Design CWR- R0

Embed Size (px)

Citation preview

  • 8/12/2019 Design CWR- R0

    1/38

    550 KLBy - RNKhati

    At - Dist -

    A- DESIGN DATA

    Capacity = 550

    SBC of soil = 10

    Dead storage water column = 200Free board = 300Live load on top dome = 4000Live load on balcony and staircase = 2000

    Live load on ladder, steps, balcony landing beams = 2000Dead load of hand railing = 100Grade of concrete = M

    Nominal maximum size of Coarse aggregate = 20

    Grade of steel = Fe

    B - ASSUMED DIMENSIONS

    1.0 Water TankInternal dia of cylinderical wall = 14.00

    Top dome Rise = 2.10

    Thickness = 125

    Top ring beam Width = 400

    Vertical wall Thickness at top = 150

    Thickness at bottom = 200

    3.0 Staircase

    Waist slab Thickness = 100

    Tread = 250

    Nagaurabc

    STRUCTURAL DESIGN OF RCC CWR CAPACIT

  • 8/12/2019 Design CWR- R0

    2/38

    Streeses in steel for water reataining structures-

    Tensile stress under direct tension, bending and shear st / sv = 130

    Compressive stress in columns subjected to direct load sc = 140

    Permissible stresses in Concrete-

    Characteristic Compressive strength fck = 30

    Direct tensile stress ft = 3.6

    Permissible stress in compression

    a) Bending cbc = 10

    b) Direct cc = 8

    Max shear stress with shear R/Fa) For members other than slab cmax = 2.2

    b) For slabs " = 1.1

    Permissible stress in bond

    a) In Tension bd = 1.6

    b) In Compression " = 2

    Direct Tension stress = 1.5

    Tension due to Bending stress = 2

    Values of Concrete Constants-

    m = 9.33

    For st = 230 N/sqmm For st = 130 N/sqmm

    k j R k j R

    0.289 0.904 1.304 0.418 0.861 1.798

    Maximum dimension of tank = 14.00

    f

    Permissible stresses in Concrete for Water Retaining

    Structures-

  • 8/12/2019 Design CWR- R0

    3/38

    Design water column from top of floor =3.60+0.50 = 4.10

    Volume including free board and dead storage = 631.15

    =4x14.00x4.10

    Effective volume = 554.18G - STRUCTURAL DESIGNS

    1.0 DESIGN OF TOP DOME

    Span of dome = 14.00

    Let dome thickness = 125

    Assume rise of dome = 2.10

    Radius of dome =x*(14.002)2.102.10+ = 12.72

    Cos =(12.72-2.10)12.72 = 0.835

    = 33.40

  • 8/12/2019 Design CWR- R0

    4/38

  • 8/12/2019 Design CWR- R0

    5/38

    = 0.18

    Ratio H^2/Dt * = 6.9

    wHR = 281260

    Hoop tension as per continuity analysis at top = 105094

    Distance from

    top

    Thicness ow

    wall

    Coefficient for

    H^2/Dt= 6.9

    Hoop tension Area of steel

    required

    Min steel

    required

    Dia of bar Spacing

    required

    m m N Sqmm Sqmm mm mm

    0.00 150 -0.013 105094 701 360 8 71

    0.36 155 0.100 28122 187 372 8 135

    0.72 160 0.217 60904 406 384 8 1231.08 165 0.335 94171 628 396 8 80

    1.44 170 0.454 127801 852 408 10 92

    1.80 175 0.565 158951 1060 420 10 74

    2.16 180 0.651 182995 1220 432 12 92

    2.52 185 0.666 187390 1249 444 12 90

    2.88 190 0.579 162812 1085 456 12 104

    3.24 195 0.352 99118 661 468 12 171

    Provide hoop bars as follows-

    From (m) To (m) Total inside outside

    3.60 2.84 12 95 9 5 4

    2.84 2.12 12 90 8 4 4

    2.12 1.42 10 70 10 5 5

    1.42 0.70 8 80 9 4 5

    0.70 0.00 8 75 10 5 5

    Total 46 23 23

    Dia of bar

    (mm)

    Spacing (mm) No of rings

    Hoop tension as per table 12 of IS 3370 Part IV-

    Position from bottom

  • 8/12/2019 Design CWR- R0

    6/38

    1.08 165 130 0.0005 366 25 198

    1.44 170 135 0.0014 963 64 204

    1.80 175 140 0.0025 1696 108 210

    2.16 180 145 0.0038 2583 159 2162.52 185 150 0.0045 3067 183 222

    2.88 190 155 0.0029 1959 113 228

    3.24 195 145 -0.0033 -2217 137 234

    3.60 200 150 -0.0169 -11438 681 240

    Point of

    cosideration

    from top of

    wall (m)

    Max BM Wall thickness

    (mm)

    Effective

    depth (mm)

    Area of steel

    required (sq

    mm)

    Min steel

    required on

    each face (sq

    mm)

    3.60 -11438 250 200 511 300

    2.40 3067 183 148 185 220

    0 3540 150 115 275 180

    dia (mm)Spacing

    required

    Spacing

    provided

    Spacing

    required Spacing

    required

    Spacing

    provided

    3.60 -2.4 8 250 190 8 225 150

    10 250 190 0 225 150

    2.4 -0.00 8 180 190 8 150 150

    Maximum (+)ve BM at2.52m = 3067

    Maximum (-)ve BM (at bottom) = 11438

    Overall Wall thickness for uncracked section = 185

    =(6x11438x1000(2x1000))

  • 8/12/2019 Design CWR- R0

    7/38

    Thickness of footing assumed = 250

    Vertcal load including water column = 46430

    Minimum length of raft required = 1.24

    Provide = 1.50Toe length = 300

    Length of heel slab = 1.00

    Calculation of moments in the footing -

    Member Load Lever arm Moment

    (kN) (m) (kN-m)

    Dome 11.92 1.075 12.82

    Beam 5.00 1.2 6.00

    Vertical wall 13.50 1.075 14.51

    2.25 1.17 2.63

    Water 40.18 0.5 20.09

    Base slab 9.38 0.75 7.03

    Total 82.23 63.07

    Resultant from edge of heel = 0.77Ecentricity = 0.017

    Max/ min pressure on soil Max = 54.19

    Min = 55.44

    Design of toe slab -

    Max pressure at wall edge = 54.44

    BM = 2.44

    BM due to self weight = 0.28

    Net BM = 2.16

    Overall depth required = 81

  • 8/12/2019 Design CWR- R0

    8/38

    Steel required = 200

    Minimun steel = 300

    Spacing required = 262

    Provide = 200

    Distribution steel -

    Minimun steel = 300

    Dia of bar = 10

    Spacing of bars required = 262

    Provide = 200

    Check for SBC -

    SBC = 10

    % steel in raft = 0.24

    Allowable shear stress = 0.25

    Vertical shearing resistance of concrete at jn of raft and floor = 2286

    Actual pressure on ground = 94431

    = 9.44

  • 8/12/2019 Design CWR- R0

    9/38

    Maximum bending moment at centre =6474x2.6510 = 4546

    Effective depth required =(4546x1000(1.304x900)) = 62

    Dia of bar proposed = 8

    Effective depth available =100-15-82 = 81

    Area of steel required =4546x1000(230x0.904x81) = 270

    No of bars required = 6

    Provide distribution R/F = 8

    Spacing = 250

    Design of landing slab-

    Assume lenght of landing = 900

    Assume width of landing = 900

    Assume thickness of landing slab = 150

    Assume thickness of wall supporting landing = 150

    = 0.15

    Laod from flight of stairs =6474x2.50 = 16185

    Self weight of landing slab =0.90x0.90x0.15x25000 = 3038

    Weight or railing =2x0.90x100 = 180

    Live load =0.90x0.90x2000 = 1620Total = 21022

    Total load on landing on one side = 10511

    Cantlilever span = 375

    Bending moment =10511x0.382 = 739

    Dia of bar = 8

    Effective depth available providing bars on both faces = 131

    Area of steel required = 25No of bars on each face required = 1

    Provide equal to main reinforcement of waist slab = 6

    Provide distribution R/F = 8

    Ok

  • 8/12/2019 Design CWR- R0

    10/38

    a) At last landing

    Assume thickness of wall = 150

    Assume width of landing = 900Laod from flight of stairs = 10511

    Self weight of wall = 8269

    Total load = 18780

    Area of concrete required = 2347

    Minimum area of steel required = 180

    Dia of bar = 8

    Spacing required = 279

    Provided = 200

    Provide distribution R/F = 8

    Spacing = 250

    Footing for wall -

    Assume width of footing = 750

    Assume depth of footing = 300

    Minimum steel required = 360Dia of bar = 10

    Spacing required = 218

    Provided both ways = 200

    Dimesnsions assumed are Ok

  • 8/12/2019 Design CWR- R0

    11/38

    6.0 CONTINUITY ANALYSIS -

    JUNCTION 1 - TOP DOME, RING BEAM & CYLINDERICAL WALL (TOP JOINT)

    Top Dome-

    1. Radius = 12.722. Thickness = 0.13

    3. Semicentral Angle = 33.4

    4. Rise = 2.10

    5. Udl = 7125

    Top ring beam-

    1. Breadth = 0.40

    2. Depth = 0.50

    3.Central Radius = 7.20

    Cylinderical wall-

    1. Central diameter = 14.18

    2. Thickness = 0.18

    3. Height of wall = 3.60

    Calculation for memberance deformation and stiffness-

    (i) Top dome

    14 =3x(12.720.13) = 31049

    1 = 13.27

    k1 =1-1(2x13.27)xcot33.4 = 0.94

    Slope at the left edge = 798000

    =2x7125x12.72xsin33.4(Ex0.13) radians

    The horizontal deflection d = -1470747

    =7125x12.72xsin33.4(Ex0.13)x*1(1cos33.4)-cos33.4+ m

    Moment stiffness M = 3.40E-04

    =E12.72x0.13(4x13.27)x*0.9410.94+

    Corresponding radial force H' = 6.83E-04

    N-m/m/ radians

  • 8/12/2019 Design CWR- R0

    12/38

    Corresponding thrust H' = 1.25E-03

    =2x1.18x4.47E-04E N/m/radian

    Thrust stiffness H = 2.95E-03

    =4x1.18x4.47E-04E N/mThe corresponding moment M' = 1.25E-03

    =2x1.18x4.47E-04E N-m/m/unit dispalcement

    Membrance displacement of the tank at bottom = 11533418

    =(284776x14.182)(0.18E) m

    Slope of wall = 3203727

    =11533418E13.60 radians

    Table showing Moment stiffness, thrust stiffness etc

    Particulars

    Slope 798000 /E 3203727

    Deflection -1470747 /E 11533418Moment

    stiffness 3.40E-04 E 8.04E-05 E 1.06E-03

    Corresponding radial force 6.83E-04 E -1.25E-03Thrust

    stiffness 2.59E-03 E 3.86E-03 E 2.95E-03Correspondin

    g moment 6.83E-04 E -1.25E-03

    Reaction due to continuity

    Member

    Top dome -798000 /E -1470747 /E

    Beam B1

    Clockwise slope Inward displacement

    Unit Top dome Beam B1 Cylinde

    N/m/radian

    N/m/unit displacement

    N-m/m/unit displacement

    Radians

    m

    N-m/m/radian

  • 8/12/2019 Design CWR- R0

    13/38

    ( -798000 /E)* 0.000683 E= 0.000683 E -545

    ( -1470747.3 /E)* 0.002592 E

    = 0.002592 E -3812

    * 0.003858 E

    = 0.003858 E

    ( -3203727 /E)* -0.001247 E

    = -0.001247 E 3995

    * 0.002948 E

    = 0.002948 E

    0 41226

    -0.000564 E 0.009398 E 40864

    Equation I 0.001476 E -0.000564 E = 4659

    -0.000564 E + 0.009398 E = -40864

    = 1530097 /E

    = -4256300 /E

    TOP JOINT-

    Area of

    Member

    Moment Thrust

    Sqm N-m N

    0.13 -3663 -14344 75067 N/m

    0.20 122 -16421 120107 N

    Beam

    Reaction due to thrust from dome

    Total

    Outward Moment

    Equation II

    Inward Thrust (H)

    DomeClockwise rotation

    Outward Moment

    Net hoop tension

    Top dome

    Top beam

    Member

    Wall

    Clockwise rotation

    Member

  • 8/12/2019 Design CWR- R0

    14/38

    31-Mar-14

    Cum

    T/sqm

    mm

    mm

    N/sqm

    N/sqm

    NN/m

    30

    mm

    415

    m

    m

    mm

    mm

    mm

    mm

    mm

    mm

  • 8/12/2019 Design CWR- R0

    15/38

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    m

  • 8/12/2019 Design CWR- R0

    16/38

    m

    KL

    Cum

    m

    mm

    m

    m

    degree

    N/ sqm

    "

    "

    N/m

    N/sqmm

    N/ sqm

    N/sqmm

    sqmm

    mm

    mm

  • 8/12/2019 Design CWR- R0

    17/38

    mm

    mm

    mmSqmm

    Sqmm

    Sqmm

    mm

    mm

    mm

    mm3

    N/sqmm

  • 8/12/2019 Design CWR- R0

    18/38

    m

    N/m

    N/m

    Spacing

    provided

    mm

    70

    75

    8080

    85

    70

    90

    90

    95

    95

  • 8/12/2019 Design CWR- R0

    19/38

    N-m

    N-m

    mm

  • 8/12/2019 Design CWR- R0

    20/38

    mm

    N

    m

    mmm

    m

    mm

    kN/sqm

    "

    kN/sqm

    kN-m

    "

    "

    mm

  • 8/12/2019 Design CWR- R0

    21/38

    Sqmm

    Sqmm

    mm

    mm

    Sqmm

    mm

    mm

    mm

    T/Sqm

    N/sqmm

    N

    N/sqm

    T/sqm

    m

    m

    m

    mm

    mm

  • 8/12/2019 Design CWR- R0

    22/38

    N-m

    mm

    mm

    mm

    Sqmm

    mm

    mm

    mm

    mm

    mm

    mm

    m

    N

    N

    N

    NN

    N

    mm

    N-m

    mm

    mm

    Sqmm

    Nos

    mm

  • 8/12/2019 Design CWR- R0

    23/38

    mm

    mmN

    N

    N

    mm

    Sqmm

    mm

    mm

    mm

    mm

    mm

    mm

    mm

    Sqmmmm

    mm

    mm

  • 8/12/2019 Design CWR- R0

    24/38

    mm

    degree

    m

    N/sqmm

    m

    m

    m

    m

    m

    m

    /E

    (Clockwise)

    /E

    (inwards)

    E(Clockwise)

    E

  • 8/12/2019 Design CWR- R0

    25/38

    E

    (Outward)

    E

    (Inward)E

    (Anti Clockwise)

    /E

    (Outward)

    /E

    (Clockwise)

    /E

    /E

    E

    E

    E

    E

    rical wall

  • 8/12/2019 Design CWR- R0

    26/38

    Grade M 15 Inlet #REF! mm dia 750 mm No of pillar 6Thickness 150 mm Outlet #REF! mm height 450 mm Dia of pillar 100 mm

    Manhole Overflow #REF! mm Beam W 150 mm Cover dia 1250 mm

    Length 600 mm Washout #REF! mm Beam H 150 mm Mid tk 75 mm

    Width 600 mm End tk 50 mm

    MISCELLANEOUS DETAILS

    VentilatorPCC Pipe Size

  • 8/12/2019 Design CWR- R0

    27/38

    Span 14.00 Sq mesh 8 125 mm

    Radius 12.72 Radial at top 8 150 mm

    Thickness 0.13 Hoops top 12 7 Nos

    h 2.10

    (degree) 33.40

    Hoop stress length 1.10

    Width 0.40 Hoop 16 12 Nos 5 T,5 B &1 Each sideDepth 0.50 Stirrups 8 300 mm

    Inner dia 14.00 Vertical inside 8 #REF! mm

    Thickness at top 0.15 Vertical outside 8 #REF! mm

    Thickness at bottom 0.20 Hoops, from btm 10 #REF! #REF! #REF!

    Wall height 3.60 " 10 45 #REF! #REF!

    a) straight portion from top 1.20 " 8 35 #REF! #REF!

    b) slant portion from bottom 2.40 " 8 55 #REF! #REF!

    " 8 60 #REF! #REF!

    Structural dimensionsMemberBar location

    Top Ring

    Bea

    Size of bar(mm)

    Spacing

    (mm)/No

    Remarks

    TopDome

    Reinforcement detail

    Cylindericalwall

    Extended from wall outer

    STRUCTURE ABSTRACT

    Particulars Size(m)

  • 8/12/2019 Design CWR- R0

    28/38

    Span #REF! Sq mesh 10 #REF! mm

    Radius #REF! Radial at top #REF! #REF! mm

    Thickness #REF! Hoops top 10 #REF! Nos

    h #REF!

    (degree) #REF!

    Hoop stress length #REF!

    Thickness near edge #REF!

    Angle with Horizontal (degree) 36.80

    No of flights 2

    width of flight 0.90

    No of tread in each flight 10

    No of riser in each flight 11

    Tread 0.144

    Rise 0.17

    Slant length of waist slab 2.82 Main 8 6 Nos

    Thickness of slab 0.10 Distribution 8 250 mm

    Additional 8 6 Nos

    Length 0.90 Main 8 1 Nos

    Width 0.90 Distribution 8 6 Nos

    Thickness 0.15Length #REF! Main #REF! #REF! Nos Each face

    Width 0.90 Distribution 8 6 Nos "

    Thickness #REF!

    Angle with Horiz (degree) #REF!

    Beams Length (Slant) #REF! Main #REF! #REF! Nos #REF!

    Width #REF! Distribution #REF! #REF! mm

    Depth #REF!

    Steps Nos #REF! Main #REF! #REF! Nos

    Length #REF! Distribution #REF! #REF! NosWidth #REF!

    Thickness #REF!

    Length #REF! Cantilever Main #REF! #REF! Nos Top and btm layer

    F

    light

    Waist

    Slab

    Landing

    Last

    Landing

    R

    CCLadder

    BottomDo

    me

    Extended from haunch bars

    Coming as main bar from waist

    slab

  • 8/12/2019 Design CWR- R0

    29/38

    Thickness #REF! Both end supported Main #REF! #REF! Nos Top and btm layer

    Dist #REF! #REF! mm

    Opening Length #REF!

    Width #REF!

    Cantilever L #REF!

    W #REF!

    Both end supported L #REF!

    W #REF!

    Length #REF! Main #REF! #REF! Nos

    Width #REF! Distribution #REF! #REF! mm

    Thickness #REF!

    Landinga

    tBalcony

    Top

    dome

    landing

  • 8/12/2019 Design CWR- R0

    30/38

    Cover

    (mm)

    Cover

    (mm)

    Top dome Bottom layer Primary

    45 300 mm

    Top/ bottom bars

    4

    Bottom layer Secondary 300 mm Side face 4

    Top layer Radials 30 Stirrups 45

    Top hoops 60 dia Columns Stirrups 40 4

    Top Beam Main bar 60 dia Bracing Main bar 4

    Stirrups 45 Stirrups 30

    Wall Vertical-Inside 45 35 dia Top/ Bottom bars 5

    Vertical- Outside 30 35 dia Side face 4

    Inside/ outside hoops 70 dia Stirrups 30

    Balcony beam Top Radials 30 Foundation Radials 50 4

    Bottom Radials #REF! Circular 4

    Top/ bottom hoops 70 dia Square mesh 50 4

    Cone wall Top Radials 45 45 dia Bottom Main 15 4Bottom Radials 30 45 dia Top main 15 4

    Top/ bottom hoops

    70 dia

    Main

    15 5

    Bottom dome Bottom layer Primary

    30 350 dia

    Main

    15 5

    Bottom layer secondary

    350 dia

    Main

    30 4

    Main 4

    Stirrups 30Steps Main 15 30

    Top Main 15 6

    Landing at

    balcony

    Parallel inclined

    beams

    Lap lengthLocation Bar La

    Bottom Ring

    beam

    Location Bar

    Foundation Ring

    beam

    Staircase waistslab

    Top layer Radials

    45

    60 dia

    Staircase landing

    slab

    Top most landing

    slab

    COVER AND LAP LENGTH

    Top hoops

  • 8/12/2019 Design CWR- R0

    31/38

    a b c d

    Sqare mesh 8 125 240

    Hoop 12 - 7

    Hoop 16 - 12

    Ring 8 300 310 410 50 151

    Water face 8 #REF! 200 #REF! #REF! #REF! #REF!

    Outer face 8 #REF! 1100 4100 #REF! 200 #REF!

    16 - 0

    12 - 0

    10 - #REF!

    8 - #REF!

    40.67

    45.24

    1.54

    #REF!

    #REF!

    44.61

    #R

    542

    232

    #R

    2756

    Length of bar(m)

    Dimension (mm)

    11.49

    BAR BENDING SCHEDULE

    TopRing

    Beam

    0

    0

    #R

    Circular 284

    VerticalWall

    Circular

    Location Mark dia(mm)

    spacing(mm) Shape

    No ofbars

    #R

    Total length (

    Topdome

    Hoops

    Circular

    44.61

    44.61

    44.61

  • 8/12/2019 Design CWR- R0

    32/38

    M

    iddle

    Ring

    Bea

    Hoops #REF! - #REF!

    Water face #REF! #REF! #REF! #REF! #REF! 200 #REF!

    Hoops #REF! - #REF!

    Haunch bars #REF! #REF! #REF! #REF! #REF! #REF!

    Square mesh 10 #REF! #REF!

    Hoops 10 - #REF!

    Top #REF! - #REF!

    Bottom #REF! - #REF!

    Side face #REF! - #REF!

    Rings #REF! - #REF! #REF! #REF! #REF!

    Vertical #REF! - 250 #REF! 500 #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    RingBeamonCo

    lumns

    Circular

    #REF!

    #REF!

    Conewall

    Columns

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    Bottom

    Dome

    Circular

    Circular

    Circular

  • 8/12/2019 Design CWR- R0

    33/38

    12 - #REF!

    16 - #REF!

    20 - #REF!

    25 - #REF!

    Side face #REF! - #REF!

    #REF! #REF! #REF! #REF! #REF! #REF!

    #REF! #REF! #REF!

    #REF! #REF! #REF!

    #REF! #REF! #REF!

    #REF! #REF! #REF!

    #REF! #REF! #REF!

    Additional bars

    at junction of

    column and

    brace

    #REF! - 250 #REF! 250 #REF!

    Top #REF! - #REF!

    Bottom #REF! - #REF!

    Side face #REF! - #REF!

    Ring #REF! - #REF! #REF! 50 #REF!

    #REF! #REF! #REF!

    #REF! #REF! #REF!

    #REF! - #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    Bracing

    FoundationRingBeam

    oundation

    slab

    Main bars (Top +

    bottom)

    Rings

    Cirumfrential

    Radials

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    Circular

    Polygonal

    Circular

  • 8/12/2019 Design CWR- R0

    34/38

    Main 8 - 150 700 3035 150 12

    8 - 150 700 995 12

    8 - 995 900 150 12

    Distribution 8 250 54

    Landing

    slab

    main 8 - 400 #REF! 120 4

    Main #REF! - #REF! #REF! #REF! #REF!

    Dist. top 8 - 6

    Dist. bottom 8 - 150 870 100 6

    Additional 8 - 1100 300 #REF! 6

    Main #REF! - 250 #REF! #REF! 250 #REF!

    Rings #REF! #REF! #REF! #REF! 50 #REF!

    4.035

    1.845

    Straight

    Lad

    derBeam

    #REF!

    #REF!

    #REF!

    #REF!

    0.87

    1.12

    straight

    Waistslab

    Additional bars

    LastLandingslab

    2.045

    0.87

    #REF!

  • 8/12/2019 Design CWR- R0

    35/38

    Main #REF! #REF! 250 #REF! 250 #REF!

    Distribution #REF! - #REF!

    Cantilever main #REF! - #REF!

    SS main #REF! - #REF!

    Cantilever ring #REF! #REF! #REF! #REF! 50 #REF!

    SS ring #REF! #REF! #REF! #REF! 50 #REF!

    Main #REF! - #REF! #REF! #REF! #REF!

    Distribution #REF! 250 #REF!

    beam hoop 8 - 4

    top cover ring 8 - 2

    beam ring 8 150 19

    Pillar main 8 - 150 510 24

    Pillar ring 8 150 24

    Top cover sq

    mesh

    8 200 16

    Opennig parallel 10 - 8

    Corner 10 - 4

    Inlet 10 - 8

    Outlet 10 - 8

    Overflow 10 - 8

    Washout 10 - 8

    TOTAL

    0.22

    #REF!

    straight

    #REF!

    #REF!

    #REF!

    #REF!

    Landingat

    balconylevel

    Ladder

    Steps

    straight

    0.66

    1.23

    1.00

    square ring

    1.50

    2.83

    0.34

    Pipeop

    ening

    Straight

    Topdom

    e

    landingslab

    Ve

    ntilator

    Circular

    ring

    L

    Straight

    Man

    hole

    Straight

    #REF!

    #REF!

    1.75

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    straight

  • 8/12/2019 Design CWR- R0

    36/38

    Size of

    bar

    Total length Wt per M length Total weight

    mm

    8

    10

    12

    16

    20

    25

    Total

    Add 10% for overlaps and wastage etc

    TOTAL

    #REF!

    #REF!

    0.395

    0.617

    0.888

    1.578

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    2.466

    3.854

    ABSRTACT OF REINFORCEMENT

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    m Kg Kg

  • 8/12/2019 Design CWR- R0

    37/38

    No x Length x Width x Height

    1 PCC M- 15 #REF! Cum

    2 RCC M-30 M- 30

    a) =2x12.72x2.10x0.13 Cum

    b) =x(14.000.40)x0.40x0.50 "

    c) =x(14.000.15)x0.15x3.60 "

    "

    d) #REF! "

    e) #REF! "

    f) #REF! "

    g) #REF! "

    h) #REF! "

    i) #REF! "

    j) #REF! "

    k) "

    a #REF! "

    b #REF! "c #REF! "

    d #REF! "

    e #REF! "

    f #REF! "

    l) Staircase "

    Waist slab =2x2.82x0.90x0.10 "

    Steps =2x10x0.5x0.14x0.17x0.90 "

    Landing =2x0.90x0.90x0.15 "

    Last landing #REF! "

    9.05

    24.00

    DETAILED ESTIMATE

    BSR - PWD 2012

    Rate

    (Rs)

    Amount (Rs)

    #REF!

    Bottom ring beam

    Bottom dome

    Unit

    Top dome

    Top ring beam

    Wall straight portion

    slant portion

    SN Item Measurements (m)

    =x*14.00(2x0.15)2x(0.20-0.15)x13+x12(x(0.20-

    0.15)x2.40

    Foundation ring beam

    Foundation

    #REF!

    #REF!

    Middle ring beam

    Cone wall

    Quantiy

    2.70

    Columns

    Bracings #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    #REF!

    0.24

    0.22

    0.51

    #REF!

    #REF!

    #REF!

    #REF!

    20.97

  • 8/12/2019 Design CWR- R0

    38/38

    RCC Ladder "

    Beams #REF! "

    Steps #REF! "

    Landing slab at balcony #REF! "Top dome landing slab #REF! "

    Cum

    Rate Rate Rate

    1 6.4 0.45 0.9

    2 12 0.4 0.8

    Total #REF! #REF!

    #REF!

    #REF!

    Sand CA

    Quantity

    (Bags)

    Quantity

    (Cum)

    Quantity

    (Cum)

    #REF!

    RCC M-30 #REF! #REF! #REF! #REF!

    PCC M-15 #REF! #REF! #REF!

    MATERIAL REQUIREMENT

    SN ParticularsQuantity

    (cum)

    Material Consumption

    Cement

    #REF!

    #REF!

    #REF!

    #REF!