21
Spring 2021 數位控制系統 Digital Control Systems DCS-21 A Design Example Feng-Li Lian NTU-EE Feb Jun, 2021

DCS-21 A Design Example

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DCS-21 A Design Example

Spring 2021

數位控制系統Digital Control Systems

DCS-21

A Design Example

Feng-Li Lian

NTU-EE

Feb – Jun, 2021

Page 2: DCS-21 A Design Example

DCS21-DesignExample-2

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

IEEE CSS

Publications Content Digest

March 2019

Min Yu , Carlos Arana, Simos A. Evangelou, and Daniele Dini

Quarter-Car Experimental Study for Series Active Variable Geometry Suspension

IEEE T. on Control Systems Technology, 27(2):743-759, Mar. 2019

Page 3: DCS-21 A Design Example

DCS21-DesignExample-3

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Discrete-time composite nonlinear feedback control

with an application in design of a hard disk drive servo system

• V. Venkataramanan;Kemao Peng;B.M. Chen;T.H. Lee

• IEEE Transactions on Control Systems Technology

• Year: 2003 | Volume: 11, Issue: 1 | Journal Article | Publisher: IEEE

Page 4: DCS-21 A Design Example

DCS21-DesignExample-4

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Observer-based discrete-time sliding mode throttle control

for drive-by-wire operation of a racing motorcycle engine

• A. Beghi;L. Nardo;M. Stevanato

• IEEE Transactions on Control Systems Technology

• Year: 2006 | Volume: 14, Issue: 4 | Journal Article | Publisher: IEEE

Page 5: DCS-21 A Design Example

DCS21-DesignExample-5

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

A Flexible Robot Arm:

CT Input-Output Model:

CT State-Space Model:

Page 6: DCS-21 A Design Example

DCS21-DesignExample-6

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Stability:

Plant Poles & Zeros:

Plant Eigenvalues:

Characteristics:

Root Locus & Bode Plot

Impulse Response & Step Response:

Page 7: DCS-21 A Design Example

DCS21-DesignExample-7

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Output (y)Input (u)

Plant (P)

Ref (r)

Signals &

Systems

Page 8: DCS-21 A Design Example

DCS21-DesignExample-8

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Design Specifications:

Sampling Time:

DT Models:

Desired Poles & Zeros:

Desired Eigenvalues:

Page 9: DCS-21 A Design Example

DCS21-DesignExample-9

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Output (y)Input (u)

Plant (P)

Controller

Ref (r)

1. Model

2. Response

3. Analysis

4. Feedback

5. Control

Signals &

Systems

Control

Systems

Page 10: DCS-21 A Design Example

DCS21-DesignExample-10

Feng-Li Lian © 2021Problem, Model, Analysis, and Design

Block Diagram of a Typical Control System:

GCr

P

- 1

e yxu

Page 11: DCS-21 A Design Example

DCS21-DesignExample-11

Feng-Li Lian © 2021Issues: Sampling Times

G(s)

u(t) y(t)

C(s)

e(t)r(t)

G(z)

u[k] y[k]

C(z)

e[k]r[k]

Page 12: DCS-21 A Design Example

DCS21-DesignExample-12

Feng-Li Lian © 2021Issues: Sampling Times

G(s)

u(t) y(t)

C(s)

e(t)r(t)

G(z)

u[k] y[k]

C(z)

e[k]r[k]

Page 13: DCS-21 A Design Example

DCS21-DesignExample-13

Feng-Li Lian © 2021Issues: Analog Control and Digital Control

G(s)

u(t) y(t)

C(s)

e(t)r(t)

G(z)

u[k] y[k]

C(z)

e[k]r[k]

G(s) C(s)

G(z) C(z)

G(s)

u(t) y(t)

C(z)

e(t)r(t)

G(s)

u(t) y(t)

C(z)

e(t)r(t)

D/AA/D

G(s) C(z) ???

G(s) C(s)

Page 14: DCS-21 A Design Example

DCS21-DesignExample-14

Feng-Li Lian © 2021Simulation Study: Root Locus

den = [1 -2 1];

num = [0 0.5 0.5];

sysC = tf( num, den ) den = [1 -2 1];

num = [0 0.5 0.5];

sysD = tf( num, den, 1 )

den = [1 -2 1];

num = [0 1 -0.25];

sysD = tf( num, den, 1 )

den = [1 -2 1];

num = [0 2 -1];

sysD = tf( num, den, 1 )

Page 15: DCS-21 A Design Example

DCS21-DesignExample-15

Feng-Li Lian © 2021Simulation Study: Root Locus

Root Locus:

Page 16: DCS-21 A Design Example

DCS21-DesignExample-16

Feng-Li Lian © 2021Simulation Study: Root Locus vs Nyquist Plot

den = [1 -1.5 0.5];

num = [ 0.25*K ];

sysD = tf( num, den, h )

K = 1

K = 2

K = 4

Page 17: DCS-21 A Design Example

DCS21-DesignExample-17

Feng-Li Lian © 2021Simulation Study: Root Locus vs Bode Plot vs Nyquist Plot

den = [1 1.4 1];

num = [ 1 ];

sysC = tf( num, den )

sysD = c2d( sysC, h )

CT

DT, h = 4

DT, h = 1

DT, h = 0.4

DT, h = 0.2

DT, h = 0.1

DT, h = 0.01

sysD =

1.042 z + 0.07881

-------------------------

z^2 + 0.1167 z + 0.003698

Sample time: 4 seconds

0.3059 z + 0.1902

-----------------------

z^2 - 0.7505 z + 0.2466

Sample time: 1 seconds

0.06609 z + 0.05481

---------------------

z^2 - 1.45 z + 0.5712

Sample time: 0.4 seconds

0.0182 z + 0.01657

----------------------

z^2 - 1.721 z + 0.7558

Sample time: 0.2 seconds

0.004771 z + 0.004553

---------------------

z^2 - 1.86 z + 0.8694

Sample time: 0.1 seconds

4.977e-05 z + 4.954e-05

-----------------------

z^2 - 1.986 z + 0.9861

Sample time: 0.01 seconds

sysC =

1

---------------

s^2 + 1.4 s + 1

Page 18: DCS-21 A Design Example

DCS21-DesignExample-18

Feng-Li Lian © 2021Simulation Study: Root Locus vs Bode Plot vs Nyquist Plot

rlocus(sysC)

rlocus(sysD)

bode( sysC )

bode( sysD )

nyquist( sysC )

nyquist( sysD )

CT

DT, h = 4

DT, h = 1

DT, h = 0.4

DT, h = 0.2

DT, h = 0.1

DT, h = 0.01

den = [1 1.4 1];

num = [ 1 ];

sysC = tf( num, den )

sysD = c2d( sysC, h )

Page 19: DCS-21 A Design Example

DCS21-DesignExample-19

Feng-Li Lian © 2021Simulation Study: Step Response

Step Reponses of Different Gains:

Page 20: DCS-21 A Design Example

DCS21-DesignExample-20

Feng-Li Lian © 2021Simulation Study: Step Response

Hidden Oscillation of Different Sampling Periods:

Page 21: DCS-21 A Design Example

DCS21-DesignExample-21

Feng-Li Lian © 2021

The Research Procedure in Control Science

Physical

Process

Math

Model

System

Analysis

Control

Design

Differential eqn

Laplace transform

Transfer function

State space form

Root locus

Bode diagram

Nyquist plot

Stability

Robustness

Sensitivity

Controllability

Observability

Estimator

Identification

Regulation

Tracking

PID

Pole placement

Optimal Control

LQR/LQG

Adaptive control

Robust control

Decentralized

(or Multi-person)

Control

Difference eqn

z transform

Transfer function

State space form

Plant

Sensor

Actuator

Computer

Communication

Noise

Disturbance

Differential eqn

Laplace transform

The Design Philosophy of Control Science