 = Ni-Alloys v7.1 TCNI6 = Ni-Alloys v6.0 TCNI5 = Ni-Alloys v5.1 TCNI4 = Ni-Alloys v4.0 TCNI1 = Ni-Alloys v1.3 TCAL4 = Al-Alloys v4.0 TCAL3 = Al-Alloys v3.0 TCAL2 = Al-Alloys v2.0 TCAL1 = Al-Alloys v1.2 TCMG4 = Mg-Alloys v4.0 TCMG3 = Mg-Alloys v3.0 TCMG2 = Mg-Alloys v2.0 TCMG1 = Mg-Alloys v1.1 TCCC1 = Cemented carbide v1.0 TCHEA1 = High Entropy Alloy v1.0 SSOL5 = SGTE Alloy Solutions Database v5.0 SSOL4 = SGTE Alloy Solutions Database v4.9f SSOL2 = SGTE Alloy Solutions Database v2.1 SSUB5 = SGTE Substances Database v5.1 SSUB4 = SGTE Substances Database v4.1 SSUB3 = SGTE Substances Database v3.3 SSUB2 = SGTE Substances Database v2.2 SNOB3 = SGTE Nobel Metal Alloys Database v3.1 SNOB1 = SGTE Nobel Metal Alloys Database v1.2 STBC2 = SGTE Thermal Barrier Coating TDB v2.2 SALT1 = SGTE Molten Salts Database v1.2 SNUX6 = SGTE In-Vessel Nuclear Oxide TDB v6.2 SEMC2 = TC Semi-Conductors v2.1 SLAG3 = Fe-containing Slag v3.2 SLAG2 = Fe-containing Slag v2.2

Page 273: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

SLAG1 = Fe-containing Slag v1.2 TCOX6 = Metal Oxide Solutions v6.0 TCOX5 = Metal Oxide Solutions v5.1 TCOX4 = Metal Oxide Solutions v4.1 ION3 = Ionic Solutions v3.0 ION2 = Ionic Solutions v2.6 ION1 = Ionic Solutions v1.5 NOX2 = NPL Oxide Solutions Database v2.1 TCSLD3 = Solder Alloys v3.1 TCSLD2 = Solder Alloys v2.0 TCSLD1 = Solder Alloys v1.0 TCSI1 = Ultrapure Silicon v1.1 TCMP2 = Materials Processing v2.5 TCES1 = Combustion/Sintering v1.1 TCSC1 = Super Conductor v1.0 TCFC1 = SOFC Database v1.0 TCNF2 = Nuclear Fuels v2.1b NUMT2 = Nuclear Materials v2.1 NUOX4 = Nuclear Oxides v4.2 NUTO1 = U-Zr-Si Ternary Oxides TDB v1.1 NUTA1 = Ag-Cd-In Ternary Alloys TDB v1.1 NUCL10 = ThermoData NUCLEA Alloys-oxides TDB v10.2 MEPH11 = ThermoData MEPHISTA Nuclear Fuels TDB v11 TCAQ2 = Aqueous Solution v2.5 AQS2 = TGG Aqueous Solution Database v2.5 GCE2 = TGG Geochemical/Environmental TDB v2.3 PURE5 = SGTE Unary (Pure Elements) TDB v5.1 ALDEMO = Aluminum Demo Database FEDEMO = Iron Demo Database SLDEMO = Solder Demo Database OXDEMO = Oxide Demo Database SUBDEMO = Substance Demo Database PTERN = Public Ternary Alloys TDB v1.3 PG35 = G35 Binary Semi-Conductors TDB v1.2 MOB2 = Alloys Mobility v2.4 MOB1 = Alloys Mobility v1.3 MOBFE1 = Steels/Fe-Alloys Mobility v1.0 MOBFE2 = Steels/Fe-Alloys Mobility v2.0 MOBNI3 = Ni-Alloys Mobility v3.1 MOBNI2 = Ni-Alloys Mobility v2.4 MOBNI1 = Ni-Alloys Mobility v1.0 MOBAL3 = Al-Alloys Mobility v3.0 MOBAL2 = Al-Alloys Mobility v2.0 MOBAL1 = Al-Alloys Mobility v1.0 MOBMG1 = Mg-Alloys Mobility v1.0 MOBSI1 = Si-Alloys Mobility v1.0 MOBTI1 = Ti-Alloys Mobility v1.0 MFEDEMO = Fe-Alloys Mobility demo database USER = User defined Database DATABASE NAME /TCFE7/: mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni FE NI DEFINED APP: rej ph * all BCC_A2 FCC_A1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR WHERE WE WILL SETUP OUR SYSTEM APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ LIST MOBILITY DATA DIC> @@ DIC> list-mob-data Sorry, LIST-DATA disabled for this database DIC> DIC> DIC> DIC>@?<Hit_return_to_continue>DIC> DIC> @@ DIC> @@ CHECK DIFFUSIVITES DIC> @@ DIC> check OUTPUT TO SCREEN OR FILE /SCREEN/: PHASE NAME : fcc DEPENDENT COMPONENT ? /NI/: fe CONCENTRATION OF NI IN U-FRACTION /1/: 0.3 Pressure /100000/: 101325 Temperature /298.15/: 1409 OPTION ( dlpbmx0ez or * ) /D/: dl Dkj (reduced n=FE) k / j NI NI +3.83335E-15 L0kj = Uk*Mvak IF (kES) ELSE Uk*Yva*Mvak k / j FE NI FE +2.32266E-19 NI +9.0901E-20

Page 274: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Volume = 1.000000000000000E-005 DIC> DIC> DIC>@?<Hit_return_to_continue>DIC> DIC> @@ DIC> @@ CALCULATE DIFFUSIVITIES VS. COMPOSITION BY STEPPING IN POLY-3 DIC> @@ DIC> go p-3 POLY_3: s-c t=1409,p=101325,n=1,x(ni)=0.3 POLY_3: c-e Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: POLY_3: s-a-v Axis number: /1/: 1 Condition /NONE/: x(ni) Min value /0/: 0 Max value /1/: 1 Increment /.025/: 1e-3 POLY_3: POLY_3: step Option? /NORMAL/: normal No initial equilibrium, using default Step will start from axis value 0.300000 ...OK

Phase Region from 0.300000 for: FCC_A1 Global test at 3.08000E-01 .... OK Global test at 3.18000E-01 .... OK Global test at 3.28000E-01 .... OK Global test at 3.38000E-01 .... OK Global test at 3.48000E-01 .... OK Global test at 3.58000E-01 .... OK Global test at 3.68000E-01 .... OK Global test at 3.78000E-01 .... OK Global test at 3.88000E-01 .... OK Global test at 3.98000E-01 .... OK Global test at 4.08000E-01 .... OK Global test at 4.18000E-01 .... OK Global test at 4.28000E-01 .... OK Global test at 4.38000E-01 .... OK Global test at 4.48000E-01 .... OK Global test at 4.58000E-01 .... OK Global test at 4.68000E-01 .... OK Global test at 4.78000E-01 .... OK Global test at 4.88000E-01 .... OK Global test at 4.98000E-01 .... OK Global test at 5.08000E-01 .... OK Global test at 5.18000E-01 .... OK Global test at 5.28000E-01 .... OK Global test at 5.38000E-01 .... OK Global test at 5.48000E-01 .... OK Global test at 5.58000E-01 .... OK Global test at 5.68000E-01 .... OK Global test at 5.78000E-01 .... OK Global test at 5.88000E-01 .... OK Global test at 5.98000E-01 .... OK Global test at 6.08000E-01 .... OK Global test at 6.18000E-01 .... OK Global test at 6.28000E-01 .... OK Global test at 6.38000E-01 .... OK Global test at 6.48000E-01 .... OK Global test at 6.58000E-01 .... OK Global test at 6.68000E-01 .... OK Global test at 6.78000E-01 .... OK Global test at 6.88000E-01 .... OK Global test at 6.98000E-01 .... OK Global test at 7.08000E-01 .... OK Global test at 7.18000E-01 .... OK Global test at 7.28000E-01 .... OK Global test at 7.38000E-01 .... OK Global test at 7.48000E-01 .... OK Global test at 7.58000E-01 .... OK Global test at 7.68000E-01 .... OK Global test at 7.78000E-01 .... OK Global test at 7.88000E-01 .... OK Global test at 7.98000E-01 .... OK Global test at 8.08000E-01 .... OK Global test at 8.18000E-01 .... OK Global test at 8.28000E-01 .... OK Global test at 8.38000E-01 .... OK Global test at 8.48000E-01 .... OK Global test at 8.58000E-01 .... OK Global test at 8.68000E-01 .... OK Global test at 8.78000E-01 .... OK Global test at 8.88000E-01 .... OK Global test at 8.98000E-01 .... OK Global test at 9.08000E-01 .... OK Global test at 9.18000E-01 .... OK Global test at 9.28000E-01 .... OK Global test at 9.38000E-01 .... OK Global test at 9.48000E-01 .... OK Global test at 9.58000E-01 .... OK Global test at 9.68000E-01 .... OK Global test at 9.78000E-01 .... OK Global test at 9.88000E-01 .... OK Global test at 9.98000E-01 .... OK Terminating at 1.00000 Calculated 703 equilibria

Phase Region from 0.300000 for: FCC_A1 Global test at 2.92000E-01 .... OK Global test at 2.82000E-01 .... OK Global test at 2.72000E-01 .... OK Global test at 2.62000E-01 .... OK Global test at 2.52000E-01 .... OK Global test at 2.42000E-01 .... OK Global test at 2.32000E-01 .... OK

Page 275: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Global test at 2.22000E-01 .... OK Global test at 2.12000E-01 .... OK Global test at 2.02000E-01 .... OK Global test at 1.92000E-01 .... OK Global test at 1.82000E-01 .... OK Global test at 1.72000E-01 .... OK Global test at 1.62000E-01 .... OK Global test at 1.52000E-01 .... OK Global test at 1.42000E-01 .... OK Global test at 1.32000E-01 .... OK Global test at 1.22000E-01 .... OK Global test at 1.12000E-01 .... OK Global test at 1.02000E-01 .... OK Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-11 Calculated 303 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: POLY_3: @@ POLY_3: @@ ENTER POST-PROCESSOR AND PLOT THE RESULT POLY_3: @@ POLY_3: post POLY-3 POSTPROCESSOR VERSION 3.2 POST: POST: POST: POST: @@ POST: @@ PLOT MOBILITY OF NI VS. X(NI) POST: @@ POST: s-d-a y m(fcc,ni) POST: s-d-a x m-f ni POST: POST: plot

POST: POST: POST: POST:@?<Hit_return_to_continue>POST: POST: @@ POST: @@ THEN PLOT DIFFUSIVITY OF NI VS. X(NI) POST: @@ POST: s-d-a y dc(fcc,ni,ni,fe) POST: POST: plot

Page 276: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST: POST: POST:@?<Hit_return_to_continue>POST: POST: @@ POST: @@ PLOT THE LOGARITHM OF DC AND APPEND EXPERIMENTAL DATA POST: @@ POST: s-d-a y logdc(fcc,ni,ni,fe) POST: POST: app y feni.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 1 POST: POST: s-s-s y n -15.5 -13.5 POST: POST: plot

POST: POST: POST:@?<Hit_return_to_continue>POST: POST: set-inter POST:

Page 277: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example g2

Optimization of mobilities in Ni-Al fcc alloys

-16

-15

-14

-13

-12

-11

-10

-9

-8

log(

DF

eN

iNi /

[m2 s

-1] )

+ M

0 0.2 0.4 0.6 0.8 1.0

xNi

1356 oC

1315 oC

1258 oC

1200 oC

1136 oC

M=4

M=3

M=2

M=1

M=0

Experimental

data

Parrot

Poly

Thermodynamic

description

500

600

700

800

900

1000

1100

1200

1300

1400

Tem

pera

ture

K

0 0.2 0.4 0.6 0.8 1.0

Mole fraction CuAl

Research Normal user

- activity meassurements

- enthalpy meassurements

- cp meassurements

- etc.

DICTRAMobility

database

Thermodatabase

Kineticdescription

Experimental

data

- tracer diffusivities

- chemical diffusivities

- etc.

- phase diagram data

Page 278: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exg2-setup

MACRO exg2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg2\setup.DCM"SYS: ?@@ NO SUCH COMMAND, USE HELP SYS: @@ Kinetic data. SYS: @@ A file for reading thermodynamic data and setting up the kinetic SYS: @@ parameters which are needed for an optimization of the FCC phase SYS: @@ in the binary Ni-Al system. SYS: @@ See also A. Engström and J. Ågren: ("Assessment of Diffusional SYS: @@ Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys" in SYS: @@ Z. METALLKUNDE, Feb. 1996). SYS: @@ SYS: SYS: @@ exg2_setup.DCM SYS: SYS: @@ SYS: @@ RETRIEVE THERMODYNAMIC DATA FROM A USER DEFINED DATABASE SYS: @@ SYS: go data THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw us tdata Current database: User defined Database This database does not support the DATABASE_INFORMATION command VA DEFINED TDB_USER: def-sys el ELEMENTS: al ni AL NI DEFINED TDB_USER: rej ph * LIQUID B2_BCC BCC_A2 FCC_A1 GAMMA_PRIME REJECTED TDB_USER: rest ph fcc_a1 FCC_A1 RESTORED TDB_USER: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS .... -OK- TDB_USER: TDB_USER: @@ TDB_USER: @@ APPEND THE KINETIC DATA FROM THE MOBILITY DATABASE IN ORDER TO TDB_USER: @@ HAVE SOME DUMMY PARAMETERS. TDB_USER: @@ TDB_USER: app mob2 Current database: Alloys Mobility v2.4 VA DEFINED GAS:G REJECTED APP: def-sys ELEMENTS: al ni AL NI DEFINED APP: rej ph * BCC_A2 FCC_A1 FE4N HCP_A3 LIQUID:L REJECTED APP: res ph fcc_a1 FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'A. Engstrom and J. Agren: Z. Metallkunde 87(1996)92-97; Al, Cr and Ni diffusion in fcc Al-Cr-Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: @@ APP: @@ GO TO THE DICTRA MODULE AND DEFINE THE KINETIC PARAMETERS. THE APP: @@ VARIABLE V1,V2,V3 AND V4 ARE TO BE OPTIMIZED. NOTE THAT IF APP: @@ YOU ARE OPTIMIZING PARAMETERS FOR A PHASE WITH MAGNETIC APP: @@ CONTRIBUTION. I.E. USING BOTH MF- AND MQ-PARAMETERS YOU APP: @@ MIGHT HAVE TO ENTER THE PARROT MODULE AND GO BACK BEFORE APP: @@ ENTERING PARAMETERS CONTAINING VARIABLES. APP: @@ APP: go dic_par PARROT VERSION 5.3d RUNNING ON PC/WINDOWS NT Developed at the Division of Physical Metallurgy Royal Institute of Technology Stockholm, Sweden

PARROT: PARROT: PARROT: go d-m NO TIME STEP DEFINED DIC> DIC> @@ MOBILITY OF AL IN AL DIC> ENTER-MOB-DATA PARAMETER: MQ(FCC_A1&AL,AL:VA) 298.15 -142000+R*T*LN(1.71E-4); 6000 N MQ(FCC_A1&AL#1,AL:VA;0) DIC> DIC> @@ MOBILITY OF AL IN NI DIC> ENTER-MOB-DATA PARAMETER: MQ(FCC_A1&AL,NI:VA) 298.15 -284000+R*T*LN(7.5E-4); 6000 N MQ(FCC_A1&AL#1,NI:VA;0) DIC> DIC> @@ MOBILITY OF AL INTERACTION BETWEEN AL AND NI DIC> ENTER-MOB-DATA

Page 279: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

PARAMETER: MQ(FCC_A1&AL,AL,NI:VA;0) 298.15 V1+V2*T; 6000 N MQ(FCC_A1&AL#1,AL,NI:VA;0) DIC> DIC> @@ MOBILITY OF NI IN AL DIC> ENTER-MOB-DATA PARAMETER: MQ(FCC_A1&NI,AL:VA) 298.15 -145900+R*T*LN(4.4E-4); 6000 N MQ(FCC_A1&NI#1,AL:VA;0) DIC> DIC> @@ MOBILITY OF NI IN NI DIC> ENTER-MOB-DATA PARAMETER: MQ(FCC_A1&NI,NI:VA) 298.15 -287000-69.8*T; 6000 N MQ(FCC_A1&NI#1,NI:VA;0) DIC> DIC> @@ MOBILITY OF NI INTERACTION BETWEEN NI AND AL DIC> ENTER-MOB-DATA PARAMETER: MQ(FCC_A1&NI,NI,AL:VA;0) 298.15 V3+V4*T; 6000 N MQ(FCC_A1&NI#1,AL,NI:VA;0) DIC> DIC> @@ DIC> @@ GO TO PARROT AND SAVE SETUP ON FILE DIC> @@ DIC> go dic_parrot PARROT VERSION 5.3d RUNNING ON PC/WINDOWS NT PARROT: create-new-store-file opt PARROT: PARROT: set-inter --OK--- PARROT:

Page 280: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exg2-run

MACRO exg2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg2\run.DCM"PARROT: @@ exg2_run.DCM PARROT: PARROT: @@------------------------------------------------------------------ PARROT: @@ FILE FOR DOING THE OPTIMIZATION IN PARROT PARROT: @@------------------------------------------------------------------ PARROT: PARROT: @@ PARROT: @@ GO TO PARROT AND READ THE SETUP PARROT: @@ PARROT: go dic_parrot PARROT VERSION 5.3d RUNNING ON PC/WINDOWS NT PARROT: set-store-file opt PARROT: PARROT: PARROT: @@ PARROT: @@ COMPILE THE EXPERIMENTAL DATA IN exp.DOP INTO STRUCTURED BINARY DATA. PARROT: @@ PARROT: compile-experiments exp OUTPUT TO SCREEN OR FILE /SCREEN/: INITIATE STORE FILE: /Y/: $---------------------------------------------------------------------- $ DOP-FILE CONTAINING EXPERIMENTAL INFORMATION USED DURING THE $ OTIMIZATION IN PARROT (COMPARE WITH POP-FILE USED WHEN EVALUATING $ THERMODYNAMIC DATA). THE EXPERIMENTAL DATA HERE STEAM FROM A STUDY BY $ YAMAMOTO ET AL. TRANS. JPN. INST. MET. VOL. 21,NO. 9 (1980), P. 601. $ $ CONSULT THE THERMO-CALC USER'S GUIDE TO LEARN MORE ABOUT SYNTAXES $ FOR OPTIMIZATION OF THERMODYNAMIC DATA. $---------------------------------------------------------------------- ENTER CONST P0=101325 TABLE_HEAD 10 CREATE_NEW 0010,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.01055 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.6:.1 CREATE_NEW 0011,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.02032 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.56:.1 CREATE_NEW 0012,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.02957 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.65:.1 CREATE_NEW 0013,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.03884 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.52:.1 CREATE_NEW 0014,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.03884 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.52:.1 CREATE_NEW 0015,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.04927 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.48:.1 CREATE_NEW 0016,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.06062 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.43:.1 CREATE_NEW 0017,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.07029 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.41:.1 CREATE_NEW 0018,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.08113 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.37:.1 CREATE_NEW 0019,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.09166 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.32:.1 CREATE_NEW 0020,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.09945 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.28:.1 CREATE_NEW 0021,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.1099 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.24:.1 CREATE_NEW 0022,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.1207 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.2:.1 CREATE_NEW 0023,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.129 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.18:.1 CREATE_NEW 0024,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.1392 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.16:.1 CREATE_NEW 0025,1

Page 281: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.1503 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.1:.1 CREATE_NEW 0026,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.1589 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.08:.1 CREATE_NEW 0027,1 C-S PH FCC=ENT 1 S-C T=1573,N=1,P=P0 S-C X(AL)=.1716 EXPERIMENT LOGDC(FCC_A1,AL,AL,NI)=-12.02:.1 CREATE_NEW 0028,1 C-S PH FCC=ENT 1

output ignored...

... output resumed

V3 -1.32972465E+05 -1.32959170E+05 -1.32959170E+05 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 3.97449913E+00 V4 7.81857821E+01 7.81857821E+01 7.81857821E+01 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00 4.46532133E+00

NUMBER OF OPTIMIZING VARIABLES : 4 ALL OTHER VARIABLES ARE FIX WITH THE VALUE ZERO THE SUM OF SQUARES HAS CHANGED FROM 2.02977003E+01 TO 2.02976923E+01 DEGREES OF FREEDOM 113. REDUCED SUM OF SQUARES 1.79625595E-01 Sorry, LIST-DATA disabled for this database ====== BLOCK NUMBER 1 DEFINED CONSTANTS P0=101325 10 LOGDC(F...,AL,NI)=-12.6 -12.56 1.00E-01 4.3827E-02 0.4383 11 LOGDC(F...,AL,NI)=-12.56 -12.55 1.00E-01 1.2341E-02 0.1234 12 LOGDC(F...,AL,NI)=-12.65 -12.53 1.00E-01 0.1167 1.167 13 LOGDC(F...,AL,NI)=-12.52 -12.51 1.00E-01 5.8843E-03 5.8843E-02 14 LOGDC(F...,AL,NI)=-12.52 -12.51 1.00E-01 5.8843E-03 5.8843E-02 15 LOGDC(F...,AL,NI)=-12.48 -12.49 1.00E-01 -8.4123E-03 -8.4123E-02 16 LOGDC(F...,AL,NI)=-12.43 -12.46 1.00E-01 -2.6851E-02 -0.2685 17 LOGDC(F...,AL,NI)=-12.41 -12.43 1.00E-01 -1.7821E-02 -0.1782 18 LOGDC(F...,AL,NI)=-12.37 -12.39 1.00E-01 -2.3493E-02 -0.2349 19 LOGDC(F...,AL,NI)=-12.32 -12.36 1.00E-01 -3.8626E-02 -0.3863 20 LOGDC(F...,AL,NI)=-12.28 -12.33 1.00E-01 -5.1933E-02 -0.5193 21 LOGDC(F...,AL,NI)=-12.24 -12.29 1.00E-01 -5.4919E-02 -0.5492 22 LOGDC(F...,AL,NI)=-12.2 -12.26 1.00E-01 -5.5128E-02 -0.5513 23 LOGDC(F...,AL,NI)=-12.18 -12.22 1.00E-01 -4.3400E-02 -0.4340 24 LOGDC(F...,AL,NI)=-12.16 -12.18 1.00E-01 -2.2927E-02 -0.2293 25 LOGDC(F...,AL,NI)=-12.1 -12.14 1.00E-01 -3.6888E-02 -0.3689 26 LOGDC(F...,AL,NI)=-12.08 -12.10 1.00E-01 -1.9703E-02 -0.1970 27 LOGDC(F...,AL,NI)=-12.02 -12.04 1.00E-01 -2.2272E-02 -0.2227 28 LOGDC(F...,AL,NI)=-11.98 -11.99 1.00E-01 -9.0917E-03 -9.0917E-02 29 LOGDC(F...,AL,NI)=-11.94 -11.95 1.00E-01 -9.1618E-03 -9.1618E-02 30 LOGDC(F...,AL,NI)=-13 -12.86 1.00E-01 0.1360 1.360 31 LOGDC(F...,AL,NI)=-12.96 -12.85 1.00E-01 0.1059 1.059 32 LOGDC(F...,AL,NI)=-12.92 -12.84 1.00E-01 8.4799E-02 0.8480 33 LOGDC(F...,AL,NI)=-12.9 -12.82 1.00E-01 8.2549E-02 0.8255 34 LOGDC(F...,AL,NI)=-12.77 -12.79 1.00E-01 -1.5173E-02 -0.1517 35 LOGDC(F...,AL,NI)=-12.74 -12.75 1.00E-01 -1.1192E-02 -0.1119 36 LOGDC(F...,AL,NI)=-12.82 -12.72 1.00E-01 9.5223E-02 0.9522 37 LOGDC(F...,AL,NI)=-12.82 -12.72 1.00E-01 9.5223E-02 0.9522 38 LOGDC(F...,AL,NI)=-12.69 -12.68 1.00E-01 5.7856E-03 5.7856E-02 39 LOGDC(F...,AL,NI)=-12.65 -12.65 1.00E-01 2.6229E-03 2.6229E-02 40 LOGDC(F...,AL,NI)=-12.64 -12.62 1.00E-01 1.9222E-02 0.1922 41 LOGDC(F...,AL,NI)=-12.61 -12.58 1.00E-01 2.8492E-02 0.2849 42 LOGDC(F...,AL,NI)=-12.55 -12.54 1.00E-01 9.2091E-03 9.2091E-02 43 LOGDC(F...,AL,NI)=-12.53 -12.51 1.00E-01 2.1034E-02 0.2103 44 LOGDC(F...,AL,NI)=-12.47 -12.47 1.00E-01 2.0402E-03 2.0402E-02 45 LOGDC(F...,AL,NI)=-12.41 -12.42 1.00E-01 -1.0621E-02 -0.1062 46 LOGDC(F...,AL,NI)=-12.38 -12.38 1.00E-01 -1.6323E-04 -1.6323E-03 47 LOGDC(F...,AL,NI)=-12.36 -12.32 1.00E-01 3.6255E-02 0.3626 48 LOGDC(F...,AL,NI)=-12.36 -12.32 1.00E-01 3.6255E-02 0.3626 49 LOGDC(F...,AL,NI)=-12.3 -12.27 1.00E-01 3.0494E-02 0.3049 50 LOGDC(F...,AL,NI)=-13.23 -13.19 1.00E-01 3.8416E-02 0.3842 51 LOGDC(F...,AL,NI)=-13.23 -13.19 1.00E-01 3.8416E-02 0.3842 52 LOGDC(F...,AL,NI)=-13.19 -13.18 1.00E-01 1.3209E-02 0.1321 53 LOGDC(F...,AL,NI)=-13.15 -13.16 1.00E-01 -5.5530E-03 -5.5530E-02 54 LOGDC(F...,AL,NI)=-13.12 -13.13 1.00E-01 -1.4736E-02 -0.1474 55 LOGDC(F...,AL,NI)=-13.09 -13.10 1.00E-01 -1.2913E-02 -0.1291 56 LOGDC(F...,AL,NI)=-13.06 -13.07 1.00E-01 -6.9397E-03 -6.9397E-02 57 LOGDC(F...,AL,NI)=-13.02 -13.04 1.00E-01 -1.5971E-02 -0.1597 58 LOGDC(F...,AL,NI)=-12.99 -13.00 1.00E-01 -1.0672E-02 -0.1067 59 LOGDC(F...,AL,NI)=-12.96 -12.96 1.00E-01 8.0069E-04 8.0069E-03 60 LOGDC(F...,AL,NI)=-12.91 -12.93 1.00E-01 -2.0470E-02 -0.2047 61 LOGDC(F...,AL,NI)=-12.88 -12.89 1.00E-01 -7.3947E-03 -7.3947E-02 62 LOGDC(F...,AL,NI)=-12.86 -12.85 1.00E-01 1.4312E-02 0.1431 63 LOGDC(F...,AL,NI)=-12.86 -12.85 1.00E-01 1.4312E-02 0.1431 64 LOGDC(F...,AL,NI)=-12.83 -12.81 1.00E-01 1.7076E-02 0.1708 65 LOGDC(F...,AL,NI)=-12.8 -12.77 1.00E-01 2.9558E-02 0.2956 66 LOGDC(F...,AL,NI)=-12.75 -12.72 1.00E-01 2.5293E-02 0.2529 67 LOGDC(F...,AL,NI)=-12.71 -12.68 1.00E-01 2.6861E-02 0.2686 68 LOGDC(F...,AL,NI)=-12.67 -12.63 1.00E-01 4.4033E-02 0.4403 70 LOGDC(F...,AL,NI)=-13.5 -13.54 1.00E-01 -4.2456E-02 -0.4246 71 LOGDC(F...,AL,NI)=-13.47 -13.53 1.00E-01 -5.5160E-02 -0.5516 72 LOGDC(F...,AL,NI)=-13.45 -13.50 1.00E-01 -5.0384E-02 -0.5038 73 LOGDC(F...,AL,NI)=-13.42 -13.48 1.00E-01 -5.6139E-02 -0.5614 74 LOGDC(F...,AL,NI)=-13.39 -13.44 1.00E-01 -5.3034E-02 -0.5303 75 LOGDC(F...,AL,NI)=-13.36 -13.40 1.00E-01 -4.3865E-02 -0.4386 76 LOGDC(F...,AL,NI)=-13.34 -13.37 1.00E-01 -3.0943E-02 -0.3094 77 LOGDC(F...,AL,NI)=-13.31 -13.33 1.00E-01 -2.0539E-02 -0.2054 78 LOGDC(F...,AL,NI)=-13.24 -13.29 1.00E-01 -5.0311E-02 -0.5031 79 LOGDC(F...,AL,NI)=-13.22 -13.26 1.00E-01 -4.1318E-02 -0.4132

Page 282: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

80 LOGDC(F...,AL,NI)=-13.19 -13.22 1.00E-01 -2.6230E-02 -0.2623 81 LOGDC(F...,AL,NI)=-13.13 -13.17 1.00E-01 -4.3098E-02 -0.4310 82 LOGDC(F...,AL,NI)=-13.12 -13.14 1.00E-01 -1.9773E-02 -0.1977 83 LOGDC(F...,AL,NI)=-13.08 -13.09 1.00E-01 -1.4457E-02 -0.1446 84 LOGDC(F...,AL,NI)=-13.04 -13.05 1.00E-01 -9.4618E-03 -9.4618E-02 85 LOGDC(F...,AL,NI)=-13.03 -13.01 1.00E-01 2.2404E-02 0.2240 90 LOGDC(F...,AL,NI)=-13.97 -13.92 1.00E-01 5.1241E-02 0.5124 91 LOGDC(F...,AL,NI)=-13.92 -13.90 1.00E-01 2.0497E-02 0.2050 92 LOGDC(F...,AL,NI)=-13.88 -13.87 1.00E-01 9.3921E-03 9.3921E-02 93 LOGDC(F...,AL,NI)=-13.85 -13.84 1.00E-01 5.2264E-03 5.2264E-02 94 LOGDC(F...,AL,NI)=-13.82 -13.81 1.00E-01 1.1044E-02 0.1104 95 LOGDC(F...,AL,NI)=-13.78 -13.77 1.00E-01 1.3352E-02 0.1335 96 LOGDC(F...,AL,NI)=-13.9 -13.74 1.00E-01 0.1640 1.640 97 LOGDC(F...,AL,NI)=-13.85 -13.69 1.00E-01 0.1576 1.576 98 LOGDC(F...,AL,NI)=-13.65 -13.65 1.00E-01 1.5604E-03 1.5604E-02 99 LOGDC(F...,AL,NI)=-13.62 -13.62 1.00E-01 4.9052E-03 4.9052E-02 100 LOGDC(F...,AL,NI)=-13.57 -13.57 1.00E-01 -9.5589E-04 -9.5589E-03 101 LOGDC(F...,AL,NI)=-13.52 -13.53 1.00E-01 -5.4819E-03 -5.4819E-02 102 LOGDC(F...,AL,NI)=-13.47 -13.49 1.00E-01 -2.0262E-02 -0.2026 103 LOGDC(F...,AL,NI)=-13.45 -13.45 1.00E-01 4.9628E-03 4.9628E-02 104 LOGDC(F...,AL,NI)=-13.4 -13.40 1.00E-01 2.8073E-03 2.8073E-02 110 LOGDC(F...,AL,NI)=-14.32 -14.32 1.00E-01 -3.9760E-03 -3.9760E-02 111 LOGDC(F...,AL,NI)=-14.32 -14.30 1.00E-01 1.9307E-02 0.1931 112 LOGDC(F...,AL,NI)=-14.28 -14.27 1.00E-01 1.0664E-02 0.1066 113 LOGDC(F...,AL,NI)=-14.25 -14.24 1.00E-01 8.9412E-03 8.9412E-02 114 LOGDC(F...,AL,NI)=-14.22 -14.20 1.00E-01 1.8329E-02 0.1833 115 LOGDC(F...,AL,NI)=-14.17 -14.16 1.00E-01 1.2994E-02 0.1299 116 LOGDC(F...,AL,NI)=-14.15 -14.12 1.00E-01 3.0489E-02 0.3049 117 LOGDC(F...,AL,NI)=-14.1 -14.07 1.00E-01 2.5593E-02 0.2559 118 LOGDC(F...,AL,NI)=-14.03 -14.03 1.00E-01 -1.4483E-03 -1.4483E-02 119 LOGDC(F...,AL,NI)=-14 -14.00 1.00E-01 2.7074E-03 2.7074E-02 120 LOGDC(F...,AL,NI)=-13.95 -13.95 1.00E-01 -1.9282E-03 -1.9282E-02 121 LOGDC(F...,AL,NI)=-13.9 -13.91 1.00E-01 -5.2349E-03 -5.2349E-02 122 LOGDC(F...,AL,NI)=-13.85 -13.87 1.00E-01 -1.6645E-02 -0.1665 130 LOGDC(F...,AL,NI)=-14.73 -14.76 1.00E-01 -3.0493E-02 -0.3049 131 LOGDC(F...,AL,NI)=-14.71 -14.73 1.00E-01 -2.3757E-02 -0.2376 132 LOGDC(F...,AL,NI)=-14.68 -14.70 1.00E-01 -1.9446E-02 -0.1945 133 LOGDC(F...,AL,NI)=-14.66 -14.67 1.00E-01 -8.5997E-03 -8.5997E-02 134 LOGDC(F...,AL,NI)=-14.61 -14.63 1.00E-01 -1.5314E-02 -0.1531 135 LOGDC(F...,AL,NI)=-14.61 -14.63 1.00E-01 -1.5314E-02 -0.1531 136 LOGDC(F...,AL,NI)=-14.58 -14.58 1.00E-01 3.4408E-03 3.4408E-02 137 LOGDC(F...,AL,NI)=-14.54 -14.54 1.00E-01 3.3897E-03 3.3897E-02 138 LOGDC(F...,AL,NI)=-14.5 -14.49 1.00E-01 9.2113E-03 9.2113E-02 139 LOGDC(F...,AL,NI)=-14.46 -14.44 1.00E-01 1.5390E-02 0.1539 140 LOGDC(F...,AL,NI)=-14.41 -14.41 1.00E-01 1.6005E-03 1.6005E-02 141 LOGDC(F...,AL,NI)=-14.35 -14.36 1.00E-01 -1.1351E-02 -0.1135 142 LOGDC(F...,AL,NI)=-14.27 -14.31 1.00E-01 -4.1487E-02 -0.4149 143 LOGDC(F...,AL,NI)=-14.2 -14.27 1.00E-01 -7.4774E-02 -0.7477 PARROT: PARROT: PARROT: set-inter --OK--- PARROT:

Page 283: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exg2-plot

MACRO exg2\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exg2\plot.DCM"PARROT: @@ exg2_plot.DCM PARROT: PARROT: @@------------------------------------------------------------------ PARROT: @@ FILE FOR PLOTTING THE RESULT AFTER THE OPTIMIZATION. HERE PARROT: @@ DIFFUSIVITIES CALCULATED FROM THE OPTIMIZED VARIABLES ARE PARROT: @@ COMPARED WITH EXPERIMENTALLY MEASURED ONES. PARROT: @@------------------------------------------------------------------ PARROT: PARROT: @@ PARROT: @@ GO TO PARROT AND READ THE FILE CONTAINING THE RESULT FROM PARROT: @@ THE OPTIMIZATION. PARROT: @@ PARROT: go dic_parrot PARROT VERSION 5.3d RUNNING ON PC/WINDOWS NT PARROT: set-store-file opt PARROT: PARROT: @@ PARROT: @@ GO TO POLY3 AND STEP IN X(AL) PARROT: @@ PARROT: go p-3 POLY_3: s-c n=1,p=101325,t=1573 POLY_3: s-c x(al)=.1 POLY_3: c-e,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: add,, POLY_3: POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: @@ POLY_3: @@ REPEATE THE PROCEDURE FOR SOME OTHER TEMPERATURES. POLY_3: @@ POLY_3: s-c t=1523,x(al)=.1 POLY_3: c-e,,,,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 1 s, total time 1 s POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria

Page 284: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

*** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: s-c t=1473,x(al)=.1 POLY_3: c-e,,,,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: s-c t=1423,x(al)=.1 POLY_3: c-e,,,,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: s-c t=1373,x(al)=.1 POLY_3: c-e,,,,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK

Page 285: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: s-c t=1323,x(al)=.1 POLY_3: c-e,,,,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: s-c t=1273,x(al)=.1 POLY_3: c-e,,,,,,, Using global minimization procedure Calculated 137 grid points in 0 s Found the set of lowest grid points in 0 s Calculated POLY solution 0 s, total time 0 s POLY_3: s-a-v 1 x(al) 0.0001 .20 0.001,,,, POLY_3: step Option? /NORMAL/: Step will start from axis value 0.100000E+00 ...OK

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 1.08000E-01 .... OK Global test at 1.18000E-01 .... OK Global test at 1.28000E-01 .... OK Global test at 1.38000E-01 .... OK Global test at 1.48000E-01 .... OK Global test at 1.58000E-01 .... OK Global test at 1.68000E-01 .... OK Global test at 1.78000E-01 .... OK Global test at 1.88000E-01 .... OK Global test at 1.98000E-01 .... OK Terminating at 0.200000 Calculated 103 equilibria

Phase Region from 0.100000E+00 for: FCC_A1 Global test at 9.20000E-02 .... OK Global test at 8.20000E-02 .... OK Global test at 7.20000E-02 .... OK Global test at 6.20000E-02 .... OK Global test at 5.20000E-02 .... OK Global test at 4.20000E-02 .... OK Global test at 3.20000E-02 .... OK Global test at 2.20000E-02 .... OK Global test at 1.20000E-02 .... OK Global test at 2.00000E-03 .... OK Terminating at 0.100000E-03 Calculated 103 equilibria *** Buffer saved on file: C:\Users\test\Documents\RESULT_002.POLY3 POLY_3: @@ POLY_3: @@ ENTER THE POST MODULE, PLOT THE DIFFUSIVITY ON THE Y-AXIS POLY_3: @@ AND MOLE-FRACTION AL ON THE X-AXIS. POLY_3: @@ POLY_3: post POLY-3 POSTPROCESSOR VERSION 3.2 POST: POST: s-d-a x m-f al POST: s-d-a y logdc(fcc,al,al,ni) POST: POST: app y yama.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 1 2 3 4 5 6 7 POST: POST: POST: s-t-m-s y

Page 286: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

COMMAND NOT SUPPORTED IN THIS PLOT DRIVER POST: s-s-s y n -15 -11.7 POST: s-t-m-s y COMMAND NOT SUPPORTED IN THIS PLOT DRIVER POST: plo

POST: POST:@?<Hit_return_to_continue>POST: POST: set-inter POST:

Page 287: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Deviation from local equilibrium

Page 288: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially
Page 289: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh1-setup

MACRO exh1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh1\setup.DCM"SYS: @@ SYS: @@ Deviation from local equilibrium. SYS: @@ Setup file for calculating the growth of FERRITE into AUSTENITE SYS: @@ with a limited interface mobility. SYS: @@ This is achieved by adding a Gibbs-energy contribution to the FERRITE SYS: @@ using the SET-SURFACE-ENERGY command. SYS: @@ SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE A PUBLIC DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: def-sys fe c FE C DEFINED TDB_FEDEMO: rej ph * all GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: res ph bcc fcc BCC_A2 FCC_A1 RESTORED TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_FEDEMO: @@ TDB_FEDEMO: app mob2 Current database: Alloys Mobility v2.4 VA DEFINED GAS:G REJECTED APP: def-sys fe c FE C DEFINED APP: rej ph * all BCC_A2 CEMENTITE DIAMOND_A4 FCC_A1 FE4N GRAPHITE HCP_A3 KSI_CARBIDE LIQUID:L M23C6 M5C2 M7C3 REJECTED APP: res ph bcc fcc BCC_A2 FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diffusion in fcc C-Fe' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe-Ni' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr-Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' -OK- APP: APP: @@ APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> set-cond glob T 0 1000; * N DIC> DIC> @@ DIC> @@ WE START BY ENTERING REGION ferrite AND austenite WHEREIN WE DIC> @@ PUT THE BCC AND FCC PHASE RESPECTIVELY. THE ferrite REGION IS DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS. DIC> @@ DIC> enter-region

Page 290: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

REGION NAME : ferrite DIC> DIC> enter-region REGION NAME : austenite ATTACH TO REGION NAMED /FERRITE/: ATTACHED TO THE RIGHT OF FERRITE /YES/: DIC> DIC> @@ DIC> @@ ENTER GRIDS INTO THE REGIONS. DIC> @@ DIC> enter-grid REGION NAME : /FERRITE/: ferrite WIDTH OF REGION /1/: 1e-9 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 16 DIC> DIC> enter-grid austenite WIDTH OF REGION /1/: 0.999e-6 TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 100 VALUE OF R IN THE GEOMETRICAL SERIE : 1.07 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /FERRITE/: ferrite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: bcc DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO BCC. DIC> @@ DIC> enter-composition REGION NAME : /FERRITE/: ferrite PHASE NAME: /BCC_A2/: bcc COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.019091893 VALUE OF LAST POINT : /1.9091893E-2/: 0.019091893 DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO FCC. DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: C TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.0191 VALUE OF LAST POINT : /1.91E-2/: 0.0191 DIC> DIC> s-a-s-v 1E-6,,,,,,,,,, STARTING VALUES WILL BE TAKEN FROM PROFILES DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exh1 y DIC> DIC> set-inter --OK--- DIC>

Page 291: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh1-run

MACRO exh1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh1\run.DCM" DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE AND START THE SIMULATION DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> DIC> read exh1 OK DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-sim-time END TIME FOR INTEGRATION /.1/: 2.5E-3 AUTOMATIC TIMESTEP CONTROL /YES/: YES MAX TIMESTEP DURING INTEGRATION /2.5E-04/: INITIAL TIMESTEP : /1E-07/: 1E-5 SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: 1E-5 DIC> DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 3 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = 8.8825328568563E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] U-FRACTION IN SYSTEM: C = 8.8825328568563E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] 8 GRIDPOINT(S) ADDED TO CELL #1 REGION: FERRITE 5 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE 1.03110666181551 1.03110597183369 5.385246425284908E-002 1.715859197209767E-002 5.269454793162359E-003 1.307990235766189E-003 4.202476786297147E-004 1.948411908006568E-004 1.188567017945998E-004 9.839878488869812E-005 9.128893667442597E-005 8.866544431792533E-005 8.690550585936149E-005 8.538360708680218E-005 8.332726556390685E-005 7.999858657785934E-005 7.354651855517240E-005 6.145612079007278E-005 4.053019497661872E-005 1.169782221443648E-005 TIME = 0.10000000E-04 DT = 0.10000000E-04 SUM OF SQUARES = 0.0000000 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.24566276E-01 AND 0.24566276E-01 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.24666276E-06 U-FRACTION IN SYSTEM: C = 8.88752483361515E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] 15 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE 18 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE CPU time used in timestep 0 seconds 9.532773377098078E-005 9.534680027085068E-005 1.08068530282314 9.356200412242730E-005 9.268532915874290E-005 9.224853914102172E-005 9.181278076795938E-005 9.135438265217894E-005 9.044102801855774E-005 8.862808513869768E-005 8.505726492311199E-005 7.813588667255182E-005 6.517417889517592E-005 4.277495823453930E-005 1.207329648901820E-005 1.08068383068100 1.199299080265181E-005 1.195293844791592E-005 1.193293739261372E-005 1.192294314545148E-005 1.191295308533091E-005 1.190167282365429E-005 1.187912832962478E-005 1.183410345888553E-005 1.174431018685852E-005 1.156574952126933E-005 1.121273170305182E-005 1.052311011956729E-005 9.209523163412100E-006 6.844974094433803E-006 3.166375329878734E-006 0.201011782572525 3.142871672208493E-006 3.131152677551541E-006 3.125301388805292E-006 3.121850224457948E-006 3.118400966702946E-006 3.114440438044005E-006 3.106526930607043E-006 3.090730115382171E-006 3.059257283434525E-006 2.996794813479531E-006 2.873802649595959E-006 2.635549425498196E-006 2.189967392240294E-006

output ignored...

... output resumed

9.819794020258727E-017 TIME = 0.22002544E-02 DT = 0.75087107E-04 SUM OF SQUARES = 0.98197940E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.28402963E-03 AND 0.28402963E-03 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.92199873E-06 U-FRACTION IN SYSTEM: C = 8.88747631242596E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] CPU time used in timestep 1 seconds 7.986840729251211E-011 7.489714882055226E-011 4.900896524284950E-015 3.254074310359978E-019 TIME = 0.22777000E-02 DT = 0.77445643E-04 SUM OF SQUARES = 0.32540743E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.27923624E-03 AND 0.27923624E-03 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.94362436E-06 U-FRACTION IN SYSTEM: C = 8.88747661251603E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] CPU time used in timestep 1 seconds 2.809078081149325E-008 2.796037451260986E-008 3.923159526458546E-010 7.220381817392545E-012 1.962053506687926E-015 9.704675107466606E-021 TIME = 0.23495691E-02 DT = 0.71869036E-04 SUM OF SQUARES = 0.97046751E-20 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.28725723E-03 AND 0.28725723E-03 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.96426926E-06 U-FRACTION IN SYSTEM: C = 8.88747618654981E-04 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 2 seconds 9.454347916326056E-007 9.438322424857598E-007 5.227076162124419E-008 5.154698173071349E-009 8.601555018078858E-011 2.463240904969070E-013 1.179017220946856E-017 TIME = 0.24009106E-02 DT = 0.51341569E-04 SUM OF SQUARES = 0.11790172E-16 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.33032575E-03 AND 0.33032575E-03 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.98122870E-06 U-FRACTION IN SYSTEM: C = .00101130149105949 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m]

Page 292: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

CPU time used in timestep 1 seconds 7.148101462428815E-007 7.150000017031756E-007 3.435620109693077E-009 5.124599971765541E-010 2.312794327765358E-012 2.227047122794264E-015 1.181074220042402E-020 TIME = 0.24807770E-02 DT = 0.79866406E-04 SUM OF SQUARES = 0.11810742E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.10642994E-03 AND 0.10642994E-03 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.98972888E-06 U-FRACTION IN SYSTEM: C = .00107539130909825 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] CPU time used in timestep 2 seconds 7.633423967067742E-009 7.691011645701482E-009 8.607873865095893E-014 9.455684161680719E-019 TIME = 0.25000000E-02 DT = 0.19222960E-04 SUM OF SQUARES = 0.94556842E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.10154032E-03 AND 0.10154032E-03 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.99168078E-06 U-FRACTION IN SYSTEM: C = .00108581293494078 FE = 1 TOTAL SIZE OF SYSTEM: 1E-06 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-04 DELETING TIME-RECORD FOR TIME 0.30000000E-04 DELETING TIME-RECORD FOR TIME 0.51398715E-04 DELETING TIME-RECORD FOR TIME 0.74164928E-04 DELETING TIME-RECORD FOR TIME 0.98282873E-04 DELETING TIME-RECORD FOR TIME 0.12374568E-03 DELETING TIME-RECORD FOR TIME 0.15055410E-03 DELETING TIME-RECORD FOR TIME 0.17871784E-03 DELETING TIME-RECORD FOR TIME 0.20825724E-03 DELETING TIME-RECORD FOR TIME 0.23919959E-03 DELETING TIME-RECORD FOR TIME 0.27157705E-03 DELETING TIME-RECORD FOR TIME 0.30544641E-03 DELETING TIME-RECORD FOR TIME 0.34086769E-03 DELETING TIME-RECORD FOR TIME 0.37792599E-03 DELETING TIME-RECORD FOR TIME 0.41672114E-03 DELETING TIME-RECORD FOR TIME 0.45738349E-03 DELETING TIME-RECORD FOR TIME 0.50006274E-03 DELETING TIME-RECORD FOR TIME 0.54496668E-03 DELETING TIME-RECORD FOR TIME 0.59232869E-03 DELETING TIME-RECORD FOR TIME 0.64246086E-03 DELETING TIME-RECORD FOR TIME 0.69576815E-03 DELETING TIME-RECORD FOR TIME 0.75273484E-03 DELETING TIME-RECORD FOR TIME 0.81358958E-03 DELETING TIME-RECORD FOR TIME 0.87864139E-03 DELETING TIME-RECORD FOR TIME 0.94553878E-03 DELETING TIME-RECORD FOR TIME 0.10125488E-02 DELETING TIME-RECORD FOR TIME 0.10797329E-02 DELETING TIME-RECORD FOR TIME 0.11472694E-02 DELETING TIME-RECORD FOR TIME 0.12151918E-02 DELETING TIME-RECORD FOR TIME 0.12833104E-02 DELETING TIME-RECORD FOR TIME 0.13515445E-02 DELETING TIME-RECORD FOR TIME 0.14198808E-02 DELETING TIME-RECORD FOR TIME 0.14885622E-02 DELETING TIME-RECORD FOR TIME 0.15573693E-02 DELETING TIME-RECORD FOR TIME 0.16266608E-02 DELETING TIME-RECORD FOR TIME 0.16961600E-02 DELETING TIME-RECORD FOR TIME 0.17661995E-02 DELETING TIME-RECORD FOR TIME 0.18366000E-02 DELETING TIME-RECORD FOR TIME 0.19075164E-02 DELETING TIME-RECORD FOR TIME 0.19791354E-02 DELETING TIME-RECORD FOR TIME 0.20516011E-02 DELETING TIME-RECORD FOR TIME 0.21251673E-02 DELETING TIME-RECORD FOR TIME 0.22002544E-02 DELETING TIME-RECORD FOR TIME 0.22777000E-02 DELETING TIME-RECORD FOR TIME 0.23495691E-02 DELETING TIME-RECORD FOR TIME 0.24009106E-02 KEEPING TIME-RECORD FOR TIME 0.24807770E-02 AND FOR TIME 0.25000000E-02 WORKSPACE RECLAIMED DIC> DIC> DIC> set-inter --OK--- DIC>

Page 293: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh1-plot

MACRO exh1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh1\plot.DCM"DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 2.50000E-03 DIC> DIC> read exh1 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ SET THE DATA APPENDED FROM THE "EXP"-FILE TO BE RED POST-1: @@ POST-1: set-col for for red COMMAND NOT SUPPORTED IN THIS PLOT DRIVER POST-1: POST-1: @@ POST-1: @@ WE WILL COMPARE THE POSITION OF THE INTERFACE AS A FUNCTION OF TIME POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y posi aus low POST-1: POST-1: @@ POST-1: @@ APPEND THE SIMULATION WITHOUT THE ENERGY CONTRIBUTION FROM FILE POST-1: @@ POST-1: app y noadd.exp 1; 1 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-title Figure h1 POST-1: POST-1: @@ POST-1: @@ PLOT THE RESULTS POST-1: @@ POST-1: plot

POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 294: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Example h2

para-equilibrium in a Fe-Ni-C alloy α/γ

T = 973 K

γ●

ν

5E-4

α● ●● ●● ●●●

Page 295: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh2-setup

MACRO exh2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh2\setup.DCM"SYS: @@ SYS: @@ Deviation from local equilibrium SYS: @@ Setup file for calculation of the growth of FERRITE into AUSTENITE SYS: @@ in an Fe-2.02%Ni-0.0885%C alloy using the para-equilibrium model. SYS: @@ The results are compared with experimental information from SYS: @@ Hutchinson, C. R., A. Fuchsmann, and Yves Brechet. "The diffusional SYS: @@ formation of ferrite from austenite in Fe-C-Ni alloys." Metall. SYS: @@ Mat. Trans. A 35.4 (2004): 1211-1221. SYS: @@ SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ SELECT DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe ni c FE NI C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 NBNI3 NI3TI REJECTED TDB_TCFE7: res ph bcc fcc BCC_A2 FCC_A1 RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo-C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'A. Gabriel, C. Chatillon, and I. Ansara, published in High Temp. Sci. (parameters listed in Calphad, 11 (1987), 203-218); C-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'A. Gabriel, P. Gustafson, and I. Ansara, Calphad, 11 (1987), 203-218; TRITA-MAC 285 (1986); C-FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' -OK- TDB_TCFE7: TDB_TCFE7: @@ TDB_TCFE7: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_TCFE7: @@ TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni c FE NI C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph bcc fcc BCC_A2 FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' 'B. Jonsson: Z. Metallkunde 85(1994)498-501; C and N diffusion in bcc Cr -Fe-Ni' 'B. Jonsson: Z. Metallkunde 83(1992)349-355; Cr, Co, Fe and Ni diffusion in bcc Fe' 'B. Jonsson: ISIJ International, 35(1995)1415-1421; Cr, Fe and Ni diffusion bcc Cr-Fe-Ni' -OK- APP: APP: @@

Page 296: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

APP: @@ ENTER THE DICTRA MONITOR APP: @@ APP: go d-m NO TIME STEP DEFINED DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T. DIC> @@ DIC> set-cond glob T 0 973; * N DIC> DIC> @@ DIC> @@ WE START BY ENTERING REGION ferrite AND austenite WHEREIN WE DIC> @@ PUT THE BCC AND FCC PHASE RESPECTIVELY. THE ferrite REGION IS DIC> @@ ASSUMED INITIALLY TO BE VERY THIN, 1E-9 METERS. DIC> @@ DIC> enter-region REGION NAME : ferrite DIC> DIC> enter-region REGION NAME : austenite ATTACH TO REGION NAMED /FERRITE/: ATTACHED TO THE RIGHT OF FERRITE /YES/: DIC> DIC> @@ DIC> @@ ENTER GRIDS INTO THE REGIONS. DIC> @@ DIC> enter-grid REGION NAME : /FERRITE/: ferrite WIDTH OF REGION /1/: 1e-9 TYPE /LINEAR/: linear NUMBER OF POINTS /50/: 10 DIC> DIC> enter-grid austenite WIDTH OF REGION /1/: 50e-6 TYPE /LINEAR/: geo NUMBER OF POINTS /50/: 64 VALUE OF R IN THE GEOMETRICAL SERIE : 1.05 DIC> DIC> @@ DIC> @@ ENTER ACTIVE PHASES INTO REGIONS DIC> @@ DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /FERRITE/: ferrite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: bcc DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: active REGION NAME : /AUSTENITE/: austenite PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: fcc#1 DIC> DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO BCC. DIC> @@ DIC> enter-composition REGION NAME : /FERRITE/: ferrite PHASE NAME: /BCC_A2/: bcc DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: c TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.0885 VALUE OF LAST POINT : /8.85E-2/: 0.0885 PROFILE FOR /NI/: ni TYPE /LINEAR/: linear VALUE OF FIRST POINT : 2.02 VALUE OF LAST POINT : /2.02/: 2.02 DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITION INTO FCC. DIC> @@ DIC> enter-composition REGION NAME : /AUSTENITE/: austenite PHASE NAME: /FCC_A1/: fcc#1 DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: w-p PROFILE FOR /C/: c TYPE /LINEAR/: linear VALUE OF FIRST POINT : 0.0885 VALUE OF LAST POINT : /8.85E-2/: 0.0885 PROFILE FOR /NI/: ni TYPE /LINEAR/: linear VALUE OF FIRST POINT : 2.02 VALUE OF LAST POINT : /2.02/: 2.02 DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exh2 y DIC> DIC> set-inter --OK--- DIC>

Page 297: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh2-run

MACRO exh2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh2\run.DCM"DIC> DIC> DIC> DIC> @@ DIC> @@ FILE TO RUN EXH2 DIC> @@ DIC> DIC> @@ DIC> @@ READ THE SETUP FROM FILE DIC> @@ DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> DIC> read exh2 OK DIC> DIC> @@ DIC> @@ SET THE SIMULATION TIME DIC> @@ DIC> set-sim-time 50,,,,,,,,,, DIC> DIC> DIC> DIC> @@ DIC> @@ ENABLE PARA-EQUILIBRIUM MODEL DIC> @@ DIC> para ENABLE PARAEQ : /NO/: YES U-FRACTION OF COMPONENT FE /AUTO/: AUTO U-FRACTION OF COMPONENT NI /AUTO/: AUTO DIC> DIC> @@ DIC> @@ START THE SIMULATION DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 4 GENERATING STARTING VALUES FOR CELL # 1 INTERFACE # 2 DETERMINING INITIAL EQUILIBRIUM VALUES CALCULATING STARTING VALUES: 9 EQUILIBRIUM CALCULATIONS DONE 6 OUT OF 9 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00412262676333 FE = .980742621143593 NI = .0192573788564064 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] U-FRACTION IN SYSTEM: C = .00412262676333 FE = .980742621143593 NI = .0192573788564064 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: FERRITE 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: AUSTENITE 13403.6958648069 13403.6958648086 13396.6824560157 181.652848456235 1.24968990159338 6.13050095628349 003 2.869921999404734E-004 9.689074565152364E-006 8.925381150645216E-008 7.650501290270586E-018 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.76505013E-17 CELL # 1 VELOCITY AT INTERFACE # 2 IS 2.9919796 AND 2.9919796 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.30019796E-06 U-FRACTION IN SYSTEM: C = .00413341100651837 FE = .980742621143595 NI = .0192573788564042 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] 6 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: AUSTENITE CPU time used in timestep 1 seconds 1.109277806781959E-004 1.109499673738690E-004 2.506979175345796E-003 1.109055959870900E-004 1.108834139500934E-004 1.108390558913144E-004 2.506947733048917E-003 1.107503670848005E-004 1.105730955198385E-004 1.102189802380486E-004 2.506270528566505E-003 1.095124556233115E-004 1.081062081348880E-004 1.053209699054010E-004 2.501429518391718E-003 9.985953878408749E-005 8.937286231983667E-005 7.014433942510795E-005 2.466206730146323E-003 3.866650685347768E-005 3.626051657591454E-006 1.572092477628580E-014 2.190983295130420E-022

output ignored...

... output resumed

CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.19409623E-06 AND 0.19409623E-06 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13001736E-04 U-FRACTION IN SYSTEM: C = .00411809624594486 FE = .980742621140336 NI = .0192573788596635 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] 20 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 2 seconds 2.179415636911405E-008 2.193703832772930E-008 2.396119507550611E-003 2.165173974316267E-008 2.150978853142959E-008 2.122728219908968E-008 2.396119416977283E-003 2.066785466337352E-008 1.957134305750423E-008 1.746772029096504E-008 2.396115182836484E-003 1.361828607854980E-008 7.353356256718305E-009 5.667946278982394E-010 1.710601161882932E-015 1.626357531345084E-022 TIME = 44.369820 DT = 4.5307820 SUM OF SQUARES = 0.16263575E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.18441068E-06 AND 0.18441068E-06 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.13837261E-04 U-FRACTION IN SYSTEM: C = .0041174798024505 FE = .980742621140136 NI = .0192573788598644 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] 11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 2 seconds 1.605854297458510E-008 1.617614084768895E-008 2.396113827522016E-003 1.594137296112404E-008 1.582463086602039E-008 1.559243035621518E-008 2.396113768444017E-003 1.513316461511122E-008 1.423517679895237E-008 1.252139874063835E-008 2.396110130450634E-003 9.422812808432532E-009 4.543358257459242E-

Page 298: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

009 6.491004788810043E-011 4.825898839100316E-016 3.264294301225279E-022 TIME = 49.033653 DT = 4.6638338 SUM OF SQUARES = 0.32642943E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.17578279E-06 AND 0.17578279E-06 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.14657082E-04 U-FRACTION IN SYSTEM: C = .00411691192103735 FE = .980742621139938 NI = .0192573788600617 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] 12 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FERRITE CPU time used in timestep 1 seconds 4.229054054927214E-008 4.227110832796976E-008 2.396140594304140E-003 4.227110832529617E-008 4.225168056868244E-008 4.221283844466601E-008 2.396140346901875E-003 4.213520776550274E-008 4.198016067429139E-008 4.167092356618738E-008 2.396139891419141E-003 4.105587765842707E-008 3.983949921701282E-008 3.746766281446290E-008 2.396135601115320E-003 3.293725592383893E-008 2.475168530793918E-008 1.177748566559647E-008 2.396109931933447E-003 1.124099428349586E-010 3.699450585032613E-019 TIME = 50.000000 DT = 0.96634651 SUM OF SQUARES = 0.36994506E-18 CELL # 1 VELOCITY AT INTERFACE # 2 IS 0.24664769E-06 AND 0.24664769E-06 POSITION OF INTERFACE FERRITE / AUSTENITE IS 0.14895430E-04 U-FRACTION IN SYSTEM: C = .00411613499699454 FE = .980742621139896 NI = .0192573788601039 TOTAL SIZE OF SYSTEM: 5.0001E-05 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.20000000E-06 DELETING TIME-RECORD FOR TIME 0.39861233E-06 DELETING TIME-RECORD FOR TIME 0.79583700E-06 DELETING TIME-RECORD FOR TIME 0.15902863E-05 DELETING TIME-RECORD FOR TIME 0.31791850E-05 DELETING TIME-RECORD FOR TIME 0.63569824E-05 DELETING TIME-RECORD FOR TIME 0.12712577E-04 DELETING TIME-RECORD FOR TIME 0.25423766E-04 DELETING TIME-RECORD FOR TIME 0.50846145E-04 DELETING TIME-RECORD FOR TIME 0.10169090E-03 DELETING TIME-RECORD FOR TIME 0.20338042E-03 DELETING TIME-RECORD FOR TIME 0.40675945E-03 DELETING TIME-RECORD FOR TIME 0.81351751E-03 DELETING TIME-RECORD FOR TIME 0.16270336E-02 DELETING TIME-RECORD FOR TIME 0.32540659E-02 DELETING TIME-RECORD FOR TIME 0.65081304E-02 DELETING TIME-RECORD FOR TIME 0.13016259E-01 DELETING TIME-RECORD FOR TIME 0.26032517E-01 DELETING TIME-RECORD FOR TIME 0.52065033E-01 DELETING TIME-RECORD FOR TIME 0.10413006 DELETING TIME-RECORD FOR TIME 0.20826013 DELETING TIME-RECORD FOR TIME 0.41652026 DELETING TIME-RECORD FOR TIME 0.83304051 DELETING TIME-RECORD FOR TIME 1.6660810 DELETING TIME-RECORD FOR TIME 3.3321620 DELETING TIME-RECORD FOR TIME 6.2055245 DELETING TIME-RECORD FOR TIME 9.1368069 DELETING TIME-RECORD FOR TIME 12.349235 DELETING TIME-RECORD FOR TIME 15.762388 DELETING TIME-RECORD FOR TIME 19.366560 DELETING TIME-RECORD FOR TIME 23.146992 DELETING TIME-RECORD FOR TIME 27.092683 DELETING TIME-RECORD FOR TIME 31.194722 DELETING TIME-RECORD FOR TIME 35.445627 DELETING TIME-RECORD FOR TIME 39.839038 DELETING TIME-RECORD FOR TIME 44.369820 KEEPING TIME-RECORD FOR TIME 49.033653 AND FOR TIME 50.000000 WORKSPACE RECLAIMED DIC> DIC> DIC> set-inter --OK--- DIC>

Page 299: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh2-plot

MACRO exh2\plot.DCMDIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 5.00000E+01 DIC> DIC> read exh2 OK DIC> DIC> @@ DIC> @@ GO TO THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: POST-1: @@ POST-1: @@ WE WANT TO PLOT THE POSITION OF THE INTERFACE AS A FUNCTION OF TIME POST-1: @@ I.E. THE FERRITE HALF-THICKNESS POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: s-d-a y posi aus low POST-1: POST-1: @@ POST-1: @@ APPEND THE EXPERIMENTAL INFORMATION POST-1: @@ POST-1: app y exh2.exp 1; 1 POST-1: POST-1: @@ POST-1: @@ SET TITLE ON DIAGRAM POST-1: @@ POST-1: set-title Figure h2 POST-1: POST-1: @@ POST-1: @@ RENAME AXIS LABELS POST-1: @@ POST-1: set-axis-text-status AXIS (X, Y OR Z) : x AUTOMATIC AXIS TEXT (Y OR N) /N/: NO AXIS TEXT : Time (s) POST-1: POST-1: set-axis-text-status AXIS (X, Y OR Z) : y AUTOMATIC AXIS TEXT (Y OR N) /N/: NO AXIS TEXT : Ferrite half-thickness POST-1: POST-1: @@ POST-1: @@ PLOT THE RESULTS POST-1: @@ POST-1: plot

POST-1: POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 300: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh3-setup

MACRO exh3\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh3\setup.DCM"SYS: @@ SYS: @@ Deviation from local equilibrium. SYS: @@ This calculation shows how a temperature gradient induces SYS: @@ diffusion. SYS: @@ SYS: SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw tcfe7 Current database: Steels/Fe-Alloys v7.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE7: def-sys fe ni c FE NI C DEFINED TDB_TCFE7: rej ph * all GAS:G LIQUID:L BCC_A2 FCC_A1 HCP_A3 DIAMOND_FCC_A4 GRAPHITE CEMENTITE M23C6 M7C3 M5C2 KSI_CARBIDE A1_KAPPA KAPPA FE4N_LP1 FECN_CHI LAVES_PHASE_C14 NBNI3 NI3TI REJECTED TDB_TCFE7: res ph fcc graph FCC_A1 GRAPHITE RESTORED TDB_TCFE7: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317-425' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'B.-J. Lee, unpublished revision (1991); C-Cr-Fe-Ni' 'A. Gabriel, C. Chatillon, and I. Ansara, published in High Temp. Sci. (parameters listed in Calphad, 11 (1987), 203-218); C-NI' 'A. Dinsdale, T. Chart, MTDS NPL, unpublished work (1986); FE-NI' 'A. Gabriel, P. Gustafson, and I. Ansara, Calphad, 11 (1987), 203-218; TRITA-MAC 285 (1986); C-FE-NI' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Markstrom, Swerea KIMAB, Sweden; Molar volumes' 'B. Uhrenius (1993-1994), International journal of refractory metals and hard mater, Vol. 12, pp. 121-127; Molar volumes' -OK- TDB_TCFE7: app mobfe2 Current database: Steels/Fe-Alloys Mobility v2.0 TCS Steel Mobility Database Version 2.0 from 2011-12-09. VA DEFINED APP: def-sys fe ni c FE NI C DEFINED APP: rej ph * all BCC_A2 CEMENTITE FCC_A1 FE4N_LP1 HCP_A3 LIQUID:L REJECTED APP: res ph fcc FCC_A1 RESTORED APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'This parameter has not been assessed' 'J. Agren: Scripta Met. 20(1986)1507-1510; C diff in fcc C-Fe' 'B. Jonsson: Z. Metallkunde 85(1994)502-509; C diffusion in fcc Cr-Fe-Ni' 'B. Jonsson: Scand. J. Metall. 23(1994)201-208; Fe and Ni diffusion fcc Fe -Ni' 'B. Jonsson: Scand. J. Metall. 24(1995)21-27; Ni self-diffusion' -OK- APP: APP: go d-m NO TIME STEP DEFINED *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> @@ Enter a gaussian shaped temperature gradient DIC> set-cond glob T 0 1000+400*exp(-3.35074E4*(x-11e-3)**2); * N DIC> DIC> set-ref C grap,,,,,,,,,, DIC> DIC> ent-reg aus,,,,,, DIC> DIC> ent-grid aus 25e-3 lin 64 DIC> DIC> ent-pha act aus matrix fcc#1 DIC> DIC> ent-comp aus fcc#1 fe w-p PROFILE FOR /C/: c lin 0.14 0.14 PROFILE FOR /NI/: ni lin 32.5 32.5 DIC> DIC> s-s-time 5E7,,,,,,,,,,,,

Page 301: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> DIC> @@ Enter the heat of transfer parameter for Carbon DIC> ent-heat-tra-p HEAT TRANSFER PARAMETER FOR PHASE: fcc ELEMENT: C PARAMETER /0/: -42000 DIC> DIC> DIC> save exh3 y DIC> DIC> set-inter --OK--- DIC>

Page 302: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh3-run

MACRO exh3\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exh3\run.DCM"DIC> DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> read exh3 OK DIC> DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = .00662305741857947 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] U-FRACTION IN SYSTEM: C = .00662305741857947 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 1600.4001 DT = 1600.0000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741857946 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 103347.09 DT = 101746.69 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741851277 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 306840.48 DT = 203493.39 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741827412 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 713827.26 DT = 406986.78 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741827373 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 1527800.8 DT = 813973.55 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741827508 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 3155747.9 DT = 1627947.1 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741828182 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 6182333.6 DT = 3026585.7 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741829981 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 8871875.5 DT = 2689541.9 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741830992 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 11225058. DT = 2353182.2 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741831685 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 13430776. DT = 2205718.8 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741832062 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds

Page 303: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 15553118. DT = 2122341.4 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741832428 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 17622748. DT = 2069630.6 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741832675 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 19656769. DT = 2034020.9 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741770409 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 21665556. DT = 2008786.4 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741717907 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds

output ignored...

... output resumed

CPU time used in timestep 1 seconds TIME = 25631983. DT = 1976188.0 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741634156 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 27597242. DT = 1965259.0 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741600359 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 29553810. DT = 1956567.4 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .0066230574157082 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 31503322. DT = 1949512.6 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741544927 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 33447007. DT = 1943685.0 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741522232 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 35385804. DT = 1938796.6 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741502275 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 37320445. DT = 1934640.9 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741484568 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 39251513. DT = 1931068.4 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741468989 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 41179482. DT = 1927969.3 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741455064 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 43104744. DT = 1925261.8 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741442645 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 45027629. DT = 1922884.8 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741431691 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds

Page 304: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TIME = 46940040. DT = 1912411.1 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741421878 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 1 seconds TIME = 48348752. DT = 1408712.0 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741416191 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 49541944. DT = 1193191.7 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741412172 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] CPU time used in timestep 0 seconds TIME = 50000000. DT = 458056.12 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: C = .00662305741411571 FE = .68534915460493 NI = .31465084539507 TOTAL SIZE OF SYSTEM: .025 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 1600.4001 DELETING TIME-RECORD FOR TIME 103347.09 DELETING TIME-RECORD FOR TIME 306840.48 DELETING TIME-RECORD FOR TIME 713827.26 DELETING TIME-RECORD FOR TIME 1527800.8 DELETING TIME-RECORD FOR TIME 3155747.9 DELETING TIME-RECORD FOR TIME 6182333.6 DELETING TIME-RECORD FOR TIME 8871875.5 DELETING TIME-RECORD FOR TIME 11225058. DELETING TIME-RECORD FOR TIME 13430776. DELETING TIME-RECORD FOR TIME 15553118. DELETING TIME-RECORD FOR TIME 17622748. DELETING TIME-RECORD FOR TIME 19656769. DELETING TIME-RECORD FOR TIME 21665556. DELETING TIME-RECORD FOR TIME 23655795. DELETING TIME-RECORD FOR TIME 25631983. DELETING TIME-RECORD FOR TIME 27597242. DELETING TIME-RECORD FOR TIME 29553810. DELETING TIME-RECORD FOR TIME 31503322. DELETING TIME-RECORD FOR TIME 33447007. DELETING TIME-RECORD FOR TIME 35385804. DELETING TIME-RECORD FOR TIME 37320445. DELETING TIME-RECORD FOR TIME 39251513. DELETING TIME-RECORD FOR TIME 41179482. DELETING TIME-RECORD FOR TIME 43104744. DELETING TIME-RECORD FOR TIME 45027629. DELETING TIME-RECORD FOR TIME 46940040. DELETING TIME-RECORD FOR TIME 48348752. KEEPING TIME-RECORD FOR TIME 49541944. AND FOR TIME 50000000. WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 305: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exh3-plot

MACRO exh3\plot.DCMDIC> go d-m TIME STEP AT TIME 5.00000E+07 *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> DIC> read exh3 OK DIC> DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: s-d-a x dist glob INFO: Distance is set as independent variable POST-1: s-d-a y w-p c POST-1: s-p-c time 367200 5E7 POST-1: s-s-s y n 0.1 0.18 POST-1: s-s-s y y POST-1: app y exh3.exp 0; 1 3; POST-1: s-p-o n y y n y n n,,,,,,,, POST-1: POST-1: set-ax-text-st x AUTOMATIC AXIS TEXT (Y OR N) /N/: n AXIS TEXT : Distance [m] POST-1: POST-1: set-ax-text-st y AUTOMATIC AXIS TEXT (Y OR N) /N/: n AXIS TEXT : Mass percent Carbon POST-1: POST-1: plot

POST-1: POST-1: POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 306: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially
Page 307: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially
Page 308: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi1-setup

MACRO exi1\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi1\setup.DCM"SYS: @@ SYS: @@ Diffusion in complex phases. SYS: @@ Diffusion in including effects from chemical ordering. SYS: @@ The datafile AlFeNi-data.TDB contains both a thermodynamic SYS: @@ and kinetic description for the ordered and disordered BCC. SYS: @@ SYS: SYS: @@ exi1_setup.DCM SYS: SYS: SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: sw user AlFeNi-data.TDB Current database: User defined Database This database does not support the DATABASE_INFORMATION command VA DEFINED TDB_USER: def-sys fe al ni FE AL NI DEFINED TDB_USER: rej ph * B2_BCC BCC_DIS B2_ORD REJECTED TDB_USER: res ph bcc_dis b2_ord BCC_DIS B2_ORD RESTORED TDB_USER: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS .... -OK- TDB_USER: go -m NO TIME STEP DEFINED DIC> set-cond glob T 0 1277; * N DIC> DIC> enter-region beta DIC> DIC> enter-grid beta WIDTH OF REGION /1/: 2e-3 TYPE /LINEAR/: double NUMBER OF POINTS /50/: 70 VALUE OF R IN THE GEOMETRICAL SERIE FOR LOWER PART OF REGION: 0.85 VALUE OF R IN THE GEOMETRICAL SERIE FOR UPPER PART OF REGION: 1.1765 DIC> DIC> enter-phase ACTIVE OR INACTIVE PHASE /ACTIVE/: act REGION NAME : /BETA/: beta PHASE TYPE /MATRIX/: matrix PHASE NAME: /NONE/: b2_ord DIC> DIC> enter-composition REGION NAME : /BETA/: beta PHASE NAME: /B2_ORD/: b2_ord DEPENDENT COMPONENT ? /NI/: fe COMPOSITION TYPE /MOLE_FRACTION/: mole-fraction PROFILE FOR /AL/: ni TYPE /LINEAR/: function Function F(X)= 0.28-0.277*erf((x-1e-3)/3e-6); PROFILE FOR /NI/: al TYPE /LINEAR/: function Function F(X)= 0.4295-0.0105*erf((x-1e-3)/3e-6); DIC> DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 345600 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /34560/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> s-a-s-v AUTOMATIC STARTING VALUES FOR PHASE COMPOSITIONS /YES/: no START VALUES FOR PHASES IN REGION BETA PHASE: B2_ORD MAJOR CONSTITUENTS IN PHASE B2_ORD: NI;AL DIC> @@0.001 DIC> @@0.001 DIC> @@0.998 DIC> @@0.998 DIC> @@0.001 DIC> @@0.001 DIC> @@0.001 DIC> @@0.001 DIC> @@0.998 DIC> @@0.998 DIC> @@0.001 DIC> @@0.001 DIC> DIC> DIC> DIC> DIC> DIC> DIC> save exi1 yes DIC> DIC> set-inter --OK--- DIC>

Page 309: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi1-run

MACRO exi1\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi1\run.DCM"DIC> DIC> DIC> @@ exi1_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE i1 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exi1 OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] 6 GRIDPOINT(S) ADDED TO CELL #1 REGION: BETA TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 1 seconds TIME = 0.40010010 DT = 0.40000000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 0 seconds TIME = 49.932678 DT = 49.532578 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538504 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 1 seconds TIME = 148.99783 DT = 99.065155 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538502 FE = .290500916207635 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 1 seconds TIME = 347.12814 DT = 198.13031 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538503 FE = .290500916207633 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 2 seconds TIME = 743.38877 DT = 396.26062 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538519 FE = .29050091620762 NI = .279999117253862 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 1 seconds TIME = 1535.9100 DT = 792.52124 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538517 FE = .29050091620762 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 2 seconds TIME = 3120.9525 DT = 1585.0425 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538501 FE = .290500916207629 NI = .27999911725387 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 2 seconds TIME = 6291.0375 DT = 3170.0850 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538495 FE = .290500916207635 NI = .279999117253869 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 2 seconds TIME = 12631.207 DT = 6340.1699 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538499 FE = .290500916207638 NI = .279999117253863 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 25311.547 DT = 12680.340 SUM OF SQUARES = 0.0000000

Page 310: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

U-FRACTION IN SYSTEM: AL = .429499966538508 FE = .29050091620764 NI = .279999117253851 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 50672.227 DT = 25360.680 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538515 FE = .290500916207635 NI = .27999911725385 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 4 seconds TIME = 85232.227 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .4294999665385 FE = .290500916207642 NI = .279999117253858 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 4 seconds TIME = 119792.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538477 FE = .290500916207704 NI = .279999117253819 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 154352.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538442 FE = .290500916207755 NI = .279999117253803 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 4 seconds TIME = 188912.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538418 FE = .290500916207772 NI = .27999911725381 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 223472.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .42949996653839 FE = .29050091620771 NI = .279999117253901 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 258032.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538356 FE = .290500916207628 NI = .279999117254016 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 292592.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538331 FE = .290500916207582 NI = .279999117254086 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 327152.23 DT = 34560.000 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538314 FE = .290500916207556 NI = .27999911725413 TOTAL SIZE OF SYSTEM: .002 [m] CPU time used in timestep 3 seconds TIME = 345600.00 DT = 18447.773 SUM OF SQUARES = 0.0000000 U-FRACTION IN SYSTEM: AL = .429499966538376 FE = .290500916207578 NI = .279999117254046 TOTAL SIZE OF SYSTEM: .002 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.40010010 DELETING TIME-RECORD FOR TIME 49.932678 DELETING TIME-RECORD FOR TIME 148.99783 DELETING TIME-RECORD FOR TIME 347.12814 DELETING TIME-RECORD FOR TIME 743.38877 DELETING TIME-RECORD FOR TIME 1535.9100 DELETING TIME-RECORD FOR TIME 3120.9525 DELETING TIME-RECORD FOR TIME 6291.0375 DELETING TIME-RECORD FOR TIME 12631.207 DELETING TIME-RECORD FOR TIME 25311.547 DELETING TIME-RECORD FOR TIME 50672.227 DELETING TIME-RECORD FOR TIME 85232.227 DELETING TIME-RECORD FOR TIME 119792.23 DELETING TIME-RECORD FOR TIME 154352.23 DELETING TIME-RECORD FOR TIME 188912.23 DELETING TIME-RECORD FOR TIME 223472.23 DELETING TIME-RECORD FOR TIME 258032.23 DELETING TIME-RECORD FOR TIME 292592.23 KEEPING TIME-RECORD FOR TIME 327152.23 AND FOR TIME 345600.00 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 311: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi1-plot

MACRO exi1\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi1\plot.DCM"DIC> DIC> @@ exi1_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i1 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 3.45600E+05 DIC> read exi1 OK DIC> DIC> @@ DIC> @@ ENTER THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: s-d-a x dist glob INFO: Distance is set as independent variable POST-1: POST-1: s-d-a y m-f al POST-1: POST-1: s-p-c time last POST-1: POST-1: plot

POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: ent tab prof Variable(s) x(al) x(ni) POST-1: POST-1: ent fun rdist FUNCTION: 1e6*(gd-10e-4) & POST-1: s-d-a y prof COLUMN NUMBER /*/: 1 2 POST-1: POST-1: s-d-a x rdist POST-1: POST-1: plo

Page 312: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: app y exi1.exp PROLOGUE NUMBER: /0/: 1 DATASET NUMBER(s): /-1/: 1 POST-1: POST-1: s-s-s x n -300 300 POST-1: POST-1: plot

POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 313: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially
Page 314: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi2-setup

MACRO exi2\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi2\setup.DCM"SYS: @@ SYS: @@ Diffusion in complex phases. SYS: @@ This example demonstrates the use of the model for calculation of SYS: @@ diffusion through a stoichiometric phase. The flux of a component in SYS: @@ the stoichiometric phase is assumed to be proportional to the SYS: @@ difference in chemical potential at each side of the stoichiometric SYS: @@ phase multiplied with the mobility for the component in the phase. The SYS: @@ mobility is assessed from experimental information and is basically SYS: @@ the tracer diffusivity for the component. SYS: @@ This calculation is compared with experimental data where a sample of SYS: @@ pure iron has been exposed to a gas atmosphere with a certain carbon SYS: @@ activity. The weight gain is then measured as a function of time. SYS: @@ The experimental data is obtained from Ozturk B., Fearing V. L., SYS: @@ Ruth A. Jr. and Simkovich G., Met. Trans A, vol 13A (1982), pp. 1871-1873. SYS: @@ SYS: SYS: @@ SYS: @@ RETRIEVE DATA FROM DATABASE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ USE A PUBLIC DATABASE FOR THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: switch FEDEMO Current database: Iron Demo Database VA /- DEFINED TDB_FEDEMO: def-sys fe c FE C DEFINED TDB_FEDEMO: rej ph * all GAS:G LIQUID:L BCC_A2 CEMENTITE DIAMOND_FCC_A4 FCC_A1 GRAPHITE HCP_A3 KSI_CARBIDE LAVES_PHASE_C14 M23C6 M5C2 M7C3 REJECTED TDB_FEDEMO: res ph bcc fcc cementite grap BCC_A2 FCC_A1 CEMENTITE GRAPHITE RESTORED TDB_FEDEMO: get REINITIATING GES5 ..... ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

'P. Franke, estimated parameter within SGTE, 2007; Fe-C, Ni-C, Mo -C, C-Mn' 'P. Gustafson, Scan. J. Metall., 14 (1985), 259-267; TRITA 0237 (1984); C -FE' 'X.-G. Lu, Thermo-Calc Software AB, Sweden,2006; Molar volumes' 'A. Dinsdale, SGTE Data for Pure Elements, Calphad, 15 (1991), 317 -425' 'X.-G. Lu, M. Selleby and B. Sundman, CALPHAD, Vol. 29, 2005, pp. 68-89; Molar volumes' 'B. Uhrenius (1993-1994), International journal of refractory metals and hard mater, Vol. 12, pp. 121-127; Molar volumes' -OK- TDB_FEDEMO: TDB_FEDEMO: @@ TDB_FEDEMO: @@ SWITCH TO MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_FEDEMO: @@ TDB_FEDEMO: app user cembccstoik.TDB Current database: User defined Database This database does not support the DATABASE_INFORMATION command VA DEFINED TDB_APP: def-sys fe c FE C DEFINED TDB_APP: rej ph * all BCC_A2 CEMENTITE REJECTED TDB_APP: res ph fcc bcc cementite *** FCC INPUT IGNORED BCC_A2 CEMENTITE RESTORED TDB_APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

*** ERROR 1000 IN TDBGRT *** NO REFERENCE FILE

*** ERROR 1000 IN TDBGRT *** NO REFERENCE FILE -OK- TDB_APP: TDB_APP: @@ TDB_APP: @@ ENTER THE DICTRA MONITOR TDB_APP: @@ TDB_APP: go d-m NO TIME STEP DEFINED *** ENTERING FCC_A1 AS A DIFFUSION NONE PHASE *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> set-ref c grap,,,,,,,,,,, DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T

Page 315: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> set-cond glob t 0 723; * n DIC> DIC> @@ DIC> @@ ENTER REGIONS carb AND fer DIC> @@ DIC> enter-region REGION NAME : fer DIC> DIC> enter-region REGION NAME : carb ATTACH TO REGION NAMED /FER/: ATTACHED TO THE RIGHT OF FER /YES/: DIC> @@ DIC> @@ ENTER LINEAR GRIDS INTO THE REGIONS DIC> @@ DIC> DIC> @@ DIC> @@ Enter a size for the ferrite DIC> @@ DIC> @@ DIC> @@ DIC> enter-grid REGION NAME : /FER/: fer WIDTH OF REGION /1/: 3.3E-6 TYPE /LINEAR/: lin 50 DIC> DIC> @@ DIC> @@ Enter a size (very small) for the cementite layer DIC> @@ DIC> @@ DIC> enter-grid REGION NAME : /CARB/: carb WIDTH OF REGION /1/: 1E-12 TYPE /LINEAR/: lin NUMBER OF POINTS /50/: 10 DIC> DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGIONS DIC> @@ DIC> enter-phase act carb matrix cementite COMPOSITION RECORD FOR STOICHIOMETRIC PHASE CEMENTITE IN REGION CARB CREATED DIC> enter-phase act fer matrix bcc#1 DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN THE PHASES DIC> @@ DIC> enter-composition REGION NAME : /FER/: carb PHASE NAME: /CEMENTITE/: cementite DIC> DIC> enter-composition REGION NAME : /FER/: fer PHASE NAME: /BCC_A2/: bcc#1 COMPOSITION TYPE /MOLE_FRACTION/: weig-fraction PROFILE FOR /C/: C lin 1E-5 1E-5 DIC> DIC> set-cond bound upp CONDITION TYPE /CLOSED_SYSTEM/: mix Dependent substitutional element:FE Dependent interstitial element:VA LOW TIME LIMIT /0/: 0 ACR(C)(TIME)= 9; HIGH TIME LIMIT /*/: * ANY MORE RANGES /N/: N DIC> DIC> DIC> DIC> @@ DIC> @@ simulate for 150 minutes DIC> @@ DIC> set-simulation-time END TIME FOR INTEGRATION /.1/: 9000 AUTOMATIC TIMESTEP CONTROL /YES/: MAX TIMESTEP DURING INTEGRATION /900/: INITIAL TIMESTEP : /1E-07/: SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exi2 Y DIC> DIC> set-inter --OK--- DIC>

Page 316: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi2-run

MACRO exi2\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi2\run.DCM"DIC> DIC> DIC> @@ exi2_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE i2 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 *** ENTERING FCC_A1 AS A DIFFUSION NONE PHASE *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> read exi2 OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> sim Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 3 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: C = 4.6598005784384E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] U-FRACTION IN SYSTEM: C = 4.6598005784384E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 4 GRIDPOINT(S) ADDED TO CELL #1 REGION: CARB 0.111097719336122 0.111119939666141 9.691611002362172E-020 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.96916110E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14617667E-04 AND -0.14617667E-04 POSITION OF INTERFACE FER / CARB IS 0.32999985E-05 U-FRACTION IN SYSTEM: C = 4.65258726084234E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] CPU time used in timestep 0 seconds 2.264815947299283E-005 2.265270404058167E-005 5.027029744193626E-020 TIME = 0.10010000E-03 DT = 0.10000000E-03 SUM OF SQUARES = 0.50270297E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.46363829E-07 AND -0.46363829E-07 POSITION OF INTERFACE FER / CARB IS 0.32999939E-05 U-FRACTION IN SYSTEM: C = 4.6983979832688E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] CPU time used in timestep 0 seconds 9.341884324918437E-007 9.344812013987078E-007 5.109455433669931E-022 TIME = 0.27909042E-02 DT = 0.26908042E-02 SUM OF SQUARES = 0.51094554E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.16437826E-07 AND -0.16437826E-07 POSITION OF INTERFACE FER / CARB IS 0.32999497E-05 U-FRACTION IN SYSTEM: C = 5.12591893482394E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 24 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 2.027667719546845E-005 2.028151298187676E-005 2.492045378187009E-020 TIME = 0.81725125E-02 DT = 0.53816084E-02 SUM OF SQUARES = 0.24920454E-19 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.25990487E-08 AND -0.25990487E-08 POSITION OF INTERFACE FER / CARB IS 0.32999357E-05 U-FRACTION IN SYSTEM: C = 5.24416018575729E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] CPU time used in timestep 1 seconds 3.430896440407393E-006 3.434042119347870E-006 1.408874640560179E-024 TIME = 0.18935729E-01 DT = 0.10763217E-01 SUM OF SQUARES = 0.14088746E-23 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.19913385E-08 AND -0.19913385E-08 POSITION OF INTERFACE FER / CARB IS 0.32999143E-05 U-FRACTION IN SYSTEM: C = 5.4300019672132E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] CPU time used in timestep 0 seconds 2.458075288947014E-006 2.460115293322461E-006 9.188298948509551E-025 TIME = 0.40462163E-01 DT = 0.21526433E-01 SUM OF SQUARES = 0.91882989E-24 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14811247E-08 AND -0.14811247E-08 POSITION OF INTERFACE FER / CARB IS 0.32998824E-05 U-FRACTION IN SYSTEM: C = 5.70985325141529E-05 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 1 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 1.561011360758783E-006 1.562220505488591E-006 8.244754572392648E-025 TIME = 0.83515029E-01 DT = 0.43052867E-01 SUM OF SQUARES = 0.82447546E-24 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.10766505E-08 AND -0.10766505E-08 POSITION OF INTERFACE FER / CARB IS 0.32998360E-05

output ignored...

... output resumed

POSITION OF INTERFACE FER / CARB IS 0.32712688E-05 U-FRACTION IN SYSTEM: C = .00292698161361261 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 44 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 3.382688098867191E-008 3.388131432298893E-008 6.850971551063791E-027 TIME = 4110.7537 DT = 900.00000 SUM OF SQUARES = 0.68509716E-26 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.38861536E-11 AND -0.38861536E-11

Page 317: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POSITION OF INTERFACE FER / CARB IS 0.32677713E-05 U-FRACTION IN SYSTEM: C = .00328024173504268 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 15 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 1.314638216630524E-008 1.317550715169034E-008 2.301691407306965E-027 TIME = 5010.7537 DT = 900.00000 SUM OF SQUARES = 0.23016914E-26 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.34644318E-11 AND -0.34644318E-11 POSITION OF INTERFACE FER / CARB IS 0.32646533E-05 U-FRACTION IN SYSTEM: C = .00359516638951739 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 6.203563492397131E-009 6.221402339780677E-009 5.507872519869538E-028 TIME = 5910.7537 DT = 900.00000 SUM OF SQUARES = 0.55078725E-27 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.31588373E-11 AND -0.31588373E-11 POSITION OF INTERFACE FER / CARB IS 0.32618104E-05 U-FRACTION IN SYSTEM: C = .00388231182053263 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 19 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 3.285493905118506E-009 3.297333057016741E-009 1.343786651590565E-028 TIME = 6810.7537 DT = 900.00000 SUM OF SQUARES = 0.13437867E-27 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.29236900E-11 AND -0.29236900E-11 POSITION OF INTERFACE FER / CARB IS 0.32591790E-05 U-FRACTION IN SYSTEM: C = .00414808183129114 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 6 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 1.876998084857064E-007 1.885282157903399E-007 3.676035728629550E-027 TIME = 7710.7537 DT = 900.00000 SUM OF SQUARES = 0.36760357E-26 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.27352335E-11 AND -0.27352335E-11 POSITION OF INTERFACE FER / CARB IS 0.32567173E-05 U-FRACTION IN SYSTEM: C = .00439672071771754 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 5 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 1.130104476018543E-007 1.136119435637637E-007 1.069940558361613E-027 TIME = 8610.7537 DT = 900.00000 SUM OF SQUARES = 0.10699406E-26 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.25796702E-11 AND -0.25796702E-11 POSITION OF INTERFACE FER / CARB IS 0.32543956E-05 U-FRACTION IN SYSTEM: C = .00463121854944559 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: CARB CPU time used in timestep 0 seconds 7.062813212272239E-008 7.107671560352021E-008 1.760176709653493E-028 TIME = 9000.0000 DT = 389.24625 SUM OF SQUARES = 0.17601767E-27 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.24483429E-11 AND -0.24483429E-11 POSITION OF INTERFACE FER / CARB IS 0.32534426E-05 U-FRACTION IN SYSTEM: C = .00472747477504784 FE = 1 TOTAL SIZE OF SYSTEM: 3.300001E-06 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.10010000E-03 DELETING TIME-RECORD FOR TIME 0.27909042E-02 DELETING TIME-RECORD FOR TIME 0.81725125E-02 DELETING TIME-RECORD FOR TIME 0.18935729E-01 DELETING TIME-RECORD FOR TIME 0.40462163E-01 DELETING TIME-RECORD FOR TIME 0.83515029E-01 DELETING TIME-RECORD FOR TIME 0.16962076 DELETING TIME-RECORD FOR TIME 0.34183223 DELETING TIME-RECORD FOR TIME 0.68625517 DELETING TIME-RECORD FOR TIME 1.3751010 DELETING TIME-RECORD FOR TIME 2.7527928 DELETING TIME-RECORD FOR TIME 5.5081762 DELETING TIME-RECORD FOR TIME 11.018943 DELETING TIME-RECORD FOR TIME 22.040477 DELETING TIME-RECORD FOR TIME 44.083545 DELETING TIME-RECORD FOR TIME 88.169681 DELETING TIME-RECORD FOR TIME 176.34195 DELETING TIME-RECORD FOR TIME 352.68649 DELETING TIME-RECORD FOR TIME 705.37558 DELETING TIME-RECORD FOR TIME 1410.7537 DELETING TIME-RECORD FOR TIME 2310.7537 DELETING TIME-RECORD FOR TIME 3210.7537 DELETING TIME-RECORD FOR TIME 4110.7537 DELETING TIME-RECORD FOR TIME 5010.7537 DELETING TIME-RECORD FOR TIME 5910.7537 DELETING TIME-RECORD FOR TIME 6810.7537 DELETING TIME-RECORD FOR TIME 7710.7537 KEEPING TIME-RECORD FOR TIME 8610.7537 AND FOR TIME 9000.0000 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 318: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi2-plot

MACRO exi2\plot.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi2\plot.DCM"DIC> DIC> @@ exi2_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i2 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 9.00000E+03 *** ENTERING FCC_A1 AS A DIFFUSION NONE PHASE *** ENTERING GRAPHITE AS A DIFFUSION NONE PHASE DIC> DIC> DIC> read exi2 Y OK DIC> DIC> DIC> @@ DIC> @@ Plot the size of cementite layer as a function of time DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: ent-symb func csize FUNCTION: 1e6*(poi(car,u)-poi(car,l)); POST-1: POST-1: ent-symb func minutes FUNCTION: time/60; POST-1: POST-1: s-d-a x minutes POST-1: s-d-a y csize POST-1: POST-1: s-p-c inter first POST-1: POST-1: s-a-t-s x n time [minutes] POST-1: s-a-t-s y n distance [?m] POST-1: POST-1: plot

POST-1: POST-1: @<? HIT_RETURN_TO_CONTINUE> Felaktig kommandosyntax. POST-1: POST-1: @@ POST-1: @@ Assume a certain time for nucleation of the cementite layer POST-1: @@ POST-1: ent-symb func cortim FUNCTION: (time+1400)/60; POST-1: POST-1: @@ POST-1: @@ plot the weight gain as a function of time POST-1: @@ POST-1: ent-symb func cwei FUNCTION: 1e12*((poi(car,u)-poi(car,l)-1E-12)*12.01/2.33E-5*1e-4)**2; POST-1: POST-1: POST-1: s-d-a x cortim POST-1: s-d-a y cwei POST-1: POST-1: @@ POST-1: @@ Compare with experimental data POST-1: @@ POST-1: app y exi2.exp 0; 1 POST-1: POST-1: POST-1: s-a-t-s x n time [minutes] POST-1: s-a-t-s y n ^grD$m^up2$/A^up2$ [g^up2$/cm^up4$ x 10^up12$] POST-1: POST-1: plot

Page 319: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 320: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

600

800

1000

1200

1400

1600

Tem

pera

ture

C

48 51 54 57 60 63

Mole Percent O

Example i3 Diffusion in FeO

Page 321: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi3a-setup

MACRO exi3a\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3a\setup.DCM"SYS: @@ SYS: @@ Diffusion in complex phases. SYS: @@ Oxidation of iron sample and consequent growth of an oxide layer. SYS: @@ SYS: SYS: @@ exi3_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ WE SELECT A USER DATABASE FOR READING THE THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw user FeO.TDB Current database: User defined Database This database does not support the DATABASE_INFORMATION command VA /- DEFINED TDB_USER: def-sys fe o FE O DEFINED TDB_USER: rej sp * /- VA FE O FE+2 FE+3 FE+4 FE2O3 FEO FEO3/2 O-2 O2 REJECTED TDB_USER: res sp fe fe+2 fe+3 o o2 o-2 va FE FE+2 FE+3 O O2 O-2 VA RESTORED TDB_USER: rej ph * all GAS:G BCC_A2 SPINEL:I REJECTED TDB_USER: res ph bcc spinel gas BCC_A2 SPINEL:I GAS:G RESTORED TDB_USER: TDB_USER: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... Reference REF368 missing Reference REF304 missing Reference REF420 missing Reference REF420 missing Reference REF368 missing Reference REF368 missing Reference REF368 missing Reference REF418 missing Reference REF418 missing Reference REF304 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing

Page 322: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing FUNCTIONS .... -OK- TDB_USER: TDB_USER: @@ TDB_USER: @@ SWITCH TO A USER DEFINED MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_USER: @@ TDB_USER: app user FeOmob.TDB Current database: User defined Database test database VA /- O DEFINED TDB_APP: def-sys fe o FE DEFINED TDB_APP: rej sp * /- VA FE O FE+2 FE+3 FE2O3 FEO FEO3/2 O-2 O2 REJECTED TDB_APP: res sp fe fe+2 fe+3 o o2 o-2 va FE FE+2 FE+3 O O2 O-2 VA RESTORED TDB_APP: rej ph * all SPINEL:I GAS:G BCC_A2 REJECTED TDB_APP: res ph bcc spinel gas BCC_A2 SPINEL:I GAS:G RESTORED TDB_APP: TDB_APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

*** ERROR 1000 IN TDBGRT *** NO REFERENCE FILE

*** ERROR 1000 IN TDBGRT *** NO REFERENCE FILE -OK- TDB_APP: TDB_APP: TDB_APP: @@ TDB_APP: @@ ENTER THE DICTRA MONITOR TDB_APP: @@ TDB_APP: go d-m NO TIME STEP DEFINED DIC> DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 823; * N DIC> DIC> DIC> @@ DIC> @@ SET REFERENCE STATE FOR O TO O2 (GAS) DIC> @@ DIC> set-ref o gas,,,,,,, DIC> DIC> DIC> @@ DIC> @@ ENTER REGIONS fer AND sp DIC> @@ DIC> ent-reg fer DIC> ent-reg sp,,,,,,,, DIC> DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGIONS DIC> @@ DIC> ent-phase act fer matrix bcc#1 DIC> ent-phase act sp matrix spinel DIC> DIC> DIC> @@ DIC> @@ ENTER GRIDS INTO THE REGIONS DIC> @@ DIC> DIC> @@ DIC> @@ Enter a size for the ferrite DIC> @@ DIC> @@ DIC> ent-grid fer 4.99999e-3 geo 64 0.95 DIC> DIC> @@ DIC> @@ Enter a thin initial size for the oxide DIC> @@ DIC> @@ DIC> ent-grid sp 1.00e-10 lin 25 DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN BCC DIC> @@

Page 323: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> ent-comp fer bcc#1 m-f PROFILE FOR /O/: o lin 1e-9 1e-9 DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN THE OXIDE DIC> @@ DIC> ent-comp sp spinel m-f this is a phase with charged species with more than 2 sublattices PROFILE FOR /FE/: FE lin 4.28771E-01 4.28549E-01 DIC> DIC> DIC> @@ DIC> @@ ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHTMOST) INTERFACE DIC> @@ OF THE OXIDE. THIS WILL ALLOW THE SYSTEM TO EXPAND AND THE OXIDE LAYER DIC> @@ TO GROW EXTERNALY. FOR THIS EXAMPLE WE HAVE SPECIFIED AN OXYGEN ACTIVITY DIC> @@ THAT IS LOW ENOUGH IN ORDER NOT TO FORM CORUNDUM (FE2O3). WE ALSO DIC> @@ SPECIFY THAT THERE IS NO FLUX OF FE ACROSS THIS INTERFACE, I.E. NO FE DIC> @@ IS ALLOWED TO ENTER OR LEAVE THE SYSTEM. DIC> @@ DIC> set-cond boundary upper gas TYPE OF CONDITION FOR COMPONENT FE /ZERO_FLUX/: zero-flux TYPE OF CONDITION FOR COMPONENT O /ZERO_FLUX/: act LOW TIME LIMIT /0/: 0 4.5e-4; * N DIC> DIC> DIC> @@ DIC> @@ ENTER START VALUES FOR INITIAL INTERFACE VELOCITIES DIC> @@ DIC> s-a-s-v -1e-5 1e-5 yes STARTING VALUES WILL BE TAKEN FROM PROFILES DIC> DIC> DIC> @@ DIC> @@ SIMULATE FOR 24 HOURS DIC> @@ DIC> s-s-time 86400,,,, SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> @@ DIC> @@ SPECIFY THAT POTENTIALS AND NOT ACTIVITIES ARE VARIED AT THE PHASE DIC> @@ INTERFACE, AND ALSO USE A FULLY IMPLICIT SCHEME FOR TIME INTEGRATION. DIC> @@ DIC> s-s-c 0 1 1 YES POT YES YES 1 2,,,,,,,,,, RELEASING OLD STARTING VALUES DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exi3.DIC Y DIC> DIC> set-inter --OK--- DIC>

Page 324: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi3a-run

MACRO exi3a\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3a\run.DCM"DIC> DIC> DIC> @@ exi3_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE i3 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exi3 OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> sim y Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 3 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08 TOTAL SIZE OF SYSTEM: .0049999901 [m] U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08 TOTAL SIZE OF SYSTEM: .0049999901 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: FER 0.345635026472601 0.345634255702871 0.345634427607327 4.595685746902947E-002 1.109881473307396E-022 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.11098815E-21 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.39538536E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999900E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.66828829E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999901E-02 U-FRACTION IN SYSTEM: FE = 0.9999999895583 O = 3.45820350693507E-08 TOTAL SIZE OF SYSTEM: .00499999012729 [m] 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FER CPU time used in timestep 1 seconds 1.496442766103080E-005 1.496628020328761E-005 1.496711475334305E-005 2.221963460526305E-007 1.563049595583591E-029 TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.15630496E-28 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14844554E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999899E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.20395237E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999901E-02 U-FRACTION IN SYSTEM: FE = 0.9999999871464 O = 4.27401496013001E-08 TOTAL SIZE OF SYSTEM: .00499999013839 [m] CPU time used in timestep 1 seconds 1.366609137821060E-008 1.365580506402956E-008 1.363607433461218E-008 2.991788556352093E-011 2.611478249786794E-034 TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.26114782E-33 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14901928E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999899E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.21639152E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.99999998168818 O = 6.0051514796462E-08 TOTAL SIZE OF SYSTEM: .00499999016534 [m] CPU time used in timestep 1 seconds 5.631985441283712E-007 5.633529292092908E-007 5.633509728160813E-007 2.450232388401917E-010 2.444322953099865E-034 TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.24443230E-33 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.93188681E-04 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999898E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.13306338E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.99999997510656 O = 8.13417191170326E-08 TOTAL SIZE OF SYSTEM: .00499999019724 [m] CPU time used in timestep 2 seconds 8.093983848882604E-006 8.097774983601744E-006 8.097407887649479E-006 1.136094131158317E-008 6.500690647052995E-032 TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.65006906E-31 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70573171E-04 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999897E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.10154569E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.99999996496664 O = 1.13836444590503E-07 TOTAL SIZE OF SYSTEM: .0049999902468 [m] CPU time used in timestep 2 seconds 8.115497833801339E-006 8.118305962585836E-006 8.118181440603294E-006 7.293145044102196E-009 6.475939438002081E-033

output ignored...

... output resumed

CPU time used in timestep 6 seconds 2.944660672421924E-007 2.949205565595671E-007 2.948945539203347E-007 3.631257773451234E-010 1.625981401876614E-032 TIME = 56943.895 DT = 8640.0000 SUM OF SQUARES = 0.16259814E-31 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.54606870E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49450694E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.78102585E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50235126E-02 U-FRACTION IN SYSTEM: FE = .995207546349209 O = .0156153968700816 TOTAL SIZE OF SYSTEM: .00502351264021 [m]

Page 325: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 2 seconds 1.740313899119267E-007 1.743421429103277E-007 1.743411933826456E-007 2.255094104955882E-010 1.542248588278841E-033 TIME = 65583.895 DT = 8640.0000 SUM OF SQUARES = 0.15422486E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.50613974E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49406963E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.72095165E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50253686E-02 U-FRACTION IN SYSTEM: FE = .99483330292771 O = .0168491451161591 TOTAL SIZE OF SYSTEM: .00502536861511 [m] 8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 4 seconds 8.227972700372290E-008 8.249872395175805E-008 8.245479222387599E-008 1.258619564711479E-010 3.693121131639430E-033 TIME = 74223.895 DT = 8640.0000 SUM OF SQUARES = 0.36931211E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.47396620E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49366013E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.67933125E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50271430E-02 U-FRACTION IN SYSTEM: FE = .99448034740077 O = .0180107442597281 TOTAL SIZE OF SYSTEM: .00502714296921 [m] 10 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 3 seconds 6.101158264628796E-008 6.117714485796163E-008 6.116558140048531E-008 6.971019944406911E-011 8.726870060504662E-035 TIME = 82863.895 DT = 8640.0000 SUM OF SQUARES = 0.87268701E-34 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44668804E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49327419E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.64035085E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50288162E-02 U-FRACTION IN SYSTEM: FE = .994147932539141 O = .0191049370150188 TOTAL SIZE OF SYSTEM: .00502881621589 [m] 8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 2 seconds 9.242443306617677E-009 9.188773383536457E-009 9.305157039689410E-009 1.027101821996951E-011 9.403954806578300E-035 TIME = 86400.000 DT = 3536.1047 SUM OF SQUARES = 0.94039548E-34 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.44390631E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49311722E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.61659008E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50294268E-02 U-FRACTION IN SYSTEM: FE = .994026787786631 O = .0195361314315839 TOTAL SIZE OF SYSTEM: .00502942684378 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.30000000E-06 DELETING TIME-RECORD FOR TIME 0.70000000E-06 DELETING TIME-RECORD FOR TIME 0.15000000E-05 DELETING TIME-RECORD FOR TIME 0.31000000E-05 DELETING TIME-RECORD FOR TIME 0.63000000E-05 DELETING TIME-RECORD FOR TIME 0.12700000E-04 DELETING TIME-RECORD FOR TIME 0.25500000E-04 DELETING TIME-RECORD FOR TIME 0.51100000E-04 DELETING TIME-RECORD FOR TIME 0.10230000E-03 DELETING TIME-RECORD FOR TIME 0.20470000E-03 DELETING TIME-RECORD FOR TIME 0.40950000E-03 DELETING TIME-RECORD FOR TIME 0.81910000E-03 DELETING TIME-RECORD FOR TIME 0.16383000E-02 DELETING TIME-RECORD FOR TIME 0.32767000E-02 DELETING TIME-RECORD FOR TIME 0.65535000E-02 DELETING TIME-RECORD FOR TIME 0.13107100E-01 DELETING TIME-RECORD FOR TIME 0.26214300E-01 DELETING TIME-RECORD FOR TIME 0.52428700E-01 DELETING TIME-RECORD FOR TIME 0.10485750 DELETING TIME-RECORD FOR TIME 0.20971510 DELETING TIME-RECORD FOR TIME 0.41943030 DELETING TIME-RECORD FOR TIME 0.83886070 DELETING TIME-RECORD FOR TIME 1.6777215 DELETING TIME-RECORD FOR TIME 3.3554431 DELETING TIME-RECORD FOR TIME 6.7108863 DELETING TIME-RECORD FOR TIME 13.421773 DELETING TIME-RECORD FOR TIME 26.843545 DELETING TIME-RECORD FOR TIME 53.687091 DELETING TIME-RECORD FOR TIME 107.37418 DELETING TIME-RECORD FOR TIME 214.74836 DELETING TIME-RECORD FOR TIME 429.49673 DELETING TIME-RECORD FOR TIME 858.99346 DELETING TIME-RECORD FOR TIME 1717.9869 DELETING TIME-RECORD FOR TIME 3435.9738 DELETING TIME-RECORD FOR TIME 6871.9477 DELETING TIME-RECORD FOR TIME 13743.895 DELETING TIME-RECORD FOR TIME 22383.895 DELETING TIME-RECORD FOR TIME 31023.895 DELETING TIME-RECORD FOR TIME 39663.895 DELETING TIME-RECORD FOR TIME 48303.895 DELETING TIME-RECORD FOR TIME 56943.895 DELETING TIME-RECORD FOR TIME 65583.895 DELETING TIME-RECORD FOR TIME 74223.895 KEEPING TIME-RECORD FOR TIME 82863.895 AND FOR TIME 86400.000 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 326: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi3a-plot

MACRO exi3a\plot.DCMDIC> DIC> @@ exi3_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i3 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 8.64000E+04 DIC> read exi3 OK DIC> DIC> @@ DIC> @@ ENTER THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET'S PLOT THICKNESS OF THE OXIDE LAYER GROWING AT THE SURFACE. POST-1: @@ FOR THIS PURPOSE WE NEED TO ENTER A FUNCTION ACCORDING TO BELOW. POST-1: ent func oxideth FUNCTION: poi(sp,upper)-poi(sp,lower) & POST-1: @@ POST-1: @@ WE PUT THIS FUNCTION ON Y-AXIS POST-1: @@ POST-1: s-d-a y oxideth POST-1: POST-1: @@ POST-1: @@ AND PLOT OXIDE THICKNESS VERSUS TIME POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: POST-1: @@ POST-1: @@ SINCE WE ARE PLOTTING A FUNCTION WE NEED TO SPECIFY A PLOT CONDITION POST-1: @@ POST-1: s-p-c interface sp upper POST-1: POST-1: plot

POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ NOW LET'S PLOT THE MOBILITY IN SPINEL FOR FE+2 ON THE SECOND SUB-LATTICE POST-1: @@ POST-1: s-d-a y logm(sp,fe+2#2) POST-1: POST-1: @@ POST-1: @@ LIMIT THE PLOT TO THE SPINEL PHASE POST-1: @@ POST-1: s-d-a x dis local sp INFO: Distance is set as independent variable POST-1: POST-1: s-p-c time 86400 POST-1: POST-1: plo

Page 327: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ LET'S COMPARE MOBILITIES IN SPINEL FOR FE+2 AND FE+3 SPECIES PRESENT ON THE POST-1: @@ SECOND SUB-LATTICE. FOR THIS COMPARISON WE NEED TO ENTER A TABLE. POST-1: @@ POST-1: ent table mobfe Variable(s) logm(sp,fe+2#2) logm(sp,fe+3#2) POST-1: POST-1: s-d-a y mobfe COLUMN NUMBER /*/: POST-1: POST-1: plot

POST-1: POST-1: POST-1:@?<Hit_return_to_continue>POST-1: POST-1: @@ POST-1: @@ NOW LET'S PLOT THE INTERDIFFUSION COEFFICIENT OF FE IN SPINEL POST-1: @@ POST-1: s-d-a y logdc(sp,fe,fe,o) POST-1: POST-1: plot

Page 328: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

POST-1: POST-1: POST-1: set-inter --OK--- POST-1:

Page 329: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

600

800

1000

1200

1400

1600

Tem

pera

ture

C

48 51 54 57 60 63

Mole Percent O

Example i3 Diffusion in FeO with GB contribution

Page 330: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi3b-setup

MACRO exi3b\setup.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3b\setup.DCM"SYS: @@ SYS: @@ Diffusion in complex phases. SYS: @@ Oxidation of iron sample and consequent growth of an oxide layer SYS: @@ using the grain boundary diffusion contribution model. SYS: @@ SYS: SYS: @@ exi3_setup.DCM SYS: SYS: @@ SYS: @@ WE START BY GOING TO THE DATABASE MODULE SYS: @@ SYS: go da THERMODYNAMIC DATABASE module Current database: Steels/Fe-Alloys v8.0 VA DEFINED L12_FCC B2_BCC B2_VACANCY HIGH_SIGMA DICTRA_FCC_A1 REJECTED TDB_TCFE8: TDB_TCFE8: @@ TDB_TCFE8: @@ WE SELECT A USER DATABASE FOR READING THE THERMODYNAMIC DATA TDB_TCFE8: @@ TDB_TCFE8: sw user FeO.TDB Current database: User defined Database This database does not support the DATABASE_INFORMATION command VA /- DEFINED TDB_USER: def-sys fe o FE O DEFINED TDB_USER: rej sp * /- VA FE O FE+2 FE+3 FE+4 FE2O3 FEO FEO3/2 O-2 O2 REJECTED TDB_USER: res sp fe fe+2 fe+3 o o2 o-2 va FE FE+2 FE+3 O O2 O-2 VA RESTORED TDB_USER: rej ph * all GAS:G BCC_A2 SPINEL:I REJECTED TDB_USER: res ph bcc spinel gas BCC_A2 SPINEL:I GAS:G RESTORED TDB_USER: TDB_USER: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... Reference REF368 missing Reference REF304 missing Reference REF420 missing Reference REF420 missing Reference REF368 missing Reference REF368 missing Reference REF368 missing Reference REF418 missing Reference REF418 missing Reference REF304 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing

Page 331: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing Reference REF30 missing Reference REF30 missing Reference REF30 missing Reference REF420 missing Reference REF420 missing FUNCTIONS .... -OK- TDB_USER: TDB_USER: @@ TDB_USER: @@ SWITCH TO A USER DEFINED MOBILITY DATABASE TO RETRIEVE MOBILITY DATA TDB_USER: @@ TDB_USER: app user FeOmob.TDB Current database: User defined Database test database VA /- O DEFINED TDB_APP: def-sys fe o FE DEFINED TDB_APP: rej sp * /- VA FE O FE+2 FE+3 FE2O3 FEO FEO3/2 O-2 O2 REJECTED TDB_APP: res sp fe fe+2 fe+3 o o2 o-2 va FE FE+2 FE+3 O O2 O-2 VA RESTORED TDB_APP: rej ph * all SPINEL:I GAS:G BCC_A2 REJECTED TDB_APP: res ph bcc spinel gas BCC_A2 SPINEL:I GAS:G RESTORED TDB_APP: TDB_APP: get ELEMENTS ..... SPECIES ...... PHASES ....... PARAMETERS ... FUNCTIONS ....

List of references for assessed data

*** ERROR 1000 IN TDBGRT *** NO REFERENCE FILE

*** ERROR 1000 IN TDBGRT *** NO REFERENCE FILE -OK- TDB_APP: TDB_APP: TDB_APP: @@ TDB_APP: @@ ENTER THE DICTRA MONITOR TDB_APP: @@ TDB_APP: go d-m NO TIME STEP DEFINED DIC> DIC> DIC> @@ DIC> @@ ENTER GLOBAL CONDITION T DIC> @@ DIC> set-cond glob T 0 823; * N DIC> DIC> DIC> @@ DIC> @@ SET REFERENCE STATE FOR O TO O2 (GAS) DIC> @@ DIC> set-ref o gas,,,,,,, DIC> DIC> DIC> @@ DIC> @@ ENTER REGIONS fer AND sp DIC> @@ DIC> ent-reg fer DIC> ent-reg sp,,,,,,,, DIC> DIC> DIC> @@ DIC> @@ ENTER PHASES INTO REGIONS DIC> @@ DIC> ent-phase act fer matrix bcc#1 DIC> ent-phase act sp matrix spinel DIC> DIC> DIC> @@ DIC> @@ ENTER GRIDS INTO THE REGIONS DIC> @@ DIC> DIC> @@ DIC> @@ Enter a size for the ferrite DIC> @@ DIC> @@ DIC> ent-grid fer 4.99999e-3 geo 64 0.95 DIC> DIC> @@ DIC> @@ Enter a thin initial size for the oxide DIC> @@ DIC> @@ DIC> ent-grid sp 1.00e-10 lin 10 DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN BCC

Page 332: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

DIC> @@ DIC> ent-comp fer bcc#1 m-f PROFILE FOR /O/: o lin 1e-9 1e-9 DIC> DIC> DIC> @@ DIC> @@ ENTER INITIAL COMPOSITIONS IN THE OXIDE DIC> @@ DIC> ent-comp sp spinel m-f this is a phase with charged species with more than 2 sublattices PROFILE FOR /FE/: FE lin 4.28771E-01 4.28549E-01 DIC> DIC> DIC> @@ DIC> @@ ENTER A BOUNDARY CONDITION "GAS" ON THE UPPER (RIGHTMOST) INTERFACE DIC> @@ OF THE OXIDE. THIS WILL ALLOW THE SYSTEM TO EXPAND AND THE OXIDE LAYER DIC> @@ TO GROW EXTERNALY. FOR THIS EXAMPLE WE HAVE SPECIFIED AN OXYGEN ACTIVITY DIC> @@ THAT IS LOW ENOUGH IN ORDER NOT TO FORM CORUNDUM (FE2O3). WE ALSO DIC> @@ SPECIFY THAT THERE IS NO FLUX OF FE ACROSS THIS INTERFACE, I.E. NO FE DIC> @@ IS ALLOWED TO ENTER OR LEAVE THE SYSTEM. DIC> @@ DIC> set-cond boundary upper gas TYPE OF CONDITION FOR COMPONENT FE /ZERO_FLUX/: zero-flux TYPE OF CONDITION FOR COMPONENT O /ZERO_FLUX/: act LOW TIME LIMIT /0/: 0 4.5e-4; * N DIC> DIC> DIC> @@ DIC> @@ ENTER START VALUES FOR INITIAL INTERFACE VELOCITIES DIC> @@ DIC> s-a-s-v -1e-5 1e-5 yes STARTING VALUES WILL BE TAKEN FROM PROFILES DIC> DIC> DIC> @@ DIC> @@ SIMULATE FOR 24 HOURS DIC> @@ DIC> s-s-time 86400,,,, SMALLEST ACCEPTABLE TIMESTEP : /1E-07/: DIC> DIC> @@ DIC> @@ SPECIFY THAT POTENTIALS AND NOT ACTIVITIES ARE VARIED AT THE PHASE DIC> @@ INTERFACE, AND ALSO USE A FULLY IMPLICIT SCHEME FOR TIME INTEGRATION. DIC> @@ DIC> s-s-c 0 1 1 YES POT YES YES 1 2,,,,,,,,,, RELEASING OLD STARTING VALUES DIC> DIC> DIC> @@ Enable the grainboundary diffusion contribution model DIC> GB REGION NAME : /SP/: SP PHASE NAME: /SPINEL/: SPINEL Enable model for grainboundary contribution to diffusion /YES/: YES Grainboundary thickness /5E-10/: 5e-10 Grainsize(T,P,TIME)= 10.0e-6; Bulkdiffusion activation energy multiplier /.5/: 0.333333 Enable model for dislocation contribution to diffusion /YES/: NO DIC> DIC> DIC> DIC> @@ DIC> @@ SAVE THE SETUP ON A NEW STORE FILE AND EXIT DIC> @@ DIC> save exi3b.DIC Y DIC> DIC> DIC> DIC> set-inter --OK--- DIC>

Page 333: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi3b-run

MACRO exi3b\run.DCMMACRO "c:\jenkins\workspace\DICTRA-Generate-Console-Examples\examples\exi3b\run.DCM"DIC> DIC> DIC> @@ exi3_run.DCM DIC> DIC> @@ DIC> @@ FILE FOR RUNNING EXAMPLE i3 DIC> @@ DIC> DIC> @@ DIC> @@ ENTER THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 0.00000E+00 DIC> read exi3b OK DIC> DIC> @@ DIC> @@ Start the simulation DIC> @@ DIC> sim y Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set Trying old scheme 3 Automatic start values will be set Old start values kept Automatic start values will be set Old start values kept Automatic start values will be set U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08 TOTAL SIZE OF SYSTEM: .0049999901 [m] U-FRACTION IN SYSTEM: FE = 0.99999999500542 O = 2.10000395011622E-08 TOTAL SIZE OF SYSTEM: .0049999901 [m] 2 GRIDPOINT(S) ADDED TO CELL #1 REGION: FER 8 GRIDPOINT(S) ADDED TO CELL #1 REGION: SP 4.141089174324655E-002 4.141088853900977E-002 4.141061810418874E-002 2.455172928406264E-004 9.248927376631403E-027 TIME = 0.10000000E-06 DT = 0.10000000E-06 SUM OF SQUARES = 0.92489274E-26 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.17021234E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999900E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.31079144E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999901E-02 U-FRACTION IN SYSTEM: FE = 0.99999999220163 O = 2.74320841042908E-08 TOTAL SIZE OF SYSTEM: .00499999011406 [m] 4 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: FER CPU time used in timestep 0 seconds 1 GRIDPOINT(S) ADDED TO CELL #1 REGION: SP 7.882707588161485E-006 7.881996736368658E-006 7.881956548231107E-006 3.310926551917118E-007 8.008101344355386E-031 TIME = 0.30000000E-06 DT = 0.20000000E-06 SUM OF SQUARES = 0.80081013E-30 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.37989117E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999899E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.57564406E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.9999999844774 O = 5.04578953280467E-08 TOTAL SIZE OF SYSTEM: .00499999015321 [m] CPU time used in timestep 0 seconds 8.756278013917150E-006 8.757753225710002E-006 8.757950790163934E-006 4.068145973696446E-009 4.263739003370391E-032 TIME = 0.70000000E-06 DT = 0.40000000E-06 SUM OF SQUARES = 0.42637390E-31 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.17418703E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999898E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.23821432E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.99999997883772 O = 6.95150875710513E-08 TOTAL SIZE OF SYSTEM: .00499999017882 [m] CPU time used in timestep 1 seconds 8.595216711556193E-008 8.603795578319728E-008 8.599979562241110E-008 4.035000618875213E-010 3.687149620337253E-033 TIME = 0.15000000E-05 DT = 0.80000000E-06 SUM OF SQUARES = 0.36871496E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.14558382E-03 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999897E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.21103529E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999902E-02 U-FRACTION IN SYSTEM: FE = 0.99999996818142 O = 1.03280821699165E-07 TOTAL SIZE OF SYSTEM: .00499999023118 [m] CPU time used in timestep 0 seconds 4.818019761706434E-007 4.819412311082719E-007 4.819397115274064E-007 2.460369134634178E-010 3.661948196949974E-032 TIME = 0.31000000E-05 DT = 0.16000000E-05 SUM OF SQUARES = 0.36619482E-31 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.93876853E-04 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49999896E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.13361821E-03 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.49999903E-02 U-FRACTION IN SYSTEM: FE = 0.9999999549909 O = 1.46038774660041E-07 TOTAL SIZE OF SYSTEM: .00499999029477 [m] CPU time used in timestep 0 seconds 1.094723923164097E-005 1.095168464280933E-005 1.095123371287053E-005

output ignored...

... output resumed

CPU time used in timestep 1 seconds 5.273126367262701E-007 5.281055409063795E-007 5.280436775085431E-007 7.076351490165385E-010 5.426458081587942E-033 TIME = 56943.895 DT = 8640.0000 SUM OF SQUARES = 0.54264581E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.70247324E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49272775E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.10045412E-08 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50312191E-02 U-FRACTION IN SYSTEM: FE = .993661313442046 O = .0206594986371046

Page 334: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

TOTAL SIZE OF SYSTEM: .00503121912996 [m] 9 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 0 seconds 2.946697696464319E-007 2.952137789163994E-007 2.951649812336557E-007 3.823722313996704E-010 3.179289041007992E-033 TIME = 65583.895 DT = 8640.0000 SUM OF SQUARES = 0.31792890E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.64894697E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49216706E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.92920487E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50336406E-02 U-FRACTION IN SYSTEM: FE = .993180425222953 O = .0222444953190999 TOTAL SIZE OF SYSTEM: .00503364055816 [m] 8 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 1 seconds 1.646046367731663E-007 1.649792393718524E-007 1.649481809118956E-007 1.988141837829538E-010 4.420611075476327E-033 TIME = 74223.895 DT = 8640.0000 SUM OF SQUARES = 0.44206111E-32 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.60654846E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49164301E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.86919653E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50359098E-02 U-FRACTION IN SYSTEM: FE = .992730588972695 O = .0237257327417128 TOTAL SIZE OF SYSTEM: .00503590983743 [m] 11 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 1 seconds 1.056451897213970E-007 1.059238746988451E-007 1.059045711811337E-007 1.220613479459113E-010 1.116211819721618E-032 TIME = 82863.895 DT = 8640.0000 SUM OF SQUARES = 0.11162118E-31 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.57100536E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49114966E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.81838320E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50380472E-02 U-FRACTION IN SYSTEM: FE = .99230753888443 O = .0251191535728178 TOTAL SIZE OF SYSTEM: .00503804718195 [m] 7 GRIDPOINT(S) REMOVED FROM CELL #1 REGION: SP CPU time used in timestep 0 seconds 1.518630779353292E-008 1.512784628436771E-008 1.530720423223038E-008 1.085103619290851E-011 6.394689268473244E-035 TIME = 86400.000 DT = 3536.1047 SUM OF SQUARES = 0.63946893E-34 CELL # 1 VELOCITY AT INTERFACE # 2 IS -0.56483688E-09 AND 0.0000000 POSITION OF INTERFACE FER / SP IS 0.49094993E-02 CELL # 1 VELOCITY AT INTERFACE # 3 IS 0.78548583E-09 AND 0.0000000 POSITION OF INTERFACE SP / gas interface IS 0.50388274E-02 U-FRACTION IN SYSTEM: FE = .992153345776667 O = .0256664953652279 TOTAL SIZE OF SYSTEM: .00503882741973 [m] MUST SAVE WORKSPACE ON FILE WORKSPACE SAVED ON FILE RECLAIMING WORKSPACE DELETING TIME-RECORD FOR TIME 0.0000000 DELETING TIME-RECORD FOR TIME 0.10000000E-06 DELETING TIME-RECORD FOR TIME 0.30000000E-06 DELETING TIME-RECORD FOR TIME 0.70000000E-06 DELETING TIME-RECORD FOR TIME 0.15000000E-05 DELETING TIME-RECORD FOR TIME 0.31000000E-05 DELETING TIME-RECORD FOR TIME 0.63000000E-05 DELETING TIME-RECORD FOR TIME 0.12700000E-04 DELETING TIME-RECORD FOR TIME 0.25500000E-04 DELETING TIME-RECORD FOR TIME 0.51100000E-04 DELETING TIME-RECORD FOR TIME 0.10230000E-03 DELETING TIME-RECORD FOR TIME 0.20470000E-03 DELETING TIME-RECORD FOR TIME 0.40950000E-03 DELETING TIME-RECORD FOR TIME 0.81910000E-03 DELETING TIME-RECORD FOR TIME 0.16383000E-02 DELETING TIME-RECORD FOR TIME 0.32767000E-02 DELETING TIME-RECORD FOR TIME 0.65535000E-02 DELETING TIME-RECORD FOR TIME 0.13107100E-01 DELETING TIME-RECORD FOR TIME 0.26214300E-01 DELETING TIME-RECORD FOR TIME 0.52428700E-01 DELETING TIME-RECORD FOR TIME 0.10485750 DELETING TIME-RECORD FOR TIME 0.20971510 DELETING TIME-RECORD FOR TIME 0.41943030 DELETING TIME-RECORD FOR TIME 0.83886070 DELETING TIME-RECORD FOR TIME 1.6777215 DELETING TIME-RECORD FOR TIME 3.3554431 DELETING TIME-RECORD FOR TIME 6.7108863 DELETING TIME-RECORD FOR TIME 13.421773 DELETING TIME-RECORD FOR TIME 26.843545 DELETING TIME-RECORD FOR TIME 53.687091 DELETING TIME-RECORD FOR TIME 107.37418 DELETING TIME-RECORD FOR TIME 214.74836 DELETING TIME-RECORD FOR TIME 429.49673 DELETING TIME-RECORD FOR TIME 858.99346 DELETING TIME-RECORD FOR TIME 1717.9869 DELETING TIME-RECORD FOR TIME 3435.9738 DELETING TIME-RECORD FOR TIME 6871.9477 DELETING TIME-RECORD FOR TIME 13743.895 DELETING TIME-RECORD FOR TIME 22383.895 DELETING TIME-RECORD FOR TIME 31023.895 DELETING TIME-RECORD FOR TIME 39663.895 DELETING TIME-RECORD FOR TIME 48303.895 DELETING TIME-RECORD FOR TIME 56943.895 DELETING TIME-RECORD FOR TIME 65583.895 DELETING TIME-RECORD FOR TIME 74223.895 KEEPING TIME-RECORD FOR TIME 82863.895 AND FOR TIME 86400.000 WORKSPACE RECLAIMED DIC> DIC> set-inter --OK--- DIC>

Page 335: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially

exi3b-plot

MACRO exi3b\plot.DCMDIC> DIC> @@ exi3_plot.DCM DIC> DIC> @@ DIC> @@ FILE FOR GENERATING GRAPHICAL OUTPUT FOR EXAMPLE i3 DIC> @@ DIC> DIC> @@ DIC> @@ GO TO THE DICTRA MONITOR AND READ THE STORE RESULT FILE DIC> @@ DIC> go d-m TIME STEP AT TIME 8.64000E+04 DIC> read exi3b OK DIC> DIC> @@ DIC> @@ ENTER THE POST PROCESSOR DIC> @@ DIC> post POST PROCESSOR VERSION 1.7 Implemented by Bjorn Jonsson POST-1: POST-1: @@ POST-1: @@ LET'S PLOT THICKNESS OF THE OXIDE LAYER GROWING AT THE SURFACE. POST-1: @@ FOR THIS PURPOSE WE NEED TO ENTER A FUNCTION ACCORDING TO BELOW. POST-1: ent func oxideth FUNCTION: poi(sp,upper)-poi(sp,lower) & POST-1: @@ POST-1: @@ WE PUT THIS FUNCTION ON Y-AXIS POST-1: @@ POST-1: s-d-a y oxideth POST-1: POST-1: @@ POST-1: @@ AND PLOT OXIDE THICKNESS VERSUS TIME POST-1: @@ POST-1: s-d-a x time INFO: Time is set as independent variable POST-1: POST-1: @@ POST-1: @@ SINCE WE ARE PLOTTING A FUNCTION WE NEED TO SPECIFY A PLOT CONDITION POST-1: @@ POST-1: s-p-c interface sp upper POST-1: POST-1: app y exi3a.exp 0; 1; POST-1: POST-1: plot

POST-1: POST-1: POST-1: set-inter --OK--- POST-1:This page was generated 2015-11-20 16:20

Page 336: DICTRA Examples Guide Version 2015b - Thermo-Calc Examples Guide Version 2015b exa1 One-phase problem. Simple homogenization of a binary Fe-Ni alloy. It is assumed there is initially